Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2020 Nov 20;40(11):1587–1592. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2020.11.08

无心血管合并症的老年阻塞性睡眠呼吸暂停综合征患者心功能变化及其影响因素分析

Cardiac functional alterations and its risk factors in elderly patients with obstructive sleep apnea syndrome free of cardiovascular disease

高 莹卉 1, 温 永飞 1, 钱 小顺 2,5, 赵 力博 3,5, 徐 虎 3,5, 徐 伟豪 3,5, 孔 晓萱 3,5, 车 贺宾 4, 王 亚斌 5, 刘 霖 2,5,*
PMCID: PMC7704368  PMID: 33243740

Abstract

目的

评估心血管并发症出现前老年阻塞性睡眠呼吸暂停综合征(OSA)患者的心脏结构和功能改变及其影响因素。

方法

入选82名无心血管疾病的老年OSA患者,根据睡眠呼吸暂停低通气指数(AHI)分为轻度组(AHI < 15次/h)和中/重度组(AHI ≥ 15次/h)。记录患者人口统计学资料及一般基础资料,PSG监测结束的当天早上空腹状态下抽取静脉血,检测血常规与生化指标。在整夜多导睡眠监测完成1周内完成超声心动图检查,分析两组间心脏结构、功能及血生化指标等的差异。

结果

中重度OSA组患者血小板比积(0.22±0.08 vs 0.17±0.04,P=0.032)、血肌酐水平(70.94±27.88 vs 54.49±34.22,P=0.022)高于轻度OSA组。两组患者的左室射血分数、室间隔厚度、左室后壁厚度、左房内径、左室舒张末内径均无显著差别。两组二尖瓣舒张早期血流速度峰值(E)相似,但中重度OSA组的舒张晚期二尖瓣血流速度峰值(A)高于轻度OSA组(70.35±6.87 vs 64.09±8.31,P= 0.0001),其E/A比值显著低于轻度OSA组(0.98±0.06 vs 1.08±0.05,P=0.0001)。多元线性回归显示,E/A比值与AHI呈负相关(β=-0.645,P=0.0001)。

结论

在没有高血压和任何其他心血管疾病的情况下,老年中重度OSA患者可出现心脏舒张功能受损,其程度与AHI正相关。

Keywords: 阻塞性睡眠呼吸暂停, 心脏舒张功能, 老年人, 低通气指数


阻塞性睡眠呼吸暂停综合征(OSA)以睡眠期间上气道反复出现完全阻塞(呼吸暂停)或部分阻塞(低通气)为特征,伴有间歇低氧、睡眠中反复觉醒和胸腔内压力变化[1]。OSA与高血压、心律失常、冠心病、心力衰竭、肺动脉高压等多种疾病有关,是心血管事件的独立危险因素[2-5]

持续气道正压通气(CPAP)是公认的治疗OSA的有效方法,理论上治疗OSA可降低心血管疾病风险。已合并缺血性心脑血管疾病的OSA患者,CPAP治疗并未显著降低心脑血管终点事件的发生率[6]。提示对已合并心血管疾病的OSA患者再进行CPAP治疗来降低再发风险可能为时已晚,早期就对OSA进行干预来防止心血管问题可能更加有效[7]。因此,界定能反映OSA患者早期心血管损伤的指标,并根据这些指标对OSA患者进行早期干预显得尤为重要。

研究表明心脏结构和功能改变可预测心肺疾病的预后[8]。超声心动图做为一种无创、便捷的检测手段,可早期评估患者心脏结构和功能,有助于早期发现OSA患者心脏潜在损伤,为尽早开展CPAP治疗提供依据。

既往研究提示OSA患者存在左心室舒张功能异常和障碍[9-12];在OSA早期尚未出现心血管并发症时,已能观察到左心室的整体纵向应变减少,在疾病进展到晚期出现明显并发症时,左心室射血分数才显著下降[13-14]。但这些研究并未排除合并高血压的患者,考虑到OSA是高血压发生的独立危险因素[2],而左心室舒张功能不全是高血压伴OSA患者的常见表现,这些患者的心脏结构和功能改变不能完全排除高血压的影响。在高血压和其他心血管并发症出现之前,OSA是否可独立导致心血管损伤,目前研究结果尚存在争议[15-16]

阻塞性睡眠呼吸暂停综合征是老年患者最常见的睡眠呼吸障碍性疾病[17-18]。关于老年阻塞性睡眠呼吸暂停综合征患者心脏结构和功能变化的数据较少,且研究人群多合并高血压等基础心血管疾病[2, 12, 19-21],难以直接反映OSA对心脏结构和功能的影响,本研究旨在分析心血管并发症出现前,老年OSA患者的心脏结构和功能改变及其影响因素。

