Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2020 Nov 20;40(11):1622–1627. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2020.11.13

细胞周期蛋白25A在非小细胞肺癌中的表达及与Let-7的关系

Expression of CDC25A in non-small cell lung cancer and its relationship with let-7 gene

李 殿明 1,*, 柳 兆飞 2, 宁 国兰 3
PMCID: PMC7704372  PMID: 33243735

Abstract

目的

明确细胞周期蛋白25A(CDC25A)在NSCLC组织中的表达及与临床病理特征的关系,并探讨其与miRNA let-7a1、let-7c表达的相关性。

方法

收集53例肺组织手术标本,其中包括NSCLC组织44例,收集其癌组织和癌旁正常组织(病理证实),和良性肺疾病组织9例。免疫组化Elivision法检测CDC25A蛋白的表达;用Trizol法提取总RNA,采用荧光定量RT-PCR检测CDC25A mRNA的表达,加尾法荧光定量RT-PCR检测let-7a1和let-7c mRNA的表达。

结果

CDC25A蛋白表达的阳性率在NSCLC组织明显高于癌旁正常组织和良性肺疾病组织(P < 0.05)。NSCLC组织中CDC25A蛋白的表达与年龄、性别、病理类型、肿瘤分化程度、临床分期无关(P > 0.05),与吸烟、淋巴结转移相关(P < 0.05)。CDC25A mRNA在NSCLC组织中的表达量明显高于癌旁正常组织和良性肺疾病组织(F=6.33,P < 0.05),在癌旁正常组织和良性肺疾病组织中表达无明显差异(P > 0.05)。Pearson相关分析显示CDC25A与let-7c在NSCLC组织和癌旁正常组织中表达均呈明显负相关(r癌组织=-0.42,r癌旁正常组织=-0.40),与let-7a1之间无明显相关。

结论

CDC25A在NSCLC组织表达水平明显增高,且与let-7c表达呈明显负相关,推测CDC25A可能是let-7c的下游靶基因。

Keywords: 微小RNA, let-7, 肺癌, 细胞周期蛋白25A


肺癌是当前发病率及死亡率最高的肿瘤,其中非小细胞肺癌(NSCLC)占80%~90%[1]。近年来尽管采用了手术、化疗、放疗、靶向治疗和免疫治疗等5年生存率也仅仅15%左右[2],其主要原因可能是对肺癌发生机制仍不十分明确。

细胞周期失控被认为是肿瘤的发生机理之一,涉及到细胞分裂周期基因(CDC)、周期蛋白依赖激酶基因(CDK)和周期蛋白依赖激酶抑制剂基因(CKI),它们共同构成了细胞周期调控的分子基础[3]。细胞周期蛋白以CDC25A最为重要,可通过激活cyclin-cdk复合物促进细胞周期G1/S期和G2/M期进程[4-5],CDC25A过表达可导致细胞周期进程加快,引起细胞恶变,导致肿瘤发生。文献报道在乳腺癌[6]、肝癌[7]等多种肿瘤中CDC25A在表达增高,发挥癌基因作用。

Let-7家族是发现较早的miRNAs,miRNAs在肿瘤的发生、发展过程中能以癌基因或者抑癌基因等方式参与调控[8]。Takamizawa等[9]显示在NSCLC组织中Let-7a1、Let-7c的表达水平显著低于正常肺组织,与在胃癌等[10]肿瘤中表达相似。我们通过查阅文献[11]和MicroRNA靶基因预测软件,结合碱基互补性原理发现CDC25A可能是let-7c的一个下游靶基因,它们在同一通路中对肺癌的发生起重要作用。因此本研究采用IHC和RT-PCR的方法检测肺癌组织中CDC25A的表达,首次明确其与临床病理特征的关系,并探讨其与let-7表达的相关性,进而阐明CDC25A可能参与了NSCLC的发生发展,其机制与let-7c通路活化有关,为临床CDC25A抑制剂和let-7模拟物靶向治疗肿瘤提供理论依据。

1. 资料和方法

1.1. 一般资料

本研究获得了蚌埠医学院第一附属医院伦理委员会批准(批件号:BYYFY-2018KY25),同时标本收集得到了患者及家属的知情同意。入组标准:(1)年龄18~ 75岁;(2)首次确诊的非小细胞肺癌且TNM分期在Ⅲ期以前的患者,或良性肺疾病有外科手术指征者;(3)以前未行化疗、放疗、靶向治疗及免疫等治疗者;(4)肺功能较好能够耐受手术者;(5)无其他手术禁忌症者。排除标准:(1)年龄 < 18岁或 > 75岁;(2)TNM分期为Ⅳ期的患者,或良性肺疾病无外科手术指征者;(3)以前接受过化疗、放疗、靶向治疗及免疫等治疗者;(4)肺功能较差者;(5)有其他手术禁忌症或拒绝手术治疗者;收取2014年6月~2015年6月在蚌埠医学院第一附属医院胸外科行肺癌根治术的肺癌组织及远离癌组织边缘5 cm的癌旁正常组织44例,其中男25例,女19例,年龄为47~72(59.4±9.2)岁,术后病理检查均证实为非小细胞肺癌。其中鳞癌21例,腺癌23例。另外收集良性肺疾病组织9例(肺炎性假瘤3例,结核球2例,肺囊肿1例,复发性气胸1例,支气管扩张1例,胸外伤致左下肺不张1例)作为阴性对照,男8例,女1例,年龄在12~57(35.1±14.3)岁。所取标本分两部分,一部分-80 ℃冰箱保存备用,另一部分行石蜡包埋,用于病理诊断和免疫组化。同时收集患者临床资料。

1.2. 主要试剂

Trizol试剂(Invitrogen);RNA保存液、EB(天根);DAB显色试剂盒、柠檬酸抗原修复液、KIT9901 ElivisionTM plus Polyer HRP(Mouse/Rabbit)IHC Kit、DAB显色试剂盒(迈新生物);let-7a1、let-7c基因引物、U6内参引物;All-in-OneTM miRNA qRT-PCR Detection Kit(基因复能);SuperScript Ⅲ反转录试剂盒(ABIinvitrogen);兔抗人CDC25A多克隆抗体(Proteintech);山羊抗小鼠单克隆二抗、山羊抗兔单克隆二抗(博士德)。

1.3. 引物设计

引物序列详见表 1

1.

引物序列

Primer sequence

Gene name Gene sequence Product length
CDC25A Forward primer 5'-GGATGATGGCTTCGTGGACCTT-3'
Reverse primer 5'-TGACCGAGTGCTGGAGCTACA-3'
172 bp
Beta-actin Forward primer 5'-GCACTCTTCCAGCCTTCCTTCC-3'
Reverse primer 5'-CGGATGTCCACGTCACACTTCA-3'
92 bp

1.4. 免疫组化

采用免疫组化Elivision法检测肺癌组织、癌旁组织和良性肺疾病组织中CDC25A蛋白的表达,结果由2位病理科医师采用双盲法判定。CDC25A阳性显色定位于细胞浆和细胞核,呈棕黄色颗粒为主。采用半定量积分法判定结果:首先按照着色强度评分:标本无色为0分,淡黄色为1分,棕黄色为2分,棕褐色为3分。再按照阳性细胞在所观察细胞中所占比例评分:阳性细胞数≤10%为1分,11%~50%为2分,51%~75%为3分,≥75%为4分。每张切片最后的得分为两次评分的乘积(1~12分),大于或等于3分为阳性,小于3分为阴性。

1.5. RT-PCR

Trizol法提取组织总RNA,反转录使用invitrogen反转录试剂盒,按superscript Ⅲ步骤进行,加入引物,后按PCR试剂盒说明书步骤进行,PCR参数设置如下:预变性95 ℃,2 min,1个循环;变性94 ℃,20 s,退火65 ℃,20 s,延伸72℃,30 s,共40个循环。在延伸72℃时收集荧光信号。扩增结束后的PCR产物直接用于特定的溶解曲线检测。

1.6. PCR产物的判定及计算

(1)因染料法与双链DNA结合并不是一一对应,一旦有引物二聚体形成或非特异性扩增都将影响结果。所以通过溶解曲线分析判断PCR反应的特异性。最终以内参校正的相对值作为后期统计分析数据;(2)使用ABI公司的StepOnePlusTM(96孔)实时荧光PCR扩增仪进行实时荧光定量PCR反应,检测各八连管中cDNA的Ct值(C代表荧光信号到达阈值时所需要的PCR反应次数,T代表循环阈值),实验设三个复孔,取平均值,以组织中Beta-Actin的表达作为内参,给以相对定量,采用2-△△ct值法计算2种microRNA在组织中的相对表达量。公式如下:△Ct=Ct(CDC25A)-Ct(Beta-Actin),△△Ct=△Ct(实验组织)-△Ct(对照组织)。所有实验重复3次,数据使用2-△△ct值表示目标基因mRNA在组织中的相对表达量。

1.7. 统计学处理

采用SPSS17.0统计软件进行数据分析,统计描述为均数±标准差。计数资料采用χ2检验,计量资料采用独立样本t检验及单因素方差分析,两变量的关联性采用Pearson相关分析,P < 0.05为差异具有统计学意义。

2. 结果

2.1. CDC25A蛋白在NSCLC组织、癌旁正常组织和良性肺疾病组织中的表达

CDC25A蛋白在NSCLC组织中表达阳性率明显高于癌旁正常组织(χ2=28.42,P < 0.05)和良性肺疾病组织(χ2=14.58,P < 0.05,表 2图 1);但在癌旁正常组织和良性肺疾病组织中表达差异无统计学意义(χ2=0.42,P > 0.05)。

2.

CDC25A蛋白在NSCLC组织、癌旁正常组织和良性肺疾病组织中的表达

Expression of CDC25Aprotein in NSCLC, adjacent lung tissue and benign lung lesions

Group n CDC25A χ2 P
Positive (%) Negative (%)
Lung cancer tissue 44 34 (77.3) 10 (22.7)
Adjacent tissue 44 9 (20.5) 35 (79.5) 33.35 < 0.05
Benign lung disease 9 1 (11.1) 8 (88.9)

1.

1

免疫组化(Elivision法)CDC25A在不同组织中的表达

Expression of CDC25A in different tissues detected by immunohistochemistry (Original magnification: ×400). A: Weak expression of CDC25A in benign lung lesions. B: Weak expression of CDC25A in adjacent lung tissue. C, D: Strong positive expression of CDC25Ain NSCLC tissues.

2.2. CDC25A蛋白在NSCLC组织的表达和临床病理特征的关系

CDC25A蛋白在NSCLC组织中的表达阳性率与年龄、性别、病理类型、肿瘤分化程度、临床分期均无关(P均 > 0.05),与吸烟、淋巴结转移有关(P均 < 0.05,表 3)。

3.

NSCLC组织中CDC25A表达与临床的关系

Expression of CDC25Ain NSCLC and its correlation with the clinicopathological parameters

Clinicopathological features n CDC25A χ2 P
Positive [n(%)] Negative [n(%)]
Age (year) 1.55 0.21
  ≥60 33 27 (81.8) 6 (18.2)
   < 60 11 7 (63.6) 4 (36.4)
Sex 0.20 0.65
  Male 29 23 (79.3) 6 (20.7)
  Female 15 11 (73.3) 4 (26.7)
Pathological type 1.63 0.20
  Adenocarcinoma 23 16 (69.6) 7 (30.4)
  Squamous cell carcinoma 21 18 (85.7) 3 (14.3)
Smoking 4.92 0.03
  Yes 23 20 (87.0) 3 (13.0)
  No 21 12 (57.1) 9 (42.9)
Differentiation degree 2.81 0.25
  Grade Ⅰ 13 8 (61.5) 5 (38.5)
  Grade Ⅱ 27 23 (85.2) 4 (14.8)
  Grade Ⅲ 4 3 (75.0) 1 (25.0)
Lymph node metastasis 4.74 0.03
  Yes 14 8 (57.1) 6 (42.9)
  No 30 26 (86.7) 4 (13.3)
Clinical stages 0.96 0.33
  Ⅰ-Ⅱ 39 31 (79.5) 8 (20.5)
  Ⅲ-Ⅳ 5 3 (60.0) 2 (40.0)

2.3. CDC25A mRNA在NSCLC表达的扩增曲线和溶解曲线

RT-PCR扩增曲线呈较为光滑的S型,均在30个循环以前出现扩增信号,结果较为可靠;由于产物序列不同(172 bp/92 bp),溶解曲线荧光信号主峰基本集中在80~90 ℃和78~88 ℃之间,其前有小的杂峰,考虑为复空中底物浓度过低所至引物二聚体的形成(图 2)。

2.

2

CDC25AmRNA在NSCLC表达的扩增曲线和溶解曲线

Amplification curves and melting curves of CDC25A mRNA expression in NSCLC.

2.4. CDC25A mRNA在NSCLC组织、癌旁正常组织和良性肺疾病组织中的表达水平比较

CDC25A mRNA在NSCLC组织中的相对表达量明显高于癌旁正常组织和良性肺疾病组织,差异有统计学意义(F=6.33,P < 0.05,表 4)。

4.

CDC25AmRNA在不同类型肺组织中的表达

Expression of CDC25AmRNAin different lung tissues

Group n CDC25A(Mean±SD F P
*P < 0.05, #P < 0.05.
Lung cancer tissue 44 3.54±1.83#*
Adjacent tissue 44 2.68±1.67* 6.33 < 0.05
Benign lung disease 9 1.55±0.59#

2.5. CDC25A与let-7a1、let-7c在NSCLC组织、癌旁正常组织的表达之间的相关性

CDC25A mRNA在NSCLC组织、癌旁正常组织的表达与我们前期对同一标本、采用同一内参(BetaActin)同时检测的let-7a1、let-7c mRNA的表达情况进行Pearson相关分析,结果显示:CDC25A与let-7c之间在肺癌组织和癌旁正常组织中表达均呈负相关(r癌组织= -0.42,r癌旁正常组织=-0.40,P均 < 0.05),但与let-7a1之间并无明显相关(r癌组织=0.19,r癌旁正常组织=-0.10,P均 > 0.05,表 5)。

5.

CDC25A与let-7a1、let-7c在肺癌组织及癌旁正常组织表达的相关性

Correlation of CDC25A with let-7a1 and Let-7c expressions in lung cancer and adjacent lung tissues

Pathological tissue type Gene Pearson related
r P
Lung cancer tissue let-7a1 0.19 0.21
let-7c -0.42 0.00
Adjacent tissue let-7a1 -0.10 0.54
let-7c -0.40 0.01

3. 讨论

尽管不同肿瘤的发病机理不同,但却有着共同的特征--细胞周期失控。细胞周期调控是一个复杂的生物学过程,涉及到许多调控因子的生物学效应。目前发现的与细胞周期调控有关的分子主要可归为三大类:周期蛋白、周期蛋白依赖激酶(CDK)和周期蛋白依赖激酶抑制剂(CKI),其对应的基因被称为细胞分裂周期基因(CDC),其中CDK是调控网络的核心,细胞周期蛋白对CDK具有正性调控作用,CKI有负性调控作用,共同构成了细胞周期调控的分子基础[3]

CDC25A是细胞分裂周期基因CDC25家族分子之一,是一种双特异性磷酸酶,在正常细胞分裂过程中调节细胞周期间的关键转变,研究表明CDC25A是细胞周期进程的重要调控因子[11],在DNA损伤的情况下,CDC25A是确保遗传稳定性的检查点机制的关键靶点[12]。在卵巢癌、结直肠癌、视网膜母细胞瘤、食管癌、肝癌、下咽癌、乳腺癌和非霍奇金淋巴瘤等多种人类的恶性肿瘤以及多种肉瘤中均CDC25A蛋白高表达[13-18]。近年来在非小细胞肺癌中还鉴别出了CDC25A亚单位CDC25AQ110del的异常高表达[19]。因此认为CDC25A蛋白高表达与肿瘤的发生发展密切相关。

本研究显示,NSCLC组织中CDC25A蛋白表达阳性率明显高于癌旁正常组织和良性肺疾病组织(P均 < 0.05),与Lin等[19]结果一致;且CDC25A mRNA的表达与年龄、性别、病理类型、肿瘤分化程度、临床分期均无关(P > 0.05),而与吸烟、淋巴结转移有关(P < 0.05),这与Chikara等[20]、Shen等[21]的研究结果相一致,但在胃癌的研究中发现CDC25A与淋巴结转移显著相关[22]。因此认为CDC25A在肿瘤发生中可能具有促进肿瘤细胞增殖和转移的作用,另有研究认为其与肿瘤细胞的耐药和不良预后有关[23-24]。确切的分子机制仍需进一步探讨。

miRNA也是目前研究的热点,与多种疾病的发生相关。Let-7家族是近年来研究的较多的miRNA,let-7基因在多种肿瘤中表达下调,被认为是一个抑癌基因。负向调控多个致癌基因如KRAS、cMYC、CDK6、HOXA9、TGFBR1、BCLXL和MAP4K31等,具有促进肿瘤发生作用[26]。前期我们研究已经证实let-7a1和let-7c基因在肺癌组织中低表达,且随临床分期进展、淋巴结转移呈明显表达减低,提示其可能成为肺癌早期诊断、临床分期预测的分子标记物之一(另文发表)。国内Zhu等[7]在肝癌组织及细胞中的研究中发现CDC25A表达升高,let-7c表达降低,但两者之间是否有相关性未做进一步阐明。我们通过MicroRNA靶基因预测软件(PicTar、miRanda和TargetScan),结合碱基的互补性原理,发现CDC25A可能是let-7c的一个下游靶基因。因此本研究通过Pearson相关分析,结果显示CDC25A与let-7c基因之间在肺癌组织和癌旁组织中表达均呈明显负相关(r癌组织=-0.42,r癌旁组织=-0.40)。因此,我们推测let-7c可能是通过抑制其下游靶基因CDC25A基因的表达,从而抑制肿瘤的发生。

同时本研究还显示在CDC25A高表达和let-7c低表达病人中淋巴结转移较早。Sarkis团队结合分子建模和核磁共振研发了迄今为止最有效的CDC25A抑制剂(双醌IRC-083864),具有和CDC25A分子较好的结合效应[26]。同时有学者在体外、体内实验中转染let-7模拟物进行实验观察,发现其有明显肿瘤抑制作用,这为肿瘤的靶向治疗提供了新的理论依据[27]

Funding Statement

安徽省教育厅自然科学研究资助重点项目(KJ2018A0997);安徽省教育厅自然科学研究资助项目(KJ2010B113)

References

  • 1.Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492. doi: 10.3322/caac.21492. [Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer J Clin, 2018, 68(6): 394-424.] [DOI] [PubMed] [Google Scholar]
  • 2.徐 燕, 王 孟昭. 非小细胞肺癌免疫治疗进展. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfazz201403024. 中国肺癌杂志. 2014;17(1):34–41. [徐燕, 王孟昭.非小细胞肺癌免疫治疗进展[J].中国肺癌杂志, 2014, 17(1): 34-41.] [Google Scholar]
  • 3.Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer. 2007;7(7):495–507. doi: 10.1038/nrc2169. [Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets[J]? Nat Rev Cancer, 2007, 7(7): 495-507.] [DOI] [PubMed] [Google Scholar]
  • 4.Sur S, Agrawal DK. Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d9e5189b936eef4d4c3f111283403b2d. Mol Cell Biochem. 2016;416(1/2):33–46. doi: 10.1007/s11010-016-2693-2. [Sur S, Agrawal DK. Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies[J]. Mol Cell Biochem, 2016, 416(1/2): 33-46.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.de Gooijer MC, van den Top A, Bockaj I, et al. The G2 checkpoint-a node-based molecular switch. FEBS Open Biol. 2017;7(4):439–55. doi: 10.1002/2211-5463.12206. [de Gooijer MC, van den Top A, Bockaj I, et al. The G2 checkpoint-a node-based molecular switch[J]. FEBS Open Biol, 2017, 7(4): 439-55.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Feng XL, Wu ZJ, Wu YS, et al. Cdc25A regulates matrix metalloprotease 1 through Foxo1 and mediates metastasis of breast cancer cells. Mol Cell Biol. 2011;31(16):3457–71. doi: 10.1128/MCB.05523-11. [Feng XL, Wu ZJ, Wu YS, et al. Cdc25A regulates matrix metalloprotease 1 through Foxo1 and mediates metastasis of breast cancer cells[J]. Mol Cell Biol, 2011, 31(16): 3457-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Zhu XM, Wu LJ, Yao J, et al. MicroRNA let-7c inhibits cell proliferation and induces cell cycle arrest by targeting CDC25A in human hepatocellular carcinoma. PLoS One. 2015;10(4):e0124266. doi: 10.1371/journal.pone.0124266. [Zhu XM, Wu LJ, Yao J, et al. MicroRNA let-7c inhibits cell proliferation and induces cell cycle arrest by targeting CDC25A in human hepatocellular carcinoma[J]. PLoS One, 2015, 10(4): e0124266.] [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 8.Cummins JM, He YP, Leary RJ, et al. The colorectal microRNAome. PNAS. 2006;103(10):3687–92. doi: 10.1073/pnas.0511155103. [Cummins JM, He YP, Leary RJ, et al. The colorectal microRNAome [J]. PNAS, 2006, 103(10): 3687-92.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753–6. doi: 10.1158/0008-5472.CAN-04-0637. [Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J]. Cancer Res, 2004, 64(11): 3753-6.] [DOI] [PubMed] [Google Scholar]
  • 10.傅 华, 于 爱军, 陈 凯, et al. CDC25A与CDK1在胃癌组织中的表达及其临床意义. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbyx201801020. 河北医学. 2018;24(1):80–3. [傅华, 于爱军, 陈凯, 等. CDC25A与CDK1在胃癌组织中的表达及其临床意义[J].河北医学, 2018, 24(1): 80-3.] [Google Scholar]
  • 11.Dozier C, Mazzolini L, Cénac C, et al. CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability. Oncogene. 2017;36(26):3781–8. doi: 10.1038/onc.2016.506. [Dozier C, Mazzolini L, Cénac C, et al. CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability[J]. Oncogene, 2017, 36(26): 3781-8.] [DOI] [PubMed] [Google Scholar]
  • 12.Sadeghi H, Golalipour M, Yamchi A, et al. CDC25A pathway toward tumorigenesis: Molecular targets of CDC25Ain cell-cycle regulation. http://onlinelibrary.wiley.com/doi/10.1002/jcb.26838. J CellBiochem. 2019;120(3):2919–28. doi: 10.1002/jcb.26838. [Sadeghi H, Golalipour M, Yamchi A, et al. CDC25A pathway toward tumorigenesis: Molecular targets of CDC25Ain cell-cycle regulation [J]. J CellBiochem, 2019, 120(3): 2919-28.] [DOI] [PubMed] [Google Scholar]
  • 13.Broggini M, Buraggi G, Brenna A, et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85e9060595e91591ab297d4dc3c191fa. Anticancer Res. 2000;20(6C):4835–40. [Broggini M, Buraggi G, Brenna A, et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients[J]. Anticancer Res, 2000, 20(6C): 4835-40.] [PubMed] [Google Scholar]
  • 14.Nishioka K, Doki Y, Shiozaki H, et al. Clinical significance of CDC25A and CDC25B expression in squamous cell carcinomas of the oesophagus. British J Cancer. 2001;85(3):412–21. doi: 10.1054/bjoc.2001.1934. [Nishioka K, Doki Y, Shiozaki H, et al. Clinical significance of CDC25A and CDC25B expression in squamous cell carcinomas of the oesophagus[J]. British J Cancer, 2001, 85(3): 412-21.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Qi LW, Zhang ZY, Zhang CF, et al. Anti-colon cancer effects of 6-shogaol through G2/M cell cycle arrest by p53/p21-cdc2/cdc25A crosstalk. Am J Chin Med. 2015;43(4):743–56. doi: 10.1142/S0192415X15500469. [Qi LW, Zhang ZY, Zhang CF, et al. Anti-colon cancer effects of 6-shogaol through G2/M cell cycle arrest by p53/p21-cdc2/cdc25A crosstalk[J]. Am J Chin Med, 2015, 43(4): 743-56.] [DOI] [PubMed] [Google Scholar]
  • 16.Singh L, Nag TC, Kashyap S. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness. Tumor Biol. 2016;37(5):5797–803. doi: 10.1007/s13277-015-4120-9. [Singh L, Nag TC, Kashyap S. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness[J]. Tumor Biol, 2016, 37(5): 5797-803.] [DOI] [PubMed] [Google Scholar]
  • 17.Löffler H, Syljuåsen RG, Bartkova J, et al. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene. 2003;22(50):8063–71. doi: 10.1038/sj.onc.1206976. [Löffler H, Syljuåsen RG, Bartkova J, et al. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines[J]. Oncogene, 2003, 22(50): 8063-71.] [DOI] [PubMed] [Google Scholar]
  • 18.Vijayakumar S, Liu GZ, Rus IA, et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell. 2011;19(5):601–12. doi: 10.1016/j.ccr.2011.03.010. [Vijayakumar S, Liu GZ, Rus IA, et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A[J]. Cancer Cell, 2011, 19(5): 601-12.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Lin TC, Lin PL, Cheng YW, et al. MicroRNA-184 deregulated by the MicroRNA-21 promotes tumor malignancy and poor outcomes in non-small cell lung cancer via targeting CDC25A and c-myc. http://labs.europepmc.org/abstract/MED/25990966;jsessionid=cgsBlOaMJ1D3becVoOAx.42. Ann Surg Oncol. 2015;22(Suppl 3):S1532–9. doi: 10.1245/s10434-015-4595-z. [Lin TC, Lin PL, Cheng YW, et al. MicroRNA-184 deregulated by the MicroRNA-21 promotes tumor malignancy and poor outcomes in non-small cell lung cancer via targeting CDC25A and c-myc[J]. Ann Surg Oncol, 2015, 22(Suppl 3): S1532-9.] [DOI] [PubMed] [Google Scholar]
  • 20.Chikara S, Lindsey K, Dhillon H, et al. Enterolactone induces G1-phase cell cycle arrest in nonsmall cell lung cancer cells by downregulating cyclins and cyclin-dependent kinases. Nutr Cancer. 2017;69(4):652–62. doi: 10.1080/01635581.2017.1296169. [Chikara S, Lindsey K, Dhillon H, et al. Enterolactone induces G1-phase cell cycle arrest in nonsmall cell lung cancer cells by downregulating cyclins and cyclin-dependent kinases[J]. Nutr Cancer, 2017, 69(4): 652-62.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Shen T, Shang CW, Zhou HY, et al. Ciclopirox inhibits cancer cell proliferation by suppression of Cdc25A. http://europepmc.org/abstract/MED/28680535. Genes Cancer. 2017;8(3/4):505–16. doi: 10.18632/genesandcancer.135. [Shen T, Shang CW, Zhou HY, et al. Ciclopirox inhibits cancer cell proliferation by suppression of Cdc25A[J]. Genes Cancer, 2017, 8(3/4): 505-16.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.El-Aarag SA, Mahmoud A, Hashem MH, et al. In silico identification of potential key regulatory factors in smoking-induced lung cancer. BMC Med Genomics. 2017;10(1):40. doi: 10.1186/s12920-017-0284-z. [El-Aarag SA, Mahmoud A, Hashem MH, et al. In silico identification of potential key regulatory factors in smoking-induced lung cancer [J]. BMC Med Genomics, 2017, 10(1): 40.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Li Y, Ji S, Fu LY, et al. Knockdown of cyclin-dependent kinase inhibitor 3 inhibits proliferation and invasion in human gastric cancer cells. Oncol Res. 2017;25(5):721–31. doi: 10.3727/096504016X14772375848616. [Li Y, Ji S, Fu LY, et al. Knockdown of cyclin-dependent kinase inhibitor 3 inhibits proliferation and invasion in human gastric cancer cells[J]. Oncol Res, 2017, 25(5): 721-31.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Zwergel C, Czepukojc B, Evain-Bana E, et al. Novel coumarin- and quinolinone-based polycycles as cell Division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. http://www.sciencedirect.com/science/article/pii/S0223523417302672. Eur J Med Chem. 2017;134:316–33. doi: 10.1016/j.ejmech.2017.04.012. [Zwergel C, Czepukojc B, Evain-Bana E, et al. Novel coumarin- and quinolinone-based polycycles as cell Division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells[J]. Eur J Med Chem, 2017, 134: 316-33.] [DOI] [PubMed] [Google Scholar]
  • 25.Wang XR, Cao L, Wang YY, et al. Regulation of let-7 and its target oncogenes (Review) Oncol Lett. 2012;3(5):955–60. doi: 10.3892/ol.2012.609. [Wang XR, Cao L, Wang YY, et al. Regulation of let-7 and its target oncogenes (Review)[J]. Oncol Lett, 2012, 3(5): 955-60.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Sarkis M, Miteva MA, Dasso Lang MC, et al. Insights into the interaction of high potency inhibitor IRC-083864 with phosphatase CDC25. Proteins. 2017;85(4):593–601. doi: 10.1002/prot.25236. [Sarkis M, Miteva MA, Dasso Lang MC, etal. Insights into the interaction of high potency inhibitor IRC-083864 with phosphatase CDC25[J]. Proteins, 2017, 85(4):593-601.] [DOI] [PubMed] [Google Scholar]
  • 27.Fassina A, Cappellesso R, Fassan M. Classification of non-small cell lung carcinoma in transthoracic needle specimens using micro RNA expression profiling. CHEST J. 2011;140(5):1305–11. doi: 10.1378/chest.11-0708. [Fassina A, Cappellesso R, Fassan M. Classification of non-small cell lung carcinoma in transthoracic needle specimens using micro RNA expression profiling[J]. CHEST J, 2011, 140(5): 1305-11.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES