Abstract
目的
采用银染法和鬼笔环肽染色方法探究骨细胞突触在不同发育阶段的组织形态并探讨两种染色方法在观察小鼠骨细胞不同发育阶段形态中应用价值。
方法
取出生后0 d(P0)、5 d(P5)、15 d(P15)、21 d(P21)、28 d(P28)、35 d(P35)野生型小鼠的肱骨、股骨,制备冰冻切片及石蜡切片。对P35小鼠的股骨切片进行H & E染色,作为观察骨小梁和皮质骨中骨细胞的参照。对其他时期的肱骨组织切片采用银染法染色观察骨细胞和骨小管的形态,并记录各时期小鼠肱骨骨皮质和骨小梁中骨小管的长度。选取P10、P15两个时期小鼠肱骨的冰冻切片进行鬼笔环肽iFlour-488染色,观察骨细胞的形态,并记录骨皮质中骨细胞突触的长度。
结果
通过银染法染色,在P0~P15时期的小鼠肱骨骨小梁中,我们仅能观察到骨细胞轮廓,无法观察到骨小管的形态。在P21后,通过银染法可以观察到骨小梁骨细胞及骨小管的形态,且骨细胞周围骨小管的长度随年龄逐渐变长,P21 vs P28(P < 0.05),P21 vs P35(P < 0.05),排列整齐。在P15时期的小鼠肱骨骨皮质中,通过银染法即可以观察到骨细胞及骨小管的形态,且骨细胞周围骨小管的长度随年龄逐渐变长,P15 vs P21(P < 0.005),P15 vs P28(P < 0.0001),P15 vs P35(P < 0.0001),排列整齐。采用鬼笔环肽iFlour-488染色,可以观察到P10和P15时期骨细胞的完整形态,骨细胞突触随着年龄增加逐渐变长,P10 vs P15(P < 0.01),与周围骨细胞连接。
结论
小鼠骨细胞突触随骨骼发育长度逐渐加长、排列逐渐整齐。银染法可以观察成年后骨细胞及骨小管的形态,对生长发育早期的骨小管形态显像不足。鬼笔环肽染色标记细胞骨架的方法适用于生长发育各时期的骨细胞染色,可以实现在发育早期对骨细胞的形态的检测。
Keywords: 骨细胞, 骨小管, 银染法, 鬼笔环肽
Abstract
Objective
To assess the value of Ploton silver staining and phalloidin-iFlour 488 staining in observation of the morphology of osteocyte dendrites of mice at different developmental stages.
Methods
The humerus and femurs were harvested from mice at 0 (P0), 5 (P5), 15 (P15), 21 (P21), 28 (P28), and 35 days (P35) after birth to prepare cryo-sections and paraffin sections. HE staining of P35 mouse femur sections served as a reference for observing osteocytes in the trabecular bone and cortical bone. The humeral sections at different developmental stages were stained with Ploton silver staining to observe the morphology of osteocytes and canaliculi, and the canalicular lengths in the cortical and trabecular bones of the humerus of the mice in each developmental stage were recorded. The cryo-sections of the humerus from P10 and P15 mice were stained with phalloidin iFlour-488 to observe the morphology of osteocytes and measurement of the length of osteocyte dendrites in the cortical bone.
Results
In the trabecular bone of the humerus of P0-P15 mice, Ploton silver staining only visualized the outline of the osteocytes, and the morphology of the canaliculi was poorly defined. In P21 or older mice, Ploton silver staining revealed the morphology of the trabecular bone osteocytes and the canaliculi, which were neatly arranged and whose lengths increased significantly with age (P21 vs P28, P < 0.05; P21 vs P35, P < 0.05). In the humeral cortical bone of P15 mice, the morphology of the osteocytes and canalicular could be observed with Ploton silver staining, and the length of the regularly arranged canaliculi of the osteocytes increased significantly with age (P15 vs P21, P < 0.005; P15 vs P28, P < 0.0001; P15 vs P35, P < 0.0001). Phalloidin iFlour-488 staining was capable of visualizing the complete morphology of the osteocytes at P10 and P15; the osteocyte dendrites elongated progressively with age (P10 vs P15, P < 0.01) to form connections with the surrounding osteocytes.
Conclusion
Mouse osteocyte dendrites elongate progressively and their arrangement gradually becomes regular with age. Ploton silver staining can clearly visualize the morphology of the osteocytes and the canaliculi in adult mice but not in mice in early stages of development. Phalloidin iFlour-488 staining for labeling the cytoskeleton can be applied for mouse osteocytes at all developmental stages and allows morphological observation of mouse osteocytes in early developmental stages.
Keywords: osteocytes, canaliculi, Ploton silver staining, phalloidin
骨骼系统疾病如骨折、骨质疏松、关节炎等是常见的疾病,不同程度地影响患者的生活质量[1-2]。骨细胞作为成骨细胞的分化终点,在骨骼系统疾病的发生、发展及预后过程中均发挥着至关重要的作用。因此,深入研究骨细胞的生长发育过程不仅能够了解其生理学特性,也能明确骨细胞在骨稳态及疾病进程中的作用,具有重要临床意义[3]。
骨细胞是在骨组织最常见的细胞,占成年人骨骼细胞的90%~95%[4]。骨细胞由成骨细胞分化形成。成骨细胞分泌类骨质基质,并逐渐嵌入矿化物中最终分化为骨细胞。骨细胞在骨重塑中发挥重要作用[5]。骨细胞可以分泌硬化蛋白(SOST)抑制骨形成[6-9],分泌RANKL刺激骨吸收[10-11]。骨细胞具有较长的突触用于细胞间的相互作用,形成巨大的骨细胞网络,并通过间隙链接参与营养物质及信号的传递[12-13]。骨细胞的突触在骨小管中穿行。有报道指出骨细胞的突触可以感受机械力,从而调控下游的应答反应[14-16]。因此,为了更深入地研究骨细胞,研究骨细胞的突触是关键。骨细胞通过分泌MT1-MMP切割骨质中的胶原以形成骨小管[17],使其突触可以在骨小管中穿行并与其他细胞进行信号传递。目前骨细胞突触染色的方法主要是通过银染法呈现骨小管的形态,该方法大多用于成年鼠骨小管的研究,目前国内尚未见关于生长发育早期骨小管的研究报道[18]。本研究通过对出生后不同时期野生型C57BL/6小鼠的肱骨切片进行银染法和鬼笔环肽-iFlour 488染色,观察骨细胞和骨小管的形态,从而找到观察在生长发育过程中观察骨小管形态的合适的染色方法。本研究发现使用银染法染色可以观察到P21时期之后的骨小管的形态。同时,通过鬼笔环肽-iFlour 488染色细胞骨架,也可以观察到骨细胞的完整形态。
1. 资料和方法
1.1. 实验动物
C57BL/6种系雌雄小鼠购置于Jackson Lab,用高脂饮食饲料饲养于SPF级动物房,保持25 ℃恒温,维持12 h光照和12 h黑暗生物节律。每天检查雌鼠阴栓并记录体质量,刚出生小鼠记为P0,出生后5、10、15、21、28、35 d小鼠依次记为P5、P10、P15、P21、P28、P35。该实验由哈佛大学医学院伦理委员会(IACUC)审理批准(Protocol number: 121-3)。
1.2. 主要试剂
4% PFA溶液(Thermo Fisher)、15% EDTA溶液(Sigma)、PBS溶液(Sigma)、25%溶于PBS溶液的酒精、50%溶于PBS溶液的酒精、医用酒精、95%酒精、无水乙醇(Sigma)、二甲苯(Sigma)、石蜡(Sigma)、30%蔗糖溶液(Sigma)、OCT包埋剂(Sigma)、苏木素染液(Thermo Fisher)、伊红染液(Thermo Fisher)、硝酸银(Sigma)、1%甲酸溶液(Sigma)、明胶(Sigma)、硫代硫酸钠(Thermo Fisher)、胎牛血清(FBS)(Sigma)、鬼笔环肽-iFlour 488试剂盒(Abcam, ab176753)、PBST溶液、树脂封片剂(Sigma)、DAPI水性封片剂(Sigma)。
1.3. 小鼠骨组织准备及包埋
小鼠在刚出生和出生后5、10、15、21、28、35 d时收集。用CO2窒息法处死小鼠。取小鼠双侧上肢,用4% PFA溶液固定过夜。用PBS溶液洗去组织里残留的PFA后加入15% EDTA溶液,置于4 ℃冷库摇床上脱钙,15%EDTA溶液每2 d换1次液。1周后收取P0、P5、P10的样本,1月后收集P15、P21、P28、P35的样本。用PBS溶液洗去残留的EDTA后取P10和P15组的左侧上肢,加入30%蔗糖溶液,置于4 ℃冷库摇床上过夜(组A)。P10和P15组的右侧上肢及其余组的上肢经25%溶于PBS溶液的酒精、50%溶于PBS溶液的酒精、医用酒精、95%酒精、无水乙醇、二甲苯梯度脱水后,浸入石蜡过夜(组B)。将组A的上肢用OCT包埋剂置于干冰上包埋,待凝固后保存于-80 ℃冰箱。将组B的上肢用石蜡包埋后常温保存。
1.4. 小鼠骨组织切片
组A的组织块使用冰冻切片机进行切片,厚度8 μm。切片置于-80 ℃冰箱中保存。组B的组织块使用石蜡切片机进行切片,厚度6 μm。切片置于37 ℃恒温烤箱中过夜后常温保存。
1.5. 石蜡切片H&E染色切片
选取每组中组织形态较好的切片各2张,置于65 ℃烤片机上1 h。后将切片使用二甲苯、无水乙醇、95%酒精、医用酒精梯度复水后置于去离子水中漂洗。将切片浸入苏木素染液中染色1 min,用去离子水漂洗3 min。使用2%醋酸溶液分色10 s。使用自来水反蓝30 s。使用伊红染液染色1 min后将切片置于医用酒精、95%酒精、无水乙醇、二甲苯中脱水、透明。使用中性树脂封片剂封片。
1.6. 石蜡切片银染法染色
选取每组中组织形态较好的切片各2张,置于65 ℃烤片机上1 h。后将切片使用二甲苯、无水乙醇、95%酒精、医用酒精梯度复水后置于去离子水中漂洗。将明胶按2%的比例溶于1%的甲酸溶液中,后按1:2的比例与50%的硝酸银溶液混合。将混合溶液滴在组织上反应55 min后使用去离子水反复漂洗10 min。将切片置于5%硫代硫酸钠溶液中5 min。使用去离子水反复漂洗10 min后将切片置于医用酒精、95%酒精、无水乙醇、二甲苯中脱水、透明。使用中性树脂封片剂封片(配制方法参考表 1)。
1.
实验相关试剂配制方法
Formula of the solutions used in the experiment
Solution | Prescription | |
*Make the reagent fresh. **Can keep for 1 month. | ||
2% gelatin solution* | 1% Formic acid | 5 mL |
Gelatin | 0.1 g | |
50% sliver nitrate solution* | Sliver nitrate | 2.5 g |
ddH2O | 5 mL | |
Working solution* | 50% Sliver nitrate solution | 2 mL |
2% Gelatin solution | 1 mL | |
5% sodium thiosulfate** | Sodium thiosulfate | 2.5 g |
ddH2O | 50 mL |
1.7. 冰冻切片组织染色
选取每组中组织形态较好的切片各2张,室温静置1 h。将切片置于去PBS溶液中漂洗。将胎牛血清按5%的比例溶于PBS溶液中(封闭液)。在组织上滴加封闭液处理1 h。将鬼笔环肽按照1:1000稀释于封闭液中,混匀后滴加在组织上处理90 min后将切片置于PBST溶液中漂洗。滴加DAPI水性封片剂后封片。
1.8. 统计学方法
本实验切片使用荧光显微镜(Keyence)观察、拍照。骨小管及骨细胞突触长度的测量使用ImageJ进行测量[19]。每张图中选取3个骨细胞,随机选取10条连接于骨细胞的骨小管测量长度并计算平均值进行分析,本实验数据使用Graphpad 8.0软件进行统计分析,结果中数据使用均数±标准差表示,统计数据使用Unpaired ttest和one-way ANOVA进行比较分析,P < 0.05认为差异有统计学意义。
2. 结果
2.1. 银染法观察松质骨骨小梁中的骨小管
为探索银染法能否较好地观察骨小管,本实验首先取出生后P35小鼠股骨切片进行HE染色作为参照,并将P35小鼠的肱骨切片进行银染法染色来观察骨细胞和骨小管的形态。实验发现,银染法能够清晰地观察到骨细胞及骨小管的形态与分布——高亮球形或梭形细胞为骨细胞,黑色细线状管道为骨小管(图 1A、G,2G)。为进一步探究银染法在观察其他发育阶段骨小管形态的能力,实验取出生后P0、P5、P10、P15、P21、P28、P35等不同时期小鼠肱骨切片染色及观测。结果发现,P0小鼠肱骨的骨小梁中并未发现明显的骨细胞(图 1B);随着年龄的增长,出生后P5、P10、P15,小鼠肱骨的骨小梁中开始出现少量的骨细胞,呈球形(图 1C~E),然而,在这些时期并未观察到骨小管的形态。出生后P21,通过银染法可以观察到小鼠肱骨的骨小梁中骨小管的形态,且部分骨细胞已由球形变为卵圆形(图 1F);出生后P28、P35,通过银染法可以观察到小鼠肱骨的骨小梁中的骨细胞呈梭形,且可以观察到骨小梁中的骨小管数目变多,骨小管长度增加,但排列不规则(图 1F~I)。
1.
骨小梁骨细胞染色
Staining of the trabecular bone osteocytes. A: HE staining of the trabecular bone of P35 mouse femurs (Yellow arrow: Osteocyte; Red arrow: canaliculi. Scale bar=100 μm). B-G: Ploton silver staining of the trabecular bone osteocytes from mice at different developmental stage (B: P0; C: P5; D: P10; E: P15; F: P21; G: P28; H: P35. Scale bar=100 μm). I: Quantitative analysis of canalicular length in the trabecular bone from mice at the age of P0 to P35. *P < 0.05.
2.
骨皮质骨细胞染色
Staining of the cortical bone osteocytes. A: HE staining of cortical bone from P35 mouse femurs (Scale bar=100 μm). B-G: Ploton silver staining of cortical bone osteocytes in different developmental stages (B: P0; C: P5; D: P10; E: P15; F: P21; G: P28; H: P35. Scale bar=100μm). I: Quantitative analysis of canalicular length in the cortical bone of the mice (***P < 0.005, ****P < 0.0001).
2.2. 银染法观察骨皮质中的骨小管
实验发现采用银染法观察P0时期小鼠骨皮质的骨细胞呈球形且未观察到骨小管形成(图 2B)。在P5~P15阶段,小鼠骨皮质中的骨细胞逐渐成为卵圆形或梭形的骨细胞,骨小管仅在骨细胞周围分布,未观察到细胞间的连接(图 2C~E)。从P21开始,可观察到小鼠肱骨骨皮质中的骨小管逐渐增多且变得清晰,且骨细胞间出现骨小管的相互连接(图 2F)。在P28阶段的骨皮质中通过骨小管相互连接的骨细胞数量增多,且排列逐渐整齐(图 2G)。在P35阶段,骨皮质的边界的骨小管垂直于皮质边缘,排列整齐(图 2A、H、I)。
2.3. 鬼笔环肽染色细胞骨架观察发育早期骨细胞突触
采用银染法染色观察各个生长发育阶段小鼠骨小管的形态后我们发现,银染法对于P21之前阶段骨小管的形态观察存在局限,因此实验进一步选取P10和P15时期的肱骨的冰冻切片采用鬼笔环肽-iFlour488染色来观察骨细胞的形态(图 3A、B)。结果发现通过鬼笔环肽标记后的细胞骨架,在免疫荧光染色后可以清晰地展示骨细胞的形态。骨细胞呈梭形平行于骨皮质长轴分布,骨细胞表面可见多个突触,突触与相邻骨细胞的突触相连,且P15的骨细胞突触的长度和数量多于P10的骨细胞(图 3C)。
3.
鬼笔环肽标记骨皮质中骨细胞的细胞骨架
Phalloidin that labels the cytoskeleton of cortical bone osteocytes (yellow arrow). A: P10; B: P15. Scale bar=100 μm; C: Quantitative analysis of osteocyte dendrites length in the cortical bone from the mice at the age of P10 and P15. **P < 0.01, n=10.
3. 讨论
前期研究认为骨细胞为终末分化细胞,静息于骨组织,不参与骨骼发育的调控。随着对骨细胞的深入研究,实验发现骨细胞在骨重塑过程中发挥着重要作用——具有分泌SOST抑制成骨分化及分泌RANKL刺激破骨分化等多重作用[20-22]。成熟的骨细胞成星状,胞体伸出大量突触,穿行于骨小管,通过间隙连接与四周的骨细胞接触,调控骨细胞间的信号和营养传递[23-24]。近期研究发现,体外培养的骨细胞可以通过突触在细胞间传递线粒体等细胞内容物,并且健康的骨细胞可以通过突触挽救线粒体缺陷的骨细胞的生物学功能[12]。然而,由于骨细胞深植于坚硬的骨基质中,相比于贴附于骨基质表面的成骨细胞和破骨细胞,常规的染色方法难以直接观察到骨基质中的成熟骨细胞。常规的染色方法包括银染方法,能够较好地观察深植于骨基质中的骨细胞与骨小管。该方法基于骨基质中的嗜银物质在低pH值下特定的嗜银亲和力,在通过银染法染色后获得银沉积物来进行骨小梁的显色[25-26]。该方法由于能够对成年小鼠的骨小管进行显像而成为了观察骨细胞的重要研究方法。目前国内外大多数针对骨细胞的研究的对象主要是出生8周以上的成年小鼠,对于骨骼发育早期阶段骨细胞形态的变化的研究仍有不足[27-28]。因此,为了观察骨细胞的发育过程,本研究选择了P0、P5、P10、P15、P21、P28、P35七个时间点的C57B/L6小鼠的肱骨和股骨进行组织化学染色。通过银染法染色我们发现,在P0时期的小鼠肱骨骨小梁中无法观察到骨细胞及骨小管的形态。随着年龄增加,在P5~P15时期小鼠的骨小梁中可以观察到少量的球形的骨细胞,但无法观察到骨小管的形态。骨小梁中骨小管的形态在P21之后的小鼠才能展现出来,且排列不规则。而在P0时期小鼠的骨皮质中,已经可以观察到球形的骨细胞。在P5~P15阶段的小鼠骨皮质中的骨细胞周围可以观察到少量的骨小管。骨小管的长度随着年龄增加逐渐变长且排列整齐,在P35时期可观察到骨小管垂直排列于骨皮质边缘。通过实验发现,银染法能实现对发育阶段后期骨小管的标记,但对发育阶段早期骨小管的形态的显现不佳。其原因是发育阶段早期的骨质尚未完全矿化,导致无法通过染色显现未矿化的骨小管。
由于银染法染色无法很好地显现发育早期骨小管的形态。通过染色显现骨小管是为了研究在骨小管中穿行的骨细胞突触,SOST、Dmp-1等骨细胞特异性标记物的染色均不能展现骨细胞的完整形态[29]。为了显现发育早期骨细胞的突触,实验进一步采用特异的标记物标记骨细胞的细胞骨架。鬼笔环肽是一种环状七肽毒素,是从真菌鬼笔鹅膏中提取的一组毒素。鬼笔环肽能与纤维状的肌动蛋白(F-actin)结合,从而阻止其解聚,并破坏细胞内微丝的聚合-解聚合动态平衡,从而对细胞产生毒性。由于鬼笔环肽可以结合肌动蛋白,且对鬼笔环肽进行荧光标记后仍具用使微管保持稳定的特性,使它成为研究细胞内肌动蛋白微丝的有力工具[30-33]。本研究发现鬼笔环肽可以十分完整地展示发育早期骨细胞的形态,在P10时期即能观测骨细胞间的突触连接。通过鬼笔环肽荧光染色可以观察到随着年龄增长骨细胞的突触长度逐渐增加,且骨细胞间的突触连接也逐渐增多。因此,通过鬼笔环肽标记骨细胞细胞骨架的方式可以更直观地展现骨细胞突触的形态。
综上,本研究发现小鼠骨细胞在出生时大多呈球形,随着年龄增长,骨细胞逐渐变为梭形,且平行于皮质边缘排列,且随着年龄增大,骨小管数量逐渐增多,长度逐渐变长,骨皮质边缘的骨小管呈垂直分布。通过银染法染色仅在P21时期之后清晰地观察到骨小管,对于生长发育早期的骨细胞形态观察选择鬼笔环肽标记Factin能够观察骨细胞的突触结构。该方法也能清晰地展示生长发育后期骨细胞及其突触的形态,为研究骨细胞的信号传递提供了指导。
Biographies
冯舒皓,硕士,E-mail: fengshuhao123@163.com
包良笑,主任护师,E-mail: lg41328@163.com
Funding Statement
国家自然科学基金(31771051);广东省自然科学基金(2018B030311041);广州市科技计划项目(201803010114)
Supported by National Natural Science Foundation of China (31771051)
Contributor Information
冯 舒皓 (Shuhao FENG), Email: fengshuhao123@163.com.
包 良笑 (Liangxiao BAO), Email: lg41328@163.com.
赵 亮 (Liang ZHAO), Email: lzhaonf@126.com.
References
- 1.Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;25(2):16072. doi: 10.1038/nrdp.2016.72. [Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2016, 25(2): 16072.] [DOI] [PubMed] [Google Scholar]
- 2.Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017;167(3):ITC17–ITC32. doi: 10.7326/AITC201708010. [Ensrud KE, Crandall CJ. Osteoporosis[J]. Ann Intern Med, 2017, 167 (3): ITC17-ITC32.] [DOI] [PubMed] [Google Scholar]
- 3.Bonewald LF. The role of the osteocyte in bone and nonbone disease. Endocrinol Metab Clin NorthAm. 2017;46(1):1–18. doi: 10.1016/j.ecl.2016.09.003. [Bonewald LF. The role of the osteocyte in bone and nonbone disease [J]. Endocrinol Metab Clin NorthAm, 2017, 46(1): 1-18.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38. doi: 10.1002/jbmr.320. [Bonewald LF. The amazing osteocyte[J]. J Bone Miner Res, 2011, 26 (2): 229-38.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34. doi: 10.1007/s00223-013-9774-y. [Bellido T. Osteocyte-driven bone remodeling[J]. Calcif Tissue Int, 2014, 94(1): 25-34.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Ellies DL, Viviano B, McCarthy J, et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 2006;21(11):1738–49. doi: 10.1359/jbmr.060810. [Ellies DL, Viviano B, McCarthy J, et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity[J]. J Bone Miner Res, 2006, 21(11): 1738-49.] [DOI] [PubMed] [Google Scholar]
- 7.Li XF, Zhang YZ, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7. doi: 10.1074/jbc.M413274200. [Li XF, Zhang YZ, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling[J]. J Biol Chem, 2005, 280 (20): 19883-7.] [DOI] [PubMed] [Google Scholar]
- 8.Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a wnt signaling inhibitor. J Biol Chem. 2005;280(29):26770–5. doi: 10.1074/jbc.M504308200. [Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a wnt signaling inhibitor[J]. J Biol Chem, 2005, 280(29): 26770-5.] [DOI] [PubMed] [Google Scholar]
- 9.Weivoda MM, Youssef SJ, Oursler MJ. Sclerostin expression and functions beyond the osteocyte. Bone. 2017;96:45–50. doi: 10.1016/j.bone.2016.11.024. [Weivoda MM, Youssef SJ, Oursler MJ. Sclerostin expression and functions beyond the osteocyte[J]. Bone, 2017, 96: 45-50.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. doi: 10.1038/nm.2452. [Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J]. Nat Med, 2011, 17(10): 1231-4.] [DOI] [PubMed] [Google Scholar]
- 11.Piemontese M, Xiong JH, Fujiwara Y, et al. Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Am J Physiol Endocrinol Metab. 2016;311(3):E587–93. doi: 10.1152/ajpendo.00219.2016. [Piemontese M, Xiong JH, Fujiwara Y, et al. Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice[J]. Am J Physiol Endocrinol Metab, 2016, 311(3): E587-93.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Gao JJ, Qin A, Liu DL, et al. Endoplasmic Reticulum mediates mitochondrial transfer within the osteocyte dendritic network. Sci Adv. 2019;5(11):eaaw7215. doi: 10.1126/sciadv.aaw7215. [Gao JJ, Qin A, Liu DL, et al. Endoplasmic Reticulum mediates mitochondrial transfer within the osteocyte dendritic network[J]. Sci Adv, 2019, 5(11): eaaw7215. DOI:10.1126/sciadv.aaw7215.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.McCutcheon S, Majeska R, Schaffler M, et al. A multiscale fluidic device for the study of dendrite-mediated cell to cell communication. Biomed Microdevices. 2017;19(3):71. doi: 10.1007/s10544-017-0212-1. [McCutcheon S, Majeska R, Schaffler M, et al. A multiscale fluidic device for the study of dendrite-mediated cell to cell communication [J]. Biomed Microdevices, 2017, 19(3): 71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell and more. Endocr Rev. 2013;34(5):658–90. doi: 10.1210/er.2012-1026. [Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell... and more[J]. Endocr Rev, 2013, 34(5): 658-90.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Uda Y, Azab E, Sun NY, et al. Osteocyte mechanobiology. Curr Osteoporos Rep. 2017;15(4):318–25. doi: 10.1007/s11914-017-0373-0. [Uda Y, Azab E, Sun NY, et al. Osteocyte mechanobiology[J]. Curr Osteoporos Rep, 2017, 15(4): 318-25.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kulkarni RN, Bakker AD, Gruber EV, et al. MT1-MMP modulates the mechanosensitivity of osteocytes. Biochem Biophys Res Commun. 2012;417(2):824–9. doi: 10.1016/j.bbrc.2011.12.045. [Kulkarni RN, Bakker AD, Gruber EV, et al. MT1-MMP modulates the mechanosensitivity of osteocytes[J]. Biochem Biophys Res Commun, 2012, 417(2): 824-9.] [DOI] [PubMed] [Google Scholar]
- 17.Holmbeck K, Bianco P, Pidoux I, et al. The metalloproteinase MT1- MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci. 2005;118(Pt 1):147–56. doi: 10.1242/jcs.01581. [Holmbeck K, Bianco P, Pidoux I, et al. The metalloproteinase MT1- MMP is required for normal development and maintenance of osteocyte processes in bone[J]. J Cell Sci, 2005, 118(Pt 1): 147-56.] [DOI] [PubMed] [Google Scholar]
- 18.Dole NS, Yee CS, Mazur CM, et al. TGFΒ regulation of perilacunar/ canalicular remodeling is sexually dimorphic. J Bone Miner Res. 2020;35(8):1549–61. doi: 10.1002/jbmr.4023. [Dole NS, Yee CS, Mazur CM, et al. TGFΒ regulation of perilacunar/ canalicular remodeling is sexually dimorphic[J]. J Bone Miner Res, 2020, 35(8): 1549-61.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Dole NS, Mazur CM, Acevedo C, et al. Osteocyte-intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep. 2017;21(9):2585–96. doi: 10.1016/j.celrep.2017.10.115. [Dole NS, Mazur CM, Acevedo C, et al. Osteocyte-intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling[J]. Cell Rep, 2017, 21(9): 2585-96.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Spatz JM, Wein MN, Gooi JH, et al. The wnt inhibitor sclerostin is upregulated by mechanical unloading in osteocytes in vitro. J Biol Chem. 2015;290(27):16744–58. doi: 10.1074/jbc.M114.628313. [Spatz JM, Wein MN, Gooi JH, et al. The wnt inhibitor sclerostin is upregulated by mechanical unloading in osteocytes in vitro[J]. J Biol Chem, 2015, 290(27): 16744-58.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/ sclerostin. J Biol Chem. 2008;283(9):5866–75. doi: 10.1074/jbc.M705092200. [Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/ sclerostin[J]. J Biol Chem, 2008, 283(9): 5866-75.] [DOI] [PubMed] [Google Scholar]
- 22.He FL, Bai JT, Wang JP, et al. Irradiation-induced osteocyte damage promotes HMGB1-mediated osteoclastogenesis in vitro. J Cell Physiol. 2019;234(10):17314–25. doi: 10.1002/jcp.28351. [He FL, Bai JT, Wang JP, et al. Irradiation-induced osteocyte damage promotes HMGB1-mediated osteoclastogenesis in vitro[J]. J Cell Physiol, 2019, 234(10): 17314-25.] [DOI] [PubMed] [Google Scholar]
- 23.Davis HM, Pacheco-Costa R, Atkinson EG, et al. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell. 2017;16(3):551–63. doi: 10.1111/acel.12586. [Davis HM, Pacheco-Costa R, Atkinson EG, et al. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging[J]. Aging Cell, 2017, 16(3): 551-63.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Plotkin LI, Speacht TL, Donahue HJ. Cx43 and mechanotransduction in bone. Curr Osteoporos Rep. 2015;13(2):67–72. doi: 10.1007/s11914-015-0255-2. [Plotkin LI, Speacht TL, Donahue HJ. Cx43 and mechanotransduction in bone[J]. Curr Osteoporos Rep, 2015, 13(2): 67-72.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Jáuregui EJ, Akil O, Acevedo C, et al. Parallel mechanisms suppress cochlear bone remodeling to protect hearing. Bone. 2016;89:7–15. doi: 10.1016/j.bone.2016.04.010. [Jáuregui EJ, Akil O, Acevedo C, et al. Parallel mechanisms suppress cochlear bone remodeling to protect hearing[J]. Bone, 2016, 89: 7- 15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Lindner LE. Improvements in the silver-staining technique for nucleolar organizer regions (AgNOR) J Histochem Cytochem. 1993;41(3):439–45. doi: 10.1177/41.3.8429207. [Lindner LE. Improvements in the silver-staining technique for nucleolar organizer regions (AgNOR)[J]. J Histochem Cytochem, 1993, 41(3): 439-45.] [DOI] [PubMed] [Google Scholar]
- 27.Walker EC, Truong K, McGregor NE, et al. Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes. Elife. 2020;9:e56666. doi: 10.7554/eLife.56666. [Walker EC, Truong K, McGregor NE, et al. Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes[J]. Elife, 2020, 9: e56666.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Song JY, Pineault KM, Dones JM, et al. Hox genes maintain critical roles in the adult skeleton. Proc Natl Acad Sci USA. 2020;117(13):7296–304. doi: 10.1073/pnas.1920860117. [Song JY, Pineault KM, Dones JM, et al. Hox genes maintain critical roles in the adult skeleton[J]. Proc Natl Acad Sci USA, 2020, 117 (13): 7296-304.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.McKenzie J, Smith C, Karuppaiah K, et al. Osteocyte death and bone overgrowth in mice lacking fibroblast growth factor receptors 1 and 2 in mature osteoblasts and osteocytes. J Bone Miner Res. 2019;34(9):1660–75. doi: 10.1002/jbmr.3742. [McKenzie J, Smith C, Karuppaiah K, et al. Osteocyte death and bone overgrowth in mice lacking fibroblast growth factor receptors 1 and 2 in mature osteoblasts and osteocytes[J]. J Bone Miner Res, 2019, 34(9): 1660-75.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Walton JD, Hallen-Adams HE, Luo H. Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers. 2010;94(5):659–64. doi: 10.1002/bip.21416. [Walton JD, Hallen-Adams HE, Luo H. Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms[J]. Biopolymers, 2010, 94(5): 659-64.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Cooper JA. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987;105(4):1473–8. doi: 10.1083/jcb.105.4.1473. [Cooper JA. Effects of cytochalasin and phalloidin on actin[J]. J Cell Biol, 1987, 105(4): 1473-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Barden JA, Miki M, Hambly BD, et al. Localization of the phalloidin and nucleotide-binding sites on actin. Eur J Biochem. 1987;162(3):583–8. doi: 10.1111/j.1432-1033.1987.tb10679.x. [Barden JA, Miki M, Hambly BD, et al. Localization of the phalloidin and nucleotide-binding sites on actin[J]. Eur J Biochem, 1987, 162 (3): 583-8.] [DOI] [PubMed] [Google Scholar]
- 33.Wehland J, Osborn M, Weber K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc Natl Acad Sci USA. 1977;74(12):5613–7. doi: 10.1073/pnas.74.12.5613. [Wehland J, Osborn M, Weber K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth[J]. Proc Natl Acad Sci USA, 1977, 74(12): 5613-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]