1. 资料和方法

1.1. 研究对象

选择2015年1月~2016年10月,在北京大学国际医院、解放军总医院就诊的417名老年阻塞性睡眠呼吸暂停综合征患者。纳入标准:年龄≥ 65岁;符合阻塞性睡眠呼吸暂停综合征诊断标准;愿意参与本研究并签署知情同意书。排除标准:原发性高血压、继发性高血压;糖尿病;冠心病、肺心病等其他已知的心脏疾病;高脂血症;既往脑卒中诊断史;恶性肿瘤患者。最终,纳入82名阻塞性睡眠呼吸暂停综合征患者进行数据分析。该研究得到解放军总医院伦理委员会批准(伦理号S2019-352-01)。

1.2. 方法

患者分组:参考《成人阻塞性睡眠呼吸暂停多学科诊疗指南》[22],本研究根据呼吸暂停低通气指数(AHI)将纳入的OSA患者分为轻度OSA组(AHI < 15次/h)和中/重度OSA组(AHI ≥ 15次/h)。记录患者人口统计学资料及一般基础资料如性别、年龄、身高、体质量、血压等,PSG监测结束的当天早上空腹状态下抽取静脉血,检测血常规与生化指标。

睡眠监测:在睡眠试验室使用康迪多导睡眠监测仪对患者进行技术员值守的整夜多导睡眠监测,监测参数包括脑电图、眼电图、下颌肌电图、口鼻气流、胸腹运动、鼾声、脉搏氧饱和度等。监测结果自动分析后由专业睡眠技师人工校准,监测报告包括AHI(呼吸暂停低通气指数)、氧减指数(ODI,睡眠中每小时脉搏血氧饱和度下降 > 4%的总次数)、最低/平均脉氧饱和度(SpO2)等。

超声心动图:所有患者均于PSG完成后1周内完成超声心动图检查。由2名有经验的超声专业医师应用美国通用电气公司Vivid机器(Vivid E9-GE Healthcare, Milwaukee, WI)进行检查。动态图像帧频≥ 50帧/s,测量至少3个心动周期取平均值,M型及多普勒频谱走速为75~100 mm/s。患者平静休息30 min后,取左侧卧位,测量并记录室间隔厚度、左室后壁厚度、左室舒张末期内径、左室收缩末期内径、左室射血分数,左房内径、舒张早期二尖瓣血流速度峰值(E)、舒张晚期二尖瓣血流速度峰值(A),组织多普勒测量舒张早期心肌运动速度峰值(Em)、舒张晚期心肌运动速度峰值(Am),计算E/A、Em/Am值。

1.3. 统计学处理

应用SPSS 22.0软件处理相关数据。正态分布的计量资料用均数±标准差表示,组间比较采用独立样本t 检验,如方差不齐采用非参数Mann-Whitney检验。分类变量以百分率表示,组间比较用χ2检验;两变量相互关系采用Pearson相关性分析法,如非正态分布采用spearman相关性分析;与E/A比值相关性采用多元线性回归分析,P < 0.05为差异有统计学意义。

2. 结果

2.1. 两组一般资料的比较

轻度OSA组共32人,平均AHI 10.47±2.73次/h,中重度OSA组共50人,平均AHI 26.40±10.59次/h(P= 0.0001)。两组患者年龄相当(71.66±6.28岁vs 72.38± 6.04岁,P=0.637),两组患者中女性占比均较少,中重度组女性更少,但两组间女性占比差异无统计学意义(40.6% vs 21.2%),P > 0.05。中重度OSA组平均SpO2低于轻度OSA组,但差异无统计学意义(93.58±5.41 vs 95.61±3.03,P=0.056)。两组在吸烟史、体质量指数(BMI)、血压、血糖、血脂等方面差异无统计学意义(P > 0.05)。中重度OSA组患者血小板比积(0.22±0.08 vs 0.17 ± 0.04,P=0.032)、血肌酐水平(70.94 ± 27.88 vs 54.49±34.22,P=0.022)高于轻度OSA组(表 1)。

1.

一般临床资料

Clinical characteristics of the patients

Variables Mild OSA (n=32) Moderate/severe OSA (n=50) χ2/t P
OSA: Obstructive sleep apnea; BMI: Body mass index; AHI: Apnea-hypopnea index; PDW: Platelet distribution width; RDW: Red blood cell distribution width; NLR: Neutrophil to lymphocyte ratio; PLR: Platelet to lymphocyte ratio; HDL: High-density lipoprotein; LDL: Low-density lipoprotein.
Age (year, Mean±SD) 71.66±6.28 72.38±6.04 0.437 0.637
Female [n (%)] 13(40.6) 11(21.2) 3.230 0.085
Current smoker [n (%)] 6(18.8) 5(10) 1.270 0.325
BMI(kg/m2, Mean±SD) 23.69±5.07 25.03±4.52 1.244 0.217
AHI (times/h) 10.47±2.73 26.40±10.59 8.317 0.0001
Average SpO2 (%, Mean±SD) 95.61±3.03 93.58±5.41 -1.939 0.056
Minimum SpO2 (%, Mean±SD) 81.46±9.66 78.18±12.66 -1.229 0.223
Systolic pressure (mmHg, Mean±SD) 119.06±11.58 123.46±13.01 1.549 0.125
Diastolic pressure (mmHg, Mean±SD) 71.19±8.02 73.32±10.57 0.963 0.338
Plateletcount (×109, Mean±SD) 167.22±42.64 193.83±80.58 1.710 0.091
Mean platelet volume (fL, Mean±SD) 10.95±1.14 11.13±1.85 0.521 0.604
PDW(%, Mean±SD) 15.46±2.49 16.13±1.85 1.244 0.217
Plateletcrit (%, Mean±SD) 0.17±0.04 0.22±0.08 2.188 0.032
RDW(%, Mean±SD) 13.62±1.77 14.08±0.51 1.615 0.111
NLR(Mean±SD) 2.80±1.48 3.14±1.96 0.852 0.397
PLR(Mean±SD) 135.74±60.14 156.14±77.27 0.699 0.487
Uric acid (μmol/L, Mean±SD) 221.10±148.78 272.70±124.30 0.650 0.103
Creatinine (μmol/L, Mean±SD) 54.49±34.22 70.94±27.88 2.347 0.022
Fasting serum glucose (mmol/L, Mean±SD) 5.31±0.84 5.35±0.90 0.290 0.977
Total cholesterol (mmol/L, Mean±SD 4.06±0.73 4.29±0.85 1.139 0.228
Triglyceride (mmol/L, Mean±SD) 1.22±0.36 1.31±0.37 1.082 0.283
HDL cholesterol (mmol/L, Mean±SD 1.25±0.54 1.32±0.52 0.517 0.607
LDL cholesterol (mmol/L, Mean±SD) 2.02±0.89 2.28±0.89 1.517 0.134

2.2. 两组患者左室舒张功能参数的比较及相关性分析

心脏结构及功能方面,两组患者的左室射血分数、室间隔厚度、左室后壁厚度、左房内径、左室舒张末内径差异均无统计学意义(P > 0.05)。两组舒张早期二尖瓣血流速度峰值(E)相似,但中重度OSA组的舒张晚期二尖瓣血流速度峰值(A)高于轻度OSA组(70.35± 6.87 vs 64.09±8.31,P=0.0001,表 2),其E/A比值显著低于轻度OSA组(0.98±0.06 vs 1.08±0.05,P=0.0001)。

2.

超声心动图参数比较

Comparison of echocardiographic parameters of the patients with mild and moderate to severe OSA

Variables Mild OSA (n=32) Moderate/severe OSA (n=50) χ2/t P
OSA: Obstructive sleep apnea; E: Transmitral early diastolic flow; A: Transmitral late diastolic flow; Em: Early diastolic myocardial velocity from lateral mitral annulus; Am: Late diastolic myocardial velocity from lateral mitral annulus,
Ejection fraction (%) 60.62±5.02 59.64±6.06 -0.360 0.720
Intraventricular septum thickness (mm) 10.03±1.15 10.66±1.10 1.627 0.334
Left ventricle posterior wall thickness (mm) 9.02±1.12 9.59±0.99 0.972 0.334
Left atrial diameter (mm) 35.80±6.60 36.28±5.57 0.319 0.751
Left ventricular diastolic diameter (mm) 47.41±5.53 48.22±7.41 0.486 0.629
E (cm/s) 68.93±8.87 68.38±5.51 -0.346 0.730
A (cm/s) 64.09±8.31 70.35±6.87 3.703 0.0001
E/A ratio 1.08±0.05 0.98±0.06 -7.849 0.0001
Em (cm/s) 11.49±1.48 11.40±0.92 -0.346 0.755
Am (cm/s) 9.85±1.32 11.89±1.41 6.532 0.0001
Em/Am ratio 1.17±0.06 0.97±0.11 -9.812 0.0001

通过对E/A比值与临床及血液指标的相关分析发现,AHI与E/A比值呈负相关(r=-0.613,P=0.0001),平均氧饱和度与E/A比值呈正相关(r=0.253,P=0.022,图 1)。E/A比值与年龄、BMI、血压、尿酸、血糖、血脂、血小板比积、甘油三酯等均不相关(P > 0.05,表 3)。我们进一步对E/A比值与AHI、平均SpO2、血小板比积、血小板分布宽度、血小板计数进行了多元线性回归,结果显示E/A比值与AHI相关(β=-0.645,P=0.0001,表 4)。

1.

1

散点图显示AHI与E/A比值呈负相关(A),平均脉氧饱和度与E/A比值呈正相关(B

Scatter plot showing a negative correlation between AHI and E/A ratio (A) and a positive correlation between mean pulse oxygen saturation and E/A ratio (B) in patients with OSA. AHI: apnea-hypopnea index; E: Transmitral early diastolic flow; A: Transmitral late diastolic flow.

3.

E/A与临床及血液指标的相关性分析

Analysis of the correlation between E/A ratio and the clinical and blood biochemical parameters of the patients with OSA

Variables E/A E/A
r P r P
E: Transmitral early diastolic flow; A: Transmitral late diastolic flow; BMI: Body mass index; AHI: Apnea-hypopnea index; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; PDW: Platelet distribution width; RDW: Red cell distribution width; NLR: Neutrophil to lymphocyte ratio; PLR: Platelet to lymphocyte ratio.
Age -0.056 0.615 Average SpO2 0.253 0.022
BMI -0.126 0.260 Minimum SpO2 0.162 0.147
AHI -0.613 0.0001 Platelet count -0.195 0.084
Systolic pressure 0.112 0.315 Mean platelet volume 0.060 0.606
Diastolic pressure 0141 0.206 PDW 0.219 0.053
Creatinine -0.082 0.474 Plateletcrit -0.203 0.076
Uric acid -0.069 0.551 RDW -0.139 0.233
Total cholesterol 0.023 0.843 NLR 0.062 0.595
HDL cholesterol -0.068 0.571 PLR 0.005 0.962
LDL cholesterol -0.022 0.855 Triglyceride 0.098 0.408
Fasting serum glucose -0.033 0.776 - - -

4.

E/A与连续变量的多元线性回归分析

Multiple linear regression analysis of E/A ratio and continuous variables

Variables Beta t P
AHI -0.645 -6.045 0.0001
Average SpO2 -0.099 -0.948 0.346
Plateletcrit 0.244 0.234 0.816
PDW 0.131 1.291 0.201
Platelet count -0.273 -0.260 0.796

3. 讨论

本研究在入选患者时,排除了高血压、冠心病、肺心病等各种已知的心脏疾病,结果发现在没有高血压和任何其他心血管疾病的情况下,与轻度OSA患者相比,中重度OSA患者心脏舒张功能受损,E/A比值显著低于轻度患者。提示OSA或可独立导致心脏功能受损。

OSA导致心血管损伤的可能机制在于:慢性间歇性低氧激活交感神经,增加活性氧生成,促进氧化应激,诱导血管炎症,引起内皮功能障碍,介导胰岛素抵抗及瘦素抵抗引起代谢紊乱,进而导致心血管疾病及其他脏器损害。反复觉醒引起交感神经激活,导致血压升高和代谢紊乱。呼吸事件期间胸腔内负压增大、静脉回流增加、右心室前负荷及左心室后负荷增加、左心室壁应力急剧增加诱导交感神经兴奋,加速OSA相关心血管疾病的进程[1, 23-24]

既往有研究还发现中重度OSA患者室间隔厚度和左房内径增加[25-26]。本研究提示中重度OSA患者室间隔厚度、左房内径相比轻度患者有增加趋势,但未显示出统计学差异,可能与本研究重度患者不多,两组间AHI差别不大有关,增大样本量后,或能显示出统计学差异。另一方面也反映了心脏舒张功能受损早于心脏结构改变,提示相较于其他指标,E/A比值在评估OSA患者早期心功能受损方面敏感性更高。

既往研究发现吸烟量与OSA严重程度有关[27],与非吸烟者相比,吸烟者的夜间平均血氧饱和度更低,有吸烟史的OSA患者患高血压的风险增加[28]。本研究中,轻度OSA组与中重度OSA组在吸烟率上无显著差异。可能与本研究入选人群总体吸烟率不高及整体样本量较小有关,可在今后的研究中进一步扩展样本量进行分析。

高血压、肥胖、年龄、胆固醇水平、胰岛素抵抗、糖尿病和甲状腺功能减退与阻塞性睡眠呼吸暂停综合征患者心血管疾病的发生有关[29-32]。本研究就E/A比值与临床及血液指标进行相关性分析,未发现E/A比值与年龄、BMI、血压、血糖、血脂等存在相关性,E/A比值与AHI和平均SpO2相关。经多元线性回归进一步分析,E/A与AHI存在负相关。提示AHI为年龄、肥胖等因素之外的OSA患者心脏舒张功能不全的独立预测指标。

综上所述,在没有高血压和任何其他心血管疾病的情况下,中重度老年OSA患者可出现心脏舒张功能受损,且舒张功能受损早于心脏结构受损出现,其程度与AHI正相关。对尚未出现心血管合并症的OSA患者,我们应关注其心脏功能,并对已经出现心脏舒张功能受损的OSA患者给予更积极的干预。

Biography

高莹卉,博士,主治医师,E-mail: ashley_gao@163.com

Funding Statement

军队保健专项科研基金(19BJZ34、16BJZ25);国家老年疾病临床研究中心2018开放课题(NCRCG-PLAGH-2018008);解放军总医院军事医学青年项目(QNC19054)

Contributor Information

高 莹卉 (Yinghui GAO), Email: ashley_gao@163.com.

刘 霖 (Lin LIU), Email: liulin715@qq.com.

References

  • 1.Javaheri S, Barbe F, Campos-Rodriguez F, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. http://europepmc.org/abstract/MED/28209226. J Am Coll Cardiol. 2017;69(7):841–58. doi: 10.1016/j.jacc.2016.11.069. [Javaheri S, Barbe F, Campos-Rodriguez F, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences[J]. J Am Coll Cardiol, 2017, 69(7): 841-58.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Lombardi C, Pengo MF, Parati G. Systemic hypertension in obstructive sleep apnea. http://www.researchgate.net/publication/329941006_Systemic_hypertension_in_obstructive_sleep_apnea. J Thorac Dis. 2018;10(Suppl 34):S4231–43. doi: 10.21037/jtd.2018.12.57. [Lombardi C, Pengo MF, Parati G. Systemic hypertension in obstructive sleep apnea[J]. J Thorac Dis, 2018, 10(Suppl 34): S4231- 43.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Marinheiro R, Parreira L, Amador P, et al. Ventricular arrhythmias in patients with obstructive sleep apnea. Curr Cardiol Rev. 2019;15(1):64–74. doi: 10.2174/1573403X14666181012153252. [Marinheiro R, Parreira L, Amador P, et al. Ventricular arrhythmias in patients with obstructive sleep apnea[J]. Curr Cardiol Rev, 2019, 15 (1): 64-74.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Mandal S, Kent BD. Obstructive sleep apnoea and coronary artery disease. http://www.onacademic.com/detail/journal_1000041678693999_b63b.html. J Thorac Dis. 2018;10(S34):S4212–20. doi: 10.21037/jtd.2018.12.75. [Mandal S, Kent BD. Obstructive sleep apnoea and coronary artery disease[J]. J Thorac Dis, 2018, 10(S34): S4212-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cadby G, McArdle N, Briffa T, et al. Severity of OSA is an independent predictor of incident atrial fibrillation hospitalization in a large sleep-clinic cohort. http://europepmc.org/abstract/MED/26184674. Chest. 2015;148(4):945–52. doi: 10.1378/chest.15-0229. [Cadby G, McArdle N, Briffa T, et al. Severity of OSA is an independent predictor of incident atrial fibrillation hospitalization in a large sleep-clinic cohort[J]. Chest, 2015, 148(4): 945-52.] [DOI] [PubMed] [Google Scholar]
  • 6.McEvoy RD, Antic NA, Heeley E, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. http://www.ncbi.nlm.nih.gov/pubmed/27571048. N Engl J Med. 2016;375(10):919–31. doi: 10.1056/NEJMoa1606599. [McEvoy RD, Antic NA, Heeley E, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea[J]. N Engl J Med, 2016, 375(10): 919-31.] [DOI] [PubMed] [Google Scholar]
  • 7.McNicholas WT, Bonsignore MR, Lévy P, et al. Mild obstructive sleep apnoea: clinical relevance and approaches to management. http://www.ncbi.nlm.nih.gov/pubmed/27245915. Lancet Respir Med. 2016;4(10):826–34. doi: 10.1016/S2213-2600(16)30146-1. [McNicholas WT, Bonsignore MR, Lévy P, et al. Mild obstructive sleep apnoea: clinical relevance and approaches to management[J]. Lancet Respir Med, 2016, 4(10): 826-34.] [DOI] [PubMed] [Google Scholar]
  • 8.Burgess MI, Mogulkoc N, Bright-Thomas RJ, et al. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. http://europepmc.org/abstract/MED/12050605. J Am Soc Echocardiogr. 2002;15(6):633–9. doi: 10.1067/mje.2002.118526. [Burgess MI, Mogulkoc N, Bright-Thomas RJ, et al. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease[J]. J Am Soc Echocardiogr, 2002, 15(6): 633-9.] [DOI] [PubMed] [Google Scholar]
  • 9.Kepez A, Niksarlioglu EY, Hazirolan T, et al. Early myocardial functional alterations in patients with obstructive sleep apnea syndrome. http://europepmc.org/abstract/MED/19017316. Echocardiography. 2009;26(4):388–96. doi: 10.1111/j.1540-8175.2008.00809.x. [Kepez A, Niksarlioglu EY, Hazirolan T, et al. Early myocardial functional alterations in patients with obstructive sleep apnea syndrome[J]. Echocardiography, 2009, 26(4): 388-96.] [DOI] [PubMed] [Google Scholar]
  • 10.Wachter R, Lüthje L, Klemmstein D, et al. Impact of obstructive sleep apnoea on diastolic function. http://www.ncbi.nlm.nih.gov/pubmed/22790918. Eur Respir J. 2013;41(2):376–83. doi: 10.1183/09031936.00218211. [Wachter R, Lüthje L, Klemmstein D, et al. Impact of obstructive sleep apnoea on diastolic function[J]. Eur Respir J, 2013, 41(2): 376- 83.] [DOI] [PubMed] [Google Scholar]
  • 11.Bodez D, Lang S, Meuleman C, et al. Left ventricular diastolic dysfunction in obstructive sleep apnoea syndrome by an echocardiographic standardized approach: an observational study. http://www.ncbi.nlm.nih.gov/pubmed/26068195. Arch Cardiovasc Dis. 2015;108(10):480–90. doi: 10.1016/j.acvd.2015.03.006. [Bodez D, Lang S, Meuleman C, et al. Left ventricular diastolic dysfunction in obstructive sleep apnoea syndrome by an echocardiographic standardized approach: an observational study [J].Arch Cardiovasc Dis, 2015, 108(10): 480-90.] [DOI] [PubMed] [Google Scholar]
  • 12.D'Andrea A, Canora A, Sperlongano S, et al. Subclinical impairment of dynamic left ventricular systolic and diastolic function in patients with obstructive sleep apnea and preserved left ventricular ejection fraction. http://www.researchgate.net/publication/340270435_Subclinical_impairment_of_dynamic_left_ventricular_systolic_and_diastolic_function_in_patients_with_obstructive_sleep_apnea_and_preserved_left_ventricular_ejection_fraction. BMC Pulm Med. 2020;20(1):76. doi: 10.1186/s12890-020-1099-9. [D'Andrea A, Canora A, Sperlongano S, et al. Subclinical impairment of dynamic left ventricular systolic and diastolic function in patients with obstructive sleep apnea and preserved left ventricular ejection fraction[J]. BMC Pulm Med, 2020, 20(1): 76.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Altekin RE, Yanikoglu A, Baktir AO, et al. Assessment of subclinical left ventricular dysfunction in obstructive sleep apnea patients with speckle tracking echocardiography. http://link.springer.com/article/10.1007/s10554-012-0026-4. Int J Cardiovasc Imaging. 2012;28(8):1917–30. doi: 10.1007/s10554-012-0026-4. [Altekin RE, Yanikoglu A, Baktir AO, et al. Assessment of subclinical left ventricular dysfunction in obstructive sleep apnea patients with speckle tracking echocardiography[J]. Int J Cardiovasc Imaging, 2012, 28(8): 1917-30.] [DOI] [PubMed] [Google Scholar]
  • 14.Buonauro A, Galderisi M, Santoro C, et al. Obstructive sleep apnoea and right ventricular function: a combined assessment by speckle tracking and three-dimensional echocardiography. http://www.ncbi.nlm.nih.gov/pubmed/28526545. Int J Cardiol. 2017;243:544–9. doi: 10.1016/j.ijcard.2017.05.002. [Buonauro A, Galderisi M, Santoro C, et al. Obstructive sleep apnoea and right ventricular function: a combined assessment by speckle tracking and three-dimensional echocardiography[J]. Int J Cardiol, 2017, 243: 544-9.] [DOI] [PubMed] [Google Scholar]
  • 15.Baguet JP, Nadra M, Barone-Rochette G, et al. Early cardiovascular abnormalities in newly diagnosed obstructive sleep apnea. http://pubmedcentralcanada.ca/pmcc/articles/PMC2801630/ Vasc Health Risk Manag. 2009;5:1063–73. doi: 10.2147/vhrm.s8300. [Baguet JP, Nadra M, Barone-Rochette G, et al. Early cardiovascular abnormalities in newly diagnosed obstructive sleep apnea[J]. Vasc Health Risk Manag, 2009, 5: 1063-73.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Peker Y, Glantz H, Eulenburg C, et al. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA randomized controlled trial. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7152f6c8955991b13ca23a48cfdec082. Am J Respir Crit Care Med. 2016;194(5):613–20. doi: 10.1164/rccm.201601-0088OC. [Peker Y, Glantz H, Eulenburg C, et al. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA randomized controlled trial[J]. Am J Respir Crit Care Med, 2016, 194(5): 613-20.] [DOI] [PubMed] [Google Scholar]
  • 17.Chowdhuri S, Patel P, Badr MS. Apnea in older adults. Sleep Med Clin. 2018;13(1):21–37. doi: 10.1016/j.jsmc.2017.09.003. [Chowdhuri S, Patel P, Badr MS. Apnea in older adults[J]. Sleep Med Clin, 2018, 13(1): 21-37.] [DOI] [PubMed] [Google Scholar]
  • 18.Iannella G, Maniaci A, Magliulo G, et al. Current challenges in the diagnosis and treatment of obstructive sleep apnea syndrome in the elderly. http://www.researchgate.net/publication/340472974_Current_challenges_in_the_diagnosis_and_treatment_of_obstructive_sleep_apnea_syndrome_in_the_elderly. PolArch Intern Med. 2020;130(7/8):649–54. doi: 10.20452/pamw.15283. [Iannella G, Maniaci A, Magliulo G, et al. Current challenges in the diagnosis and treatment of obstructive sleep apnea syndrome in the elderly[J]. PolArch Intern Med, 2020, 130(7/8): 649-54.] [DOI] [PubMed] [Google Scholar]
  • 19.Scotti C, Porta R, Olivares A, et al. Nocturnal hypoxemia impacts right ventricle diastolic function in obstructive sleep apnea: a retrospective observational study. http://www.researchgate.net/publication/338475198_Nocturnal_Hypoxemia_Impacts_Right_Ventricle_Diastolic_Function_in_Obstructive_Sleep_Apnea_A_Retrospective_Observational_Study. J Clin Med. 2020;9(1):E162. doi: 10.3390/jcm9010162. [Scotti C, Porta R, Olivares A, et al. Nocturnal hypoxemia impacts right ventricle diastolic function in obstructive sleep apnea: a retrospective observational study[J]. J Clin Med, 2020, 9(1): E162.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Glantz H, Johansson MC, Thunström E, et al. Effect of CPAP on diastolic function in coronary artery disease patients with nonsleepy obstructive sleep apnea: a randomized controlled trial. http://www.ncbi.nlm.nih.gov/pubmed/28408103. Int J Cardiol. 2017;241:12–8. doi: 10.1016/j.ijcard.2017.03.100. [Glantz H, Johansson MC, Thunström E, et al. Effect of CPAP on diastolic function in coronary artery disease patients with nonsleepy obstructive sleep apnea: a randomized controlled trial[J]. Int J Cardiol, 2017, 241: 12-8.] [DOI] [PubMed] [Google Scholar]
  • 21.Korcarz CE, Peppard PE, Young TB, et al. Effects of obstructive sleep apnea and obesity on cardiac remodeling: the Wisconsin sleep cohort study. http://dx.doi.org/10.5665/sleep.5828. Sleep. 2016;39(6):1187–95. doi: 10.5665/sleep.5828. [Korcarz CE, Peppard PE, Young TB, et al. Effects of obstructive sleep apnea and obesity on cardiac remodeling: the Wisconsin sleep cohort study[J]. Sleep, 2016, 39(6): 1187-95.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.中国医师协会睡眠医学专业委员会 成人阻塞性睡眠呼吸暂停多学科诊疗指南. Nation Med J China. 2018;98(24):1902–14. [中国医师协会睡眠医学专业委员会.成人阻塞性睡眠呼吸暂停多学科诊疗指南[J]. Nation Med J China, 2018, 98(24): 1902-14.] [Google Scholar]
  • 23.Mehra R. Sleep apnea and the heart. http://www.researchgate.net/publication/322167259_Sleep_Apnea_and_the_Heart. Cleveland Clin J Med. 2019;86(9 Suppl 1):10–8. doi: 10.3949/ccjm.86.s1.03. [Mehra R. Sleep apnea and the heart[J]. Cleveland Clin J Med, 2019, 86(9 Suppl 1): 10-8.] [DOI] [PubMed] [Google Scholar]
  • 24.Drager LF, McEvoy RD, Barbe F, et al. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. http://www.ncbi.nlm.nih.gov/pubmed/29109195. Circulation. 2017;136(19):1840–50. doi: 10.1161/CIRCULATIONAHA.117.029400. [Drager LF, McEvoy RD, Barbe F, et al. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science[J]. Circulation, 2017, 136(19): 1840-50.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Aslan K, Deniz A, Cayli M, et al. Early left ventricular functional alterations in patients with obstructive sleep apnea syndrome. http://www.ncbi.nlm.nih.gov/pubmed/24469876. Cardiol J. 2013;20(5):519–25. doi: 10.5603/CJ.2013.0043. [Aslan K, Deniz A, Cayli M, et al. Early left ventricular functional alterations in patients with obstructive sleep apnea syndrome[J]. Cardiol J, 2013, 20(5): 519-25.] [DOI] [PubMed] [Google Scholar]
  • 26.韩 静, 王 晓, 范 靖尧, et al. 中重度阻塞性睡眠呼吸暂停对急性冠脉综合征患者心脏结构和功能的影响. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhyx201923006. 中华医学杂志. 2019;99(23):1782–6. [韩静, 王晓, 范靖尧, 等.中重度阻塞性睡眠呼吸暂停对急性冠脉综合征患者心脏结构和功能的影响[J].中华医学杂志, 2019, 99(23): 1782-6.] [Google Scholar]
  • 27.Yosunkaya S, Kutlu R, Vatansev H. Effects of smokıng on patıents WıTH obstructıve sleep apnea syndrome. Clin Respir J. 2020;22(9) doi: 10.1111/crj.13278. [Yosunkaya S, Kutlu R, Vatansev H. Effects of smokıng on patıents WıTH obstructıve sleep apnea syndrome[J]. Clin Respir J, 2020, 22 (9): DOI:10.1111/crj.13278.] [DOI] [PubMed] [Google Scholar]
  • 28.Shao C, Qi H, Fang Q, et al. Smoking history and its relationship with comorbidities in patients with obstructive sleep apnea. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSF202010001205.htm. Tob Induc Dis. 2020;18:56. doi: 10.18332/tid/123429. [Shao C, Qi H, Fang Q, et al. Smoking history and its relationship with comorbidities in patients with obstructive sleep apnea[J]. Tob Induc Dis, 2020, 18: 56.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kiely JL, McNicholas WT. Cardiovascular risk factors in patients with obstructive sleep apnoea syndrome. http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3003.2000.16a23.x. Eur Respir J. 2000;16(1):128–33. doi: 10.1034/j.1399-3003.2000.16a23.x. [Kiely JL, McNicholas WT. Cardiovascular risk factors in patients with obstructive sleep apnoea syndrome[J]. Eur Respir J, 2000, 16 (1): 128-33.] [DOI] [PubMed] [Google Scholar]
  • 30.Dursunoglu D, Dursunoglu N, Evrengül H, et al. Impact of obstructive sleep apnoea on left ventricular mass and global function. http://ejechocard.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=erj&resid=26/2/283. Eur Respir J. 2005;26(2):283–8. doi: 10.1183/09031936.05.00038804. [Dursunoglu D, Dursunoglu N, Evrengül H, et al. Impact of obstructive sleep apnoea on left ventricular mass and global function [J]. Eur Respir J, 2005, 26(2): 283-8.] [DOI] [PubMed] [Google Scholar]
  • 31.Marin JM, Carrizo SJ, Vicente E, et al. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. http://www.bmj.com/lookup/external-ref?access_num=15781100&link_type=MED&atom=%2Fbmj%2F341%2Fbmj.c5991.atom. Lancet. 2005;365(9464):1046–53. doi: 10.1016/S0140-6736(05)71141-7. [Marin JM, Carrizo SJ, Vicente E, et al. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study[J]. Lancet, 2005, 365(9464): 1046-53.] [DOI] [PubMed] [Google Scholar]
  • 32.Chopra S, Rathore A, Younas H, et al. Obstructive sleep apnea dynamically increases nocturnal plasma free fatty acids, glucose, and cortisol during sleep. http://europepmc.org/abstract/MED/28595341. J Clin Endocrinol Metab. 2017;102(9):3172–81. doi: 10.1210/jc.2017-00619. [Chopra S, Rathore A, Younas H, et al. Obstructive sleep apnea dynamically increases nocturnal plasma free fatty acids, glucose, and cortisol during sleep[J]. J Clin Endocrinol Metab, 2017, 102(9): 3172-81.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES