Abstract
目的
通过超声实时监测胃窦进气情况,评估快充式经鼻湿化高流量通气(THRIVE)在全身麻醉诱导时对肥胖患者胃进气的影响。
方法
纳入90例于全麻下行腹腔镜胆囊手术的肥胖患者,BMI:30~39.9 kg/m2,随机分为面罩组(M组)、快充式经鼻湿化高流量通气(THRIVE)组(T组)、面罩复合THRIVE组(M+T组),30例/组。全麻诱导期,M组经面罩预给氧并在诱导给药后行面罩辅助通气(FMV);T组经THRIVE给氧;M+T组经面罩复合THRIVE预给氧,于诱导给药后行FMV复合THRIVE给氧。气管插管期,T组及M+T组患者接受THRIVE持续给氧。超声监测各患者胃窦部,超声图像出现“彗尾征”则定义为胃进气阳性(GI+)。测量预给氧前后以及插管后的胃窦部横截面积(CSA-GA),记录T1(入室)、T2(预充氧5 min后)、T3(诱导给药5 min后)、T4(插管后即刻)各时点脉搏氧饱和度(SpO2)、血氧分压(PaO2)、二氧化碳分压(PaCO2)及术后恶心呕吐等不良事件发生率。
结果
与T组比较,M和M+T组胃进气发生率显著增加(P < 0.05)。与T1时间点比较,M组和M+T组CSA-GA在T4时间点显著增加;与T1时间点比较,M组和M+T组的GI+亚组CSA-GA在T4时间点均显著增加;在T4时间点,M组和M+T组的GI+亚组CSA-GA大于本组GI-亚组(P < 0.05)。T组各时间点的CSA-GA无统计学差异(P>0.05)。腔镜直视下胃胀分级结果提示,与T组比较,M组和M+T组腔镜直视下胃胀分级Ⅰ°患者占比例显著减少,Ⅱ°患者占比例显著增加(P < 0.05)。窒息插管期(即T3~T4),M组PaO2变化值(ΔPaO2)显著大于T组和M+T组(P < 0.05)。
结论
超声监测观察胃窦部“彗尾征”及CSA-GA变化是一种可行、可靠的胃进气检测方法;而THRIVE用于肥胖病例的麻醉诱导能够在保证患者氧合的情况下不会进一步增加胃进气。
Keywords: 胃超声, 胃窦面积, 胃进气, 肥胖, 快充式经鼻湿化高流量通气
Abstract
Objective
To assess the effect of transnasal humidified rapid-insufflation ventilatory exchange (THRIVE) on gastric insufflation during general anesthesia induction in obese patients.
Methods
Ninety obese patients (BMI 30-39.9 kg/m2) undergoing laparoscopic cholecystectomy under general anesthesia were randomized into 3 groups (n=30) to receive facemask pre- oxygenation followed by face mask ventilation (FMV) after administration of anesthetics (Group M), oxygenation with THRIVE (Group T), or pre-oxygenation with facemask combined with THRIVE followed continuous oxygenation with both FMV and THRIVE after administration of anesthetics (Group M+T). The patients in the latter two groups received continuous oxygen via THRIVE during tracheal intubation. All the patients received real-time ultrasound monitoring of the gastric antrum, and positive gastric insufflation (GI+) was defined by the presence of comet-tail artifacts. The cross-sectional area of the gastic antrum (CSA-GA) was measured by ultrasound before and after pre-oxygenation and after intubation. The patients' SpO2, PaO2, and PaCO2 at admission (T1), 5 min after pre-oxygenation (T2), 5 min after medication (T3), and immediately after intubation (T4) were recorded, and the incidence of postoperative adverse events was assessed.
Results
The incidence of gastric insufflation was significantly higher in Group M and Group M+T than in Group T (P < 0.05). The CSA-GA was significantly greater at T4 than at T1 in Group M and Group M+T and in their GI+s ubgroups. The GI+ subgroups in Group M and Group M+ T had significantly larger CSA-GA at T4 than the GI- subgroups (P < 0.05). CSA-GA did not vary significantly during anesthesia induction in Group T (P>0.05). The incidence of grade Ⅰ gastric distension was lower but grade Ⅱ gastric distention was higher in Group M and Group M+T than in Group T (P < 0.05). Group M showed significantly greater variations of PaO2 at T3 and T4 than Group T and Group M+T (P < 0.05).
Conclusion
Ultrasound monitoring of the comet tail sign and the changes of CSA-GA in the gastric antrum is feasible and reliable for detecting gastrointestinal airflow, and in obese patients, the application of THRIVE for induction of anesthesia can ensure the oxygenation level without further increasing gastric insufflation.
Keywords: gastric ultrasound, antrum area, gastric insufflation, obesity, transnasal humidified rapidinsufflation ventilatory exchange
肥胖患者氧储备差,全麻诱导期易发生低氧血症,给麻醉医生带来极大挑战[1]。目前关于肥胖患者全麻诱导期的研究,多关注于预给氧期应用无创机械通气(FMV)模式,但存在舒适性差和胃进气的问题,可能会带来误吸风险以及影响腹腔镜手术的视野[2];改良的快速顺序诱导,提倡温和的吸气压力下FMV,但肺通气仍可能不充分而导致氧饱和度下降,胃进气风险仍然存在,而且对于肥胖患者,可能需要较高的吸气压力才能实现充分的通气[3]。快充式经鼻湿化高流量通气(THRIVE)近年来被应用于窒息氧合领域并取得重大突破,已成功应用于全麻诱导期[4-5],但其在肥胖患者诱导期的应用是否保证氧合且不增加胃进气和误吸的风险,尚未得到评估,其益处仍有待确定[6]。胃超声是近年来兴起的一项判断胃容积的可视化技术,对胃内进气的敏感性和特异性较高[7]。因此,本研究采用胃超声监测THRIVE用于肥胖患者全麻诱导期的胃窦部横截面积(CSA-GA)变化、胃进气情况,同时观察患者呼吸参数指标,为肥胖患者麻醉诱导期氧合技术的选择提供新思路。
1. 资料和方法
1.1. 一般资料
本研究是前瞻性随机对照试验,经医院伦理委员会批准(伦理号KY20160907-01),签署知情同意书。选取2018年6月~2019年12月南京市第一医院择期全身麻醉下腹腔镜胆囊手术(LC)患者90例。纳入标准:年龄18~65岁;ASA分级Ⅰ ~ Ⅱ级;世卫组织肥胖分类标准Ⅰ~Ⅱ类肥胖患者(BMI:30~39.9 kg/m2);Mallampatti分级Ⅰ~Ⅱ级;意识清楚。排除标准:胃肠道疾患如胃内高压、肠梗阻等;术前预计的困难气道、上呼吸道梗阻及疾病[肿瘤、出血、重度阻塞性睡眠呼吸暂停综合征(OSAS)、鼻咽腔感染等];影响正常氧合的肺部疾病[肺炎、慢性阻塞性肺疾病、支气管扩张、哮喘等];明确诊断心脏系统疾病;精神疾病难以配合者,中枢神经系统疾病,颅高压,凝血功能障碍等。满足入选标准的患者采用随机数字表法分为3组(n=30):面罩组(M)组、THRIVE组(T组)、面罩复合THRIVE组(M+T组),由同一名麻醉医生进行麻醉,同一组普外科医生手术,另一名经超声培训的麻醉医生(并且至少已有行50次胃超声检测经验[8])进行胃部超声监测并随访记录。
1.2. 技术
1.2.1. THRIVE技术
THRIVE装置(OptiFlowTM,Fisher & Payke)通过非密封的鼻塞输氧导管持续提供100%的吸入氧浓度(FiO2)、温度(31 ℃~37 ℃)和湿度(44 mg/L)的高流量氧(8~70 L/min)[5]。其优势是保持稳定FiO2、减少生理无效腔、保持气道正压、维持粘液纤毛清除系统能力及降低上气道呼吸阻力从而改善肺顺应性和患者的氧合,并减少上呼吸道阻塞。
1.2.2. 胃超声技术
彩色多普勒超声仪(Navis,深圳华生公司),低频曲阵探头(2~5 MHz)、标准腹部模式。探头标志点朝向头侧,选择在上腹剑突下正中矢状线略偏右,胃窦前方是肝左叶,后方是胰腺,标准胃窦截面的重要标志血管包括腹主动脉,下腔静脉和肠系膜上动静脉。超声观察胃进气情况(以超声显现胃窦部“彗尾征”样强回声气体声影为胃内进气阳性(GI+)[9])。在胃蠕动收缩间歇期,用自由追踪法描记测量CSA-GA。为了尽量减少测量误差,本研究选择了单个操作者于胃窦收缩间歇期3次测量计算CSA-GA取其平均值。
1.2.2. 胃超声下胃窦声像图
见图 1。
1.
胃超声图像
Gastric ultrasound images. A: CSA-GA measured by tracing graphically. B: Gastric insufflation with typical "comet-tail artifacts". Antrum: Gastric antrum; L: Liver; P: Pancreas; SMA: Superior mesenteric artery; Ao:Abdominal aorta.
1.3. 麻醉方法
1.3.1. 麻醉过程
术前访视记录患者肥胖相关情况(BMI、颈围、腰围)并评估气道指标(Mallampati分级、张口度、甲颏距离),使用STOP-Bang(SB)问卷进行OSAS筛查[10],剔除重度OSAS。所有患者术前禁食8 h,禁饮4 h,无术前用药,入室头高位25°仰卧位,监测脑电双频指数(BIS)、动脉血压、ECG,记录基础脉搏氧饱和度(SpO2)值、血红蛋白浓度。所有患者接受相同药物静脉诱导,咪达唑仑0.05 mg/kg,舒芬太尼0.5 μg/kg,丙泊酚1.5~2 mg/kg,罗库溴铵0.6 mg/kg,舒芬太尼和罗库溴铵按照患者理想体质量计算用药量[11],其余诱导药按患者体质量计算用药量。
T1时项:患者入室平卧静息5 min;T2时项:预给氧阶段,M组经紧密贴合颜面部面罩吸氧,麻醉机设置为手控模式,氧流量10 L/min,调节麻醉机环路APL阀最高限压置于为6 cmH2O;T组接THRIVE设备,流量30 L/min纯氧通气;M+T组使用THRIVE复合面罩吸O2,麻醉机及THRIVE设备参数同前;3组患者平静呼吸持续时间5 min。
T3时项:诱导给药阶段,BIS值低于60后,M组采用面罩辅助通气FMV压力控制模式,设置气道峰压(PIP)20 cm H2O,呼吸频率16次/min,吸呼比1:2;T组调整O2流量至70 L/min,紧闭患者口腔,仅使用高流量鼻导管吸O2;M+T组THRIVE 70 L/min吸氧并复合FMV,辅助通气参数同M组。3组患者均采用双手托下颌,头后仰30º呈鼻嗅物位。
T4时项:诱导给药5 min后气管插管,T组和M+T组患者,插管期间持续70 L/min纯氧供O2,明确插管成功后机控通气。
1.3.2. 观察时间点
平卧静息5 min后为T1;预给氧5 min后即为T2时间点;诱导给药5 min后为T3时间点;明确插管成功即刻(以连接呼吸机回路、球囊加压给氧后CO2描记图出现波形为标准)为T4时间点。
1.3.3. 补救方法
诱导过程中一旦T组发生低氧合(SpO2 < 90%),则辅助面罩通气。若患者气管内插管失败,则按照2015英国困难气道协会未预料困难气道处理指南进行处理[12],并剔除该病例。诱导过程中若出现低血压(SBP < 80 mmHg或者MAP下降幅度超过基线值的20%),则静脉注射麻黄碱5~10 mg;若心率低于50次/min,则静脉注射阿托品0.25~0.50 mg,如有必要可重复给药。
1.4. 观察指标
1.4.1. 一般资料和气道评估指标
患者一般资料、肥胖相关情况(肥胖分类、颈围、腰围)以及气道评估指标(Mallampati分级、张口度、甲颏距离、OSAS、术前SpO2)。
1.4.2. 胃超声指标
超声测量记录T1、T2及T4 3个时间点的CSA-GA;超声下胃窦部“彗尾征”的出现提示胃进气阳性GI+,根据胃窦有无“彗尾征”将各组患者进一步分为GI+、GI-两组,共6个亚组。
1.4.3. 腹腔镜直视下胃胀分级
外科医生腔镜直视评估胃胀分级[13],在建立气腹后由同一有经验手术医师和麻醉医师共同判断,以胃胀分级评估胃胀程度。根据胃胀对LC术野的影响程度分级,Ⅰ°:胃未充盈,胃内无张力,胃小弯未进入胆囊区;Ⅱ°:胃轻度充盈,胃内张力低,胃小弯进入胆囊区;Ⅲ°:胃中度充盈,胃内张力高,胃小弯已覆盖胆囊区,用腹腔镜撑杆能显露术野;Ⅳ°:胃极度充盈,胃内压极高,胃体覆盖全部胆囊区,用腹腔镜撑杆显露术野困难,需置入胃管排气,才能充分显露术野。
1.4.4. 各组呼吸参数指标
T1、T2、T3、T4四个时间点的PaO2,PaCO2值;计算窒息插管期(即T3~T4)PaO2变化值(ΔPaO2)。
1.4.5. 一般不良反应指标
恶心呕吐,反流误吸、鼻咽部不适感、气压伤等不良反应。
1.5. 统计学处理
根据本研究预试验结果,M组、T组和M+T组在插管后CSA-GA分别为4.9±1.0、4.3±0.7、5.6±1.2 cm2。确定Ⅰ类错误α=0.05,检验效能1-β=0.90,利用PASS 16.0软件计算,每组需要23例,允许20%的脱落率,考虑到计算的标准差的不确定性,每组选择30例患者。
采用SPSS 16.0软件进行统计分析,正态分布计量资料采用均数±标准差表示,组内比较采用重复测量方差分析,组间比较采用单因素方差分析,两两比较用LSD法;偏态分布计量资料采用中位数(M)和四分位数间距(IQR)表示,组内比较采用秩和检验;计数资料用频数或百分比(%)表示,计数资料的比较采用卡方检验。P < 0.05为差异有统计学意义。
2. 结果
2.1. 一般资料和气道评估指标比较
3组患者一般资料、肥胖相关情况(肥胖分类、颈围、腰围)以及气道评估指标(Mallampati分级、张口度、甲颏距离、OSAS、术前SpO2)的比较差异无统计学意义(P>0.05,表 1、2)。
1.
3组患者一般资料和肥胖相关情况的比较
Demographic data and obesity-related indices of the patients (n=30, Mean±SD or number of cases)
Group | Age(years) | Male/Female | ASA(Ⅰ/Ⅱ) | BMI(kg/m2) | Classification of obesity (Ⅰ/Ⅱ) | NC(cm) | WC(cm) | Hb(g/L) |
Classification of obesity BMI: Ⅰ: 30-34.9 kg/m2, Ⅱ: 35-39.9 kg/m2. NC: Neck circumference; WC: Waist circumference. | ||||||||
M | 46.5±10.4 | 15/15 | 12/18 | 33.9±2.6 | 21/9 | 42.2±3.0 | 117.8±12.2 | 129±9.8 |
T | 47.1±9.6 | 16/14 | 14/16 | 33.0±2.0 | 23/7 | 42.4±4.5 | 118.6±11.1 | 124±7.6 |
M+T | 45.3±10.3 | 17/13 | 13/17 | 33.5±2.5 | 22/8 | 41.0±3.9 | 119.4±11.8 | 122±10.9 |
F/χ2 | 0.000 | 0.268 | 0.271 | 0.001 | 0.341 | 0.001 | 0.432 | 0.001 |
P | 1.000 | 0.875 | 0.873 | 1.000 | 0.843 | 1.000 | 0.668 | 0.999 |
2.
3组患者气道评估情况及术前SpO2比较
Comparison of airway assessment and preoperative SpO2 amongthe 3 groups (n=30, Mean±SD or number of cases)
Group | Mallampati class (Ⅰ/Ⅱ) | Mouth opening (Ⅰ/Ⅱ/Ⅲ/Ⅳ) | Thyromental distance (Ⅰ/Ⅱ/Ⅲ) | OSAS [n (%)] | SpO2(%) | |||
Mouth opening: Ⅰ>4.0 cm, Ⅱ: 2.5~3.0 cm, Ⅲ: 1.2~2.0 cm, and Ⅳ < 1.0 cm. Thyromental distance: Ⅰ>6.5 cm, Ⅱ: 6~6.5 cm, Ⅲ < 6 cm. | ||||||||
M | 12/18 | 29/1/0/0 | 29/1/0 | 9(30) | 95.9±1.7 | |||
T | 11/19 | 30/0/0/0 | 26/4/0 | 8(27) | 94.8±2.2 | |||
M+T | 12/18 | 29/1/0/0 | 28/2/0 | 7(23) | 95.1±2.0 | |||
F/χ2 | 0.094 | 1.023 | 2.169 | 0.341 | 2.435 | |||
P | 0.954 | 0.600 | 0.338 | 0.843 | 0.094 |
2.2. 胃超声观察胃窦部进气情况和外科胃胀分级
本研究以超声显现“彗尾征”样强回声气体声影为胃内进气阳性(GI+)[9],在T1时间3组各有少数患者胃窦部可见气体影;记录本研究观察期新增显现“彗尾征”患者例数。与T组相比,M组和M+T组新增“彗尾征”的例数显著增多(P < 0.05);与M组相比,M+T组新增例数无统计学差异(P>0.05)。腔镜直视胃胀分级:Ⅰ°患者胆囊区暴露良好,与T组比较,M组和M+T组腔镜直视下Ⅰ°患者占比例显著减少,Ⅱ°患者占比例显著增多(P < 0.05),3组患者胃胀分级Ⅲ°、Ⅳ°占比无显著性差异(P>0.05,表 3)。
3.
3组患者胃超声发现彗尾征情况及外科胃胀分级
Gastric insufflation detected by ultrasonography and grade of gastric distension in the groups[n=30, cases(%)]
Group | Cases with air artefacts at T1 | Cases with new air artefacts | Degree of gastric distension | |||
Ⅰ° | Ⅱ° | Ⅲ° | Ⅳ° | |||
aP < 0.05 vs group M; bP < 0.05 vs group H. | ||||||
M | 1 | 12 (40) | 17 | 12 | 1 | 0 |
T | 2 | 2 (6.6)a | 27a | 3a | 0 | 0 |
M+T | 1 | 15 (50)b | 16b | 13b | 1 | 0 |
2.3. 3组患者CSA-GA的比较
超声测量T1、T2及插管后T4 3个时间点CSA-GA,并根据胃窦有无“彗尾征”将各组患者进一步分为GI+、GI-两组,共6个亚组。3组患者CSA-GA在T1与T2时间点差异无统计学意义(P> 0.05)。与T1比较,M组和M+T组CSA-GA在T4时间点显著增加;在T4时间点,与M组CSA-GA比较,T组减小,M+T组明显增大(P < 0.05)。与T1比较,M组和M+T组的GI+亚组CSA-GA在T4均显著增加;T4时间点,M组和M+T组的GI+亚组CSA-GA大于本组GI-亚组(P < 0.05)。T组各时间点的CSA-GA差异无统计学意义,各组GI-亚组无明显变化(P>0.05,表 4)。
4.
3组患者胃窦面积的比较
Comparison of CSA-GA among the 3 groups (Mean±SD)
Group | n | CSA-GA (cm2) | ||
T1 | T2 | T4 | ||
GI+ gastric insufflation positive GI- gastric insufflation negative. *P < 0.05 vs T1;aP < 0.05 vs group M; bP < 0.05 vs group H; cP < 0.05 vs group GI-. | ||||
M | 30 | 3.8±0.9 | 4.3±0.8 | 4.9±1.0* |
GI+ | 13 | 4.0±1.0 | 4.2±0.9 | 5.7±0.8*c |
GI- | 17 | 3.8±0.8 | 4.3±0.8 | 4.3±0.6 |
T | 30 | 3.8±0.6 | 4.1±0.7 | 4.3±0.7a |
GI+ | 4 | 3.7±0.7 | 4.2±0.2 | 4.3±0.5 |
GI- | 26 | 3.8±0.6 | 4.1±0.7 | 4.2±0.8 |
M+T | 30 | 4.0±0.8 | 4.1±0.7 | 5.6±1.2*ab |
GI+ | 16 | 4.0±0.9 | 4.2±0.4 | 6.5±0.7*c |
GI- | 14 | 3.9±0.7 | 4.0±1.0 | 4.6±0.7 |
2.4. 3组患者动脉血氧分压(PaO2)、二氧化碳分压(PaCO2)的变化
与T1时间比较,各组患者PaO2在T2~T4各时间点均显著增加(P < 0.05);在T2时间点,与M组比较,T组和M+T组PaO2升高(P < 0.05),T组和M+T组比较PaO2差异无统计学意义(P>0.05);在T3时间点,与M组比较,T组PaO2降低;在T4时间点,与M组比较,T组PaO2降低,M+T组PaO2升高,差异有统计学意义(P < 0.05)。窒息插管期(即T3~T4)PaO2变化值(即ΔPaO2):M组ΔPaO2值明显大于T组和M+T组(F=32.749,P < 0.05)。
与T1时间点比较,M组和M+T组患者PaCO2值在窒息插管后T4升高,T组PaCO2值在T3,T4时间点升高,差异有统计学意义(P < 0.05,表 5)。
5.
3组患者PaO2和PaCO2的变化
Changes in PaO2 and PaCO2 among the 3 groups(n=30, Mean±SD)
Parameter | Group | T1 | T2 | T3 | T4 |
*P < 0.05 vs T1; #P < 0.05 vs T2; aP < 0.05 vs group M; bP < 0.05 vs group H. | |||||
PaO2 (mmHg) |
M | 84.9±6.6 | 324.1±54.5* | 368.6±46.4* | 226.5±53.2* |
T | 82.5±6.8 | 372.7±46.8*a | 276.2±55.8*a | 179.5±36.0*a | |
M+T | 83.7±6.8 | 382.3±42.3*a | 394.5±39.4*b | 304.4±49.6*ab | |
PaCO2 (mmHg) |
M | 36.7±2.2 | 37.3±1.9 | 36.5±2.9 | 45.8±5.1* |
T | 37.5±3.2 | 36.7±2.0 | 48.4±3.3*a | 54.1±6.4*a | |
M+T | 36.8±2.7 | 36.5±1.7 | 36.6±2.5b | 43.2±5.5*b |
2.5. 一般不良事件
记录鼻咽部不适或气压伤(气胸、皮下气肿等)、术后恶心呕吐发生率。术后恶心呕吐发生率差异无统计学意义(P>0.05,表 6)。
6.
3组患者一般不良事件情况比较
Comparison of adverse events among the 3 groups[n=30, n (%)]
Group | Nausea and vomiting | Aspiration | Pharyngalgia | Barotrauma |
M | 4(13) | 0(0) | 0(0) | 0(0) |
T | 1(3) | 0(0) | 0(0) | 0(0) |
M+T | 6(20) | 0(0) | 0(0) | 0(0) |
3. 讨论
肥胖患者全麻诱导期间易发生低氧血症;加之这类患者存在潜在困难气道风险,因此寻求高效安全的通气方式是麻醉医生在临床工作中面临的重大问题[1]。既往研究提出,肥胖患者在面罩下自主呼吸预给氧可能无法达到理想的氧合,而无创正压通气舒适性差,同时易引起胃进气、反流误吸的风险[14-15]。THRIVE是维持相对恒定的FiO2、温度和湿度的高流量供氧技术,近年来在窒息氧合领域应用取得了重大突破[1, 14, 16],并为肥胖患者延长了安全呼吸暂停时间[17]。但其在肥胖患者全麻诱导期的应用是否保证氧合且不增加胃进气和误吸的风险目前尚未见报道。为此,本研究选用THRIVE为择期LC手术的肥胖患者诱导期氧合技术,采用超声技术和腔镜直视下观察患者胃进气情况并测量CSA-GA[18],为肥胖患者全麻诱导期应用THRIVE提供理论依据。
胃进气是诱导及苏醒期发生胃内容物反流、术后发生恶心呕吐的重要原因之一[19],近年来胃超声的出现,因其敏感性和特异性高[7]被广泛应用。Bouvet等[9]首次利用超声实时观察胃窦部进气情况,结果显示超声检测方法比传统听诊法更为敏感,且超声测得的CSA-GA与胃容积有显著相关性。最近几篇主流麻醉学期刊上的社论也呼吁在麻醉实践中更多地采用胃超声来降低围术期反流误吸的风险[20-22]。本研究胃超声结合腔镜直视下胃胀分级应用于肥胖人群,由于胃窦的深度和内脏脂肪的增加,胃窦超声检查更具挑战性[23-24],外科直视下辅助判断验证结果。经调整,全部患者均获取满意的胃窦部超声图像。肥胖受试者在T1时表现出明显较大的CSA-GA,超过了普通患者“安全胃”的临界值340 mm2[25],这可能与肥胖人群较厚的胃壁有关[26],也可能与该人群禁食状态下较高的绝对胃容量相对应。
有研究观察健康志愿者保留自主呼吸下采用THRIVE 70 L/min通气30 min后,胃容量未发现明显改变[6]。本研究结果提示,T组患者预给氧期和使用肌松药插管后CSA-GA未发生变化;胃进气发生率远低于其他两组。这一作用可能与食管下括约肌(LES)的屏障作用相关[27],相关研究显示随着流量增加,THRIVE在主气管、主支气管和咽部的平均压力均有相同程度的增加,而产生的压力始终低于10 cmH2O[28]。麻醉和肌松药的应用虽然可减弱食道运动和降低LES肌张力,但THRIVE通气过程中实质上是一个开放的系统,通气过程中,咽部压力也受口腔是否闭合、氧流量和鼻塞导管大小等因素共同影响[29]。本研究在临床得到验证,全麻诱导后由闭口和持续进入的高流量气体引起声门上湍流,不足以通过LES,降低了胃进气的发生。另有研究报道,THRIVE产生适度的气道持续正压,增加胸廓压力,可机械地压迫食道,增加了食管流出阻力[30]。同时,本研究纳入外科医生经腹腔镜直视下对胃胀情况进行的评估,结果显示胃胀评级Ⅰ°患者例数在T组明显高于其他两组,与超声评估结果具有一致性。
相关研究报道,在提供相同潮气量的情况下,对于胃进气的影响,FMV低于20 cmH2O压控模式优于手控或容量控制通气[31-33];而随着FMV期间PIP值的升高,胃内注气的风险增加。为避免发生肥胖患者诱导期通气不足和减少胃进气,本研究M组肥胖患者采用了20 cmH2O压力控制模式,M+T组采用该模式复合THRIVE,结果提示这两组胃进气的发生并增加了这部分患者胃窦面积;在麻醉肌松下无保护的气道更容易存在误吸风险。本研究还发现与M组相比,M+T组胃进气增多,误吸的风险有一定的增加。这一结果与既往一些研究结果类似,Bouvet等[9]研究在全麻诱导FMV期间,当设置PIP在25 cmH2O时,发现高至59%的患者可发生胃进气。对于全麻的患者尤其是肥胖患者,面罩通气的压力较难寻求到与LES压力的平衡点。
本研究同时观察了THRIVE在围插管期氧合领域的应用,结果显示,M+T组虽然氧合最好但是胃进气发生率较高;而T组仅应用THRIVE通气,其PaO2虽在T3、T4有所下降,但在观察期未出现低氧合(SpO2 < 90%)需要补救的情况。窒息插管期(T3~T4)使用THRIVE的两组肥胖患者PaO2下降较少,表现出了窒息氧合的保护机制,该机制包括:减少了氧输送期间的空气稀释作用;增加功能余气量;氧气的加温和加湿以及产生的气道正压[34-35];而且,THRIVE依赖高流量对气道的冲刷作用[35],具有一定的清除CO2的能力。当然,良好的THRIVE通气需保证患者气道通畅,特别对于肥胖患者,THRIVE产生了一个流量依赖的压力,通过防止肺泡塌陷并增加呼气末肺容量来改善氧合。
为了试验的一致性,本研究剔除了呼吸道梗阻的患者,并在术前访视使用STOP-Bang问卷进行OSAS筛查[10],剔除了重度OSAS患者,在诱导期采用头高位25°优化肥胖患者的呼吸力学和氧合,并选择合适型号的面罩和鼻塞输氧导管,极大程度保证患者围术期通气安全。在下一步研究中,将测量THRIVE通气过程中咽部及声门下气道的压力值情况,以指导临床的使用,并将THRIVE研究病态肥胖和困难气道应用的氧合问题和对胃容量的影响。
综上所述,超声检测观察胃窦部“彗尾征”及CSAGA变化是一种可行、可靠的胃进气检测方法;而THRIVE通气用于肥胖病例麻醉诱导期在保证患者氧合的情况下不进一步增加胃进气,可选择作为肥胖患者全身麻醉诱导期的氧合策略。
Biography
蒋卫清,硕士,主治医师,E-mail: jwqing1982@163.com
Funding Statement
国家自然科学基金(8197080821)
Supported by National Natural Science Foundation of China (8197080821)
Contributor Information
蒋 卫清 (Weiqing JIANG), Email: jwqing1982@163.com.
鲍 红光 (Hongguang BAO), Email: 23190543@qq.com.
冷 静 (Jing LENG), Email: lengjing@njmu.edu.cn.
References
- 1.Koyama Y, Tsuzaki K, Suzuki T, et al. Prevention of oxygen desaturation in morbidly obese patients during electroconvulsive therapy: a narrative review. http://journals.lww.com/ectjournal/Abstract/2020/09000/Prevention_of_Oxygen_Desaturation_in_Morbidly.6.aspx. J ECT. 2020;36(3):161–7. doi: 10.1097/YCT.0000000000000664. [Koyama Y, Tsuzaki K, Suzuki T, et al. Prevention of oxygen desaturation in morbidly obese patients during electroconvulsive therapy: a narrative review[J]. J ECT, 2020, 36(3): 161-7.] [DOI] [PubMed] [Google Scholar]
- 2.Harbut P, Gozdzik W, Stjernfält E, et al. Continuous positive airway pressure/pressure support pre-oxygenation of morbidly obese patients. ActaAnaesthesiol Scand. 2014;58(6):675–80. doi: 10.1111/aas.12317. [Harbut P, Gozdzik W, Stjernfält E, et al. Continuous positive airway pressure/pressure support pre-oxygenation of morbidly obese patients[J].ActaAnaesthesiol Scand, 2014, 58(6): 675-80.] [DOI] [PubMed] [Google Scholar]
- 3.Vasudevan A, Srinivasan S, Vinayagam S, et al. Assessment of effectiveness of cricoid pressure in preventing gastric insufflation during bag and mask ventilation: a randomized controlled trial. http://www.ncbi.nlm.nih.gov/pubmed/30429744. Saudi JAnaesth. 2018;12(4):606–11. doi: 10.4103/sja.SJA_240_18. [Vasudevan A, Srinivasan S, Vinayagam S, et al. Assessment of effectiveness of cricoid pressure in preventing gastric insufflation during bag and mask ventilation: a randomized controlled trial[J]. Saudi JAnaesth, 2018, 12(4): 606-11.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Helviz Y, Einav S. A systematic review of the high-flow nasal Cannula for adult patients. Crit Care. 2018;22(1):71. doi: 10.1186/s13054-018-1990-4. [Helviz Y, Einav S. A systematic review of the high-flow nasal Cannula for adult patients[J]. Crit Care, 2018, 22(1): 71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Patel A, Nouraei SA. Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE): a physiological method of increasing apnoea time in patients with difficult airways. Anaesthesia. 2015;70(3):323–9. doi: 10.1111/anae.12923. [Patel A, Nouraei SA. Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE): a physiological method of increasing apnoea time in patients with difficult airways[J]. Anaesthesia, 2015, 70(3): 323-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.McLellan E, Lam K, Behringer E, et al. High-flow nasal oxygen does not increase the volume of gastric secretions during spontaneous ventilation. Br JAnaesth. 2020;125(1):e75–80. doi: 10.1016/j.bja.2020.02.023. [McLellan E, Lam K, Behringer E, et al. High-flow nasal oxygen does not increase the volume of gastric secretions during spontaneous ventilation[J]. Br JAnaesth, 2020, 125(1): e75-80.] [DOI] [PubMed] [Google Scholar]
- 7.Brun PM, Chenaitia H, Bessereau J, et al. Contrôle échographique de la position de la sonde nasogastrique en préhospitalier. Ann Fr Anesth Reanim. 2012;31(5):416–20. doi: 10.1016/j.annfar.2012.01.029. [Brun PM, Chenaitia H, Bessereau J, et al. Contrôle échographique de la position de la sonde nasogastrique en préhospitalier[J]. Ann Fr Anesth Reanim, 2012, 31(5): 416-20.] [DOI] [PubMed] [Google Scholar]
- 8.Arzola C, Carvalho JC, Cubillos J, et al. Anesthesiologists' learning curves for bedside qualitative ultrasound assessment of gastric content: a cohort study. J Can D'anesthesie. 2013;60(8):771–9. doi: 10.1007/s12630-013-9974-y. [Arzola C, Carvalho JC, Cubillos J, et al. Anesthesiologists' learning curves for bedside qualitative ultrasound assessment of gastric content: a cohort study[J]. J Can D'anesthesie, 2013, 60(8): 771-9.] [DOI] [PubMed] [Google Scholar]
- 9.Bouvet L, Albert ML, Augris C, et al. Real-time detection of gastric insufflation related to facemask pressure-controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients: a prospective, randomized, double-blind study. Anesthesiology. 2014;120(2):326–34. doi: 10.1097/ALN.0000000000000094. [Bouvet L, Albert ML, Augris C, et al. Real-time detection of gastric insufflation related to facemask pressure-controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients: a prospective, randomized, double-blind study[J].Anesthesiology, 2014, 120(2): 326-34.] [DOI] [PubMed] [Google Scholar]
- 10.Chung F, Elsaid H. Screening for obstructive sleep apnea before surgery: why is it important? Curr Opin Anaesthesiol. 2009;22(3):405–11. doi: 10.1097/ACO.0b013e32832a96e2. [Chung F, Elsaid H. Screening for obstructive sleep apnea before surgery: why is it important[J]? Curr Opin Anaesthesiol, 2009, 22 (3): 405-11.] [DOI] [PubMed] [Google Scholar]
- 11.World Health Organization, International association for the study of obesity, International obesity task Force. The asia-pacific perspective: redefining obesity and its treatment[C]. Sydney, Health Communications, 2000, p15-21.
- 12.Frerk C, Mitchell VS, McNarry AF, et al. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Br JAnaesth. 2015;115(6):827–48. doi: 10.1093/bja/aev371. [Frerk C, Mitchell VS, McNarry AF, et al. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults[J]. Br JAnaesth, 2015, 115(6): 827-48.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Wu TL, Shao G, Yu GC, et al. Effect of facemask ventilation with different ventilating volumes on gastric insufflation during anesthesia induction in patients undergoing laparoscopic cholecystectomy. http://www.researchgate.net/publication/336289273_E_ect_of_facemask_ventilation_with_di_erent_ventilating_volumes_on_gastric_insu_ation_during_anesthesia_induction_in_patients_undergoing_laparoscopic_cholecystectomy. Saudi Med J. 2019;40(10):989–95. doi: 10.15537/smj.2019.10.24306. [Wu TL, Shao G, Yu GC, et al. Effect of facemask ventilation with different ventilating volumes on gastric insufflation during anesthesia induction in patients undergoing laparoscopic cholecystectomy[J]. Saudi Med J, 2019, 40(10): 989-95.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Vourc'h M, Baud G, Feuillet F, et al. High-flow nasal cannulae versus non-invasive ventilation for preoxygenation of obese patients: the PREOPTIPOP randomized trial. EClinicalMedicine. 2019;13:112–9. doi: 10.1016/j.eclinm.2019.05.014. [Vourc'h M, Baud G, Feuillet F, et al. High-flow nasal cannulae versus non-invasive ventilation for preoxygenation of obese patients: the PREOPTIPOP randomized trial[J]. EClinicalMedicine, 2019, 13: 112-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Jo JY, Kim WJ, Ku S, et al. Comparison of preoxygenation with a high-flow nasal Cannula and a simple mask before intubation during induction of general anesthesia in patients undergoing head and neck surgery: Study protocol clinical trial (SPIRIT Compliant) Medicine (Baltimore) 2020;99(12):e19525. doi: 10.1097/MD.0000000000019525. [Jo JY, Kim WJ, Ku S, et al. Comparison of preoxygenation with a high-flow nasal Cannula and a simple mask before intubation during induction of general anesthesia in patients undergoing head and neck surgery: Study protocol clinical trial (SPIRIT Compliant)[J]. Medicine (Baltimore), 2020, 99(12): e19525. DOI:10.1097/ MD.0000000000019525.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Hua Z, Liu Z, Li Y, et al. Transnasal humidified rapid insufflation ventilatory exchange vs. facemask oxygenation in elderly patients undergoing general anaesthesia: a randomized controlled trial. Sci Rep. 2020;10(1):5745. doi: 10.1038/s41598-020-62716-2. [Hua Z, Liu Z, Li Y, et al. Transnasal humidified rapid insufflation ventilatory exchange vs. facemask oxygenation in elderly patients undergoing general anaesthesia: a randomized controlled trial[J]. Sci Rep, 2020, 10(1): 5745.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Wong DT, Dallaire A, Singh KP, et al. High-flow nasal oxygen improves safe apnea time in morbidly obese patients undergoing general anesthesia: a randomized controlled trial. Anesth Analg. 2019;129(4):1130–6. doi: 10.1213/ANE.0000000000003966. [Wong DT, Dallaire A, Singh KP, et al. High-flow nasal oxygen improves safe apnea time in morbidly obese patients undergoing general anesthesia: a randomized controlled trial[J]. Anesth Analg, 2019, 129(4): 1130-6.] [DOI] [PubMed] [Google Scholar]
- 18.Bouvet L, Desgranges FP, Aubergy C, et al. Prevalence and factors predictive of full stomach in elective and emergency surgical patients: a prospective cohort study. Br J Anaesth. 2017;118(3):372–9. doi: 10.1093/bja/aew462. [Bouvet L, Desgranges FP, Aubergy C, et al. Prevalence and factors predictive of full stomach in elective and emergency surgical patients: a prospective cohort study[J]. Br J Anaesth, 2017, 118(3): 372-9.] [DOI] [PubMed] [Google Scholar]
- 19.Okuyama M, Kato S, Sato S, et al. Dynamic behaviour of the soft palate during nasal positive pressure ventilation under anaesthesia and paralysis: comparison between patients with and without obstructive sleep-disordered breathing. Br J Anaesth. 2018;120(1):181–7. doi: 10.1016/j.bja.2017.11.016. [Okuyama M, Kato S, Sato S, et al. Dynamic behaviour of the soft palate during nasal positive pressure ventilation under anaesthesia and paralysis: comparison between patients with and without obstructive sleep-disordered breathing[J]. Br J Anaesth, 2018, 120 (1): 181-7.] [DOI] [PubMed] [Google Scholar]
- 20.Benhamou D. Ultrasound assessment of gastric contents in the perioperative period: why is This not part of our daily practice? Br JAnaesth. 2015;114(4):545–8. doi: 10.1093/bja/aeu369. [Benhamou D. Ultrasound assessment of gastric contents in the perioperative period: why is This not part of our daily practice[J]? Br JAnaesth, 2015, 114(4): 545-8.] [DOI] [PubMed] [Google Scholar]
- 21.Mahmood F, Matyal R, Skubas N, et al. Perioperative ultrasound training in anesthesiology: a call to action. Anesth Analg. 2016;122(6):1794–804. doi: 10.1213/ANE.0000000000001134. [Mahmood F, Matyal R, Skubas N, et al. Perioperative ultrasound training in anesthesiology: a call to action[J]. Anesth Analg, 2016, 122(6): 1794-804.] [DOI] [PubMed] [Google Scholar]
- 22.Lucas DN, Elton CD. Through a glass darkly-ultrasound imaging in obstetric anaesthesia. Anaesthesia. 2016;71(6):617–22. doi: 10.1111/anae.13466. [Lucas DN, Elton CD. Through a glass darkly-ultrasound imaging in obstetric anaesthesia[J].Anaesthesia, 2016, 71(6): 617-22.] [DOI] [PubMed] [Google Scholar]
- 23.van de Putte P, Perlas A. Gastric sonography in the severely obese surgical patient: a feasibility study. Anesth Analg. 2014;119(5):1105–10. doi: 10.1213/ANE.0000000000000373. [van de Putte P, Perlas A. Gastric sonography in the severely obese surgical patient: a feasibility study[J]. Anesth Analg, 2014, 119(5): 1105-10.] [DOI] [PubMed] [Google Scholar]
- 24.de Schepper HU, Cremonini F, Chitkara D, et al. Assessment of gastric accommodation: overview and evaluation of current methods. Neurogastroenterol Motil. 2004;16(3):275–85. doi: 10.1111/j.1365-2982.2004.00497.x. [de Schepper HU, Cremonini F, Chitkara D, et al. Assessment of gastric accommodation: overview and evaluation of current methods [J]. Neurogastroenterol Motil, 2004, 16(3): 275-85.] [DOI] [PubMed] [Google Scholar]
- 25.Bouvet L, Mazoit JX, Chassard D, et al. Clinical assessment of the ultrasonographic measurement of antral area for estimating preoperative gastric content and volume. Anesthesiology. 2011;114(5):1086–92. doi: 10.1097/ALN.0b013e31820dee48. [Bouvet L, Mazoit JX, Chassard D, et al. Clinical assessment of the ultrasonographic measurement of antral area for estimating preoperative gastric content and volume[J]. Anesthesiology, 2011, 114(5): 1086-92.] [DOI] [PubMed] [Google Scholar]
- 26.Kruisselbrink R, Arzola C, Jackson T, et al. Ultrasound assessment of gastric volume in severely obese individuals: a validation study. Br JAnaesth. 2017;118(1):77–82. doi: 10.1093/bja/aew400. [Kruisselbrink R, Arzola C, Jackson T, et al. Ultrasound assessment of gastric volume in severely obese individuals: a validation study[J]. Br JAnaesth, 2017, 118(1): 77-82.] [DOI] [PubMed] [Google Scholar]
- 27.Wagner-Berger HG, Wenzel V, Voelckel WG, et al. A pilot study to evaluate the SMART BAG: a new pressure-responsive, gas-flow limiting bag-valve-mask device. Anesth Analg. 2003;97(6):1686–9. doi: 10.1213/01.ANE.0000087064.29929.CE. [Wagner-Berger HG, Wenzel V, Voelckel WG, et al. A pilot study to evaluate the SMART BAG: a new pressure-responsive, gas-flow limiting bag-valve-mask device[J]. Anesth Analg, 2003, 97(6): 1686-9.] [DOI] [PubMed] [Google Scholar]
- 28.Riva T, Meyer J, Theiler L, et al. Measurement of airway pressure during high-flow nasal therapy in apnoeic oxygenation: a randomised controlled crossover trial. Anaesthesia. 2020;10(8) doi: 10.1111/anae.15224. [T Riva, J Meyer, L Theiler, et al. Measurement of airway pressure during high-flow nasal therapy in apnoeic oxygenation: a randomised controlled crossover trial[J]. Anaesthesia, 2020, 10(8): DOI:10.1111/anae.15224.] [DOI] [PubMed] [Google Scholar]
- 29.Parke RL, McGuinness SP. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care. 2013;58(10):1621–4. doi: 10.4187/respcare.02358. [Parke RL, McGuinness SP. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle[J]. Respir Care, 2013, 58(10): 1621-4.] [DOI] [PubMed] [Google Scholar]
- 30.Fournier MR, Kerr PD, Shoenut JP, et al. Effect of nasal continuous positive airway pressure on esophageal function. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e851631f6943373598597ec28280cf5. J Otolaryngol. 1999;28(3):142–4. [Fournier MR, Kerr PD, Shoenut JP, et al. Effect of nasal continuous positive airway pressure on esophageal function[J]. J Otolaryngol, 1999, 28(3): 142-4.] [PubMed] [Google Scholar]
- 31.Weingart SD, Levitan RM. Preoxygenation and prevention of desaturation during emergency airway management. Ann Emerg Med. 2012;59(3):165–75. doi: 10.1016/j.annemergmed.2011.10.002. [Weingart SD, Levitan RM. Preoxygenation and prevention of desaturation during emergency airway management[J]. Ann Emerg Med, 2012, 59(3): 165-75.] [DOI] [PubMed] [Google Scholar]
- 32.Joffe AM, Hetzel S, Liew EC. A two-handed jaw-thrust technique is superior to the one-handed "EC-clamp" technique for mask ventilation in the apneic unconscious person. Anesthesiology. 2010;113(4):873–9. doi: 10.1097/ALN.0b013e3181ec6414. [Joffe AM, Hetzel S, Liew EC. A two-handed jaw-thrust technique is superior to the one-handed "EC-clamp" technique for mask ventilation in the apneic unconscious person[J]. Anesthesiology, 2010, 113(4): 873-9.] [DOI] [PubMed] [Google Scholar]
- 33.von Goedecke A, Voelckel WG, Wenzel V, et al. Mechanical versus manual ventilation via a face mask during the induction of anesthesia: a prospective, randomized, crossover study. http://www.ncbi.nlm.nih.gov/pubmed/14693633. Anesth Analg. 2004;98(1):260–3. doi: 10.1213/01.ANE.0000096190.36875.67. [von Goedecke A, Voelckel WG, Wenzel V, et al. Mechanical versus manual ventilation via a face mask during the induction of anesthesia: a prospective, randomized, crossover study[J]. Anesth Analg, 2004, 98(1): 260-3.] [DOI] [PubMed] [Google Scholar]
- 34.Lyons C, Callaghan M. Uses and mechanisms of apnoeic oxygenation: a narrative review. Anaesthesia. 2019;74(4):497–507. doi: 10.1111/anae.14565. [Lyons C, Callaghan M. Uses and mechanisms of apnoeic oxygenation: a narrative review[J].Anaesthesia, 2019, 74(4): 497-507.] [DOI] [PubMed] [Google Scholar]
- 35.Hermez LA, Spence CJ, Payton MJ, et al. A physiological study to determine the mechanism of carbon dioxide clearance during apnoea when using transnasal humidified rapid insufflation ventilatory exchange (THRIVE) Anaesthesia. 2019;74(4):441–9. doi: 10.1111/anae.14541. [Hermez LA, Spence CJ, Payton MJ, et al. A physiological study to determine the mechanism of carbon dioxide clearance during apnoea when using transnasal humidified rapid insufflation ventilatory exchange (THRIVE)[J].Anaesthesia, 2019, 74(4): 441-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]