Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2020 Nov 20;40(11):1628–1633. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2020.11.14

迷迭香酸激活Parkin介导的线粒体自噬并抑制高糖诱导的心肌细胞肥大

Rosmarinic acid inhibits high glucose-induced cardiomyocyte hypertrophy by activating Parkin-mediated mitophagy

刁 佳宇 1, 赵 宏谋 2, 宁 玉洁 3, 韩 稳琦 1, 王 毅 1, 程 功 1, 寿 锡凌 1, 尤 红俊 1,*
PMCID: PMC7704387  PMID: 33243751

Abstract

目的

评估迷迭香酸对高糖培养下心肌细胞线粒体自噬水平以及细胞肥大的影响。

方法

体外培养H9c2大鼠心肌母细胞,分为对照组(葡萄糖5.5 mmol/L)、高糖组(葡萄糖25 mmol/L)、高糖+迷迭香酸组(葡萄糖25 mmol/L+迷迭香酸50 μmol/L)、高糖+迷迭香酸+Parkin-siRNA组(葡萄糖25 mmol/L+迷迭香酸50 μmol/L+Parkin-siRNA转染);Western blot法测定PINK1、Parkin、LC3II/LC3I蛋白表达水平,透射电子显微镜下观察线粒体自噬体形成情况,流式细胞术检测活性氧物质(ROS)与凋亡水平,分光光度法检测细胞线粒体呼吸链复合酶活性,荧光酶标法检测线粒体膜电位水平,3H-亮氨酸标记法检测细胞蛋白质合成速率,光学显微镜下检测心肌细胞表面积。

结果

迷迭香酸可提高高糖培养下心肌细胞内PINK1、Parkin、LC3-II/LC3-I蛋白表达水平(P < 0.05),增多线粒体自噬体数量,并抑制高糖诱导的ROS生成、恢复线粒体呼吸链复合酶活性与线粒体膜电位水平(P < 0.05),抑制高糖诱导的细胞凋亡(P < 0.05),并降低心肌细胞表面积与蛋白质合成速率(P < 0.05)。利用Parkin-siRNA抑制心肌细胞线粒体自噬,则阻断了迷迭香酸对高糖培养下心肌细胞氧化应激与心肌细胞肥大的保护作用(P < 0.05)。

结论

迷迭香酸可通过激活Parkin介导的线粒体自噬,对高糖诱导心肌细胞的氧化应激损伤有保护作用,并改善心肌细胞肥大。

Keywords: 迷迭香酸, Parkin, 线粒体自噬, 氧化应激, 心肌细胞肥大


糖尿病性心肌病(DCM)是糖尿病患者常见的心血管并发症,以心肌细胞肥大、间质纤维化为病理特征,晚期逐步进展为心力衰竭[1]。氧化应激损伤是DCM重要的发病机制,与心肌细胞肥大密切相关[2-3]

线粒体自噬是在各种刺激因素作用下,细胞内的自噬体特异性包裹受损、老化的线粒体,然后与溶酶体融合,降解、清除受损、老化线粒体的过程,是调控细胞氧化应激损伤的重要机制[4-5]。Parkin是线粒体自噬重要的调节分子,线粒体受损时,蛋白激酶PINK1聚集于线粒体外膜,并激活Parkin,启动线粒体自噬[6-7]。因此,Parkin活化是线粒体自噬的正调节机制。糖尿病大鼠心肌组织线粒体自噬水平明显降低[8],而激活PINK1/Parkin介导的线粒体自噬能够改善心肌线粒体功能,阻断糖尿病引起的心室重构[9]。这些结果提示改善Parkin介导的线粒体自噬可作为治疗DCM的潜在靶点。

我们的前期研究发现应用迷迭香酸(RA)干预心肌细胞,可明显减少高糖诱导的活性氧物质(ROS)生成,降低线粒体途径的心肌细胞凋亡率[10]。近期在癫痫的研究中也发现,迷迭香酸能够减少癫痫发作时海马体ROS产生、降低过氧化氢酶活性,并减轻DNA损伤[11]。但迷迭香酸抗氧化作用的具体机制目前尚未完全明确,是否与调节线粒体自噬有关亦无相关报道。

本文将从体外细胞水平,评估迷迭香酸对高糖培养下心肌细胞线粒体自噬与细胞肥大的影响;并通过抑制Parkin通路调控线粒体自噬,分析迷迭香酸抗氧化作用的分子机制。

1. 材料和方法

1.1. 主要材料与试剂

H9c2大鼠心肌细胞购于中国科学院上海生物化学与细胞生物学研究所;迷迭香酸(Sigma);Parkin、PINK1、LC3-Ⅰ、LC3-Ⅱ多克隆抗体(Abcam);ParkinsiRNA由上海吉玛生物有限公司合成;ROS检测试剂盒、线粒体膜电位检测试剂盒(碧云天);凋亡检测试剂盒(四正柏);线粒体呼吸链复合酶检测试剂盒购于南京建成生物工程研究所;3H-亮氨酸(原子高科)。

1.2. 细胞干预与分组

将H9c2大鼠心肌母细胞,置于完全培养基中培养,待细胞融合率达到70%时将细胞分为4组:对照组,培养基中葡萄糖浓度为5.5 mmol/L;高糖组,培养基中葡萄糖浓度为25 mmol/L;高糖+迷迭香酸组,高糖培养基中加入迷迭香酸(终浓度为50 μmol/L);高糖+迷迭香酸+Parkin-siRNA组,高糖培养基中加入迷迭香酸(终浓度为50 μmol/L)与Parkin-siRNA,各组细胞继续培养48 h。

1.3. Parkin-siRNA转染

转染前1 d将细胞接种于培养板上,使转染时细胞融合达70%~90%。将用低血清培养基稀释的ParkinsiRNA(8:92)与Lipofectamine 2000(4:96)混合,室温下静置20 min。再将上述转染液200 μL加至12孔培养板的每孔中,于细胞培养箱中孵育6 h,再除去转染液,更换含有血清的培养基继续培养。

1.4. Western blot法检测PINK1、Parkin、LC3-Ⅰ、LC3-Ⅱ蛋白表达水平

RIPA裂解法提取细胞中蛋白质。制备聚丙烯凝胶,然后上样,每孔蛋白上样量为50 μg。再将制胶板放入电泳槽中电泳,接着转膜至PVDF膜上,用PBST封闭液封闭2 h后再用特异性一抗孵育PVDF膜4℃过夜,二抗孵育2 h,然后用ECL发光试剂显色。最后,用凝胶电泳成像分析系统进行照相,细胞蛋白以GAPDH为内参,Image-Pro Plus6.0图像处理软件分析条带光密度值。

1.5. 透射电子显微镜观察心肌细胞线粒体自噬体

收集心肌细胞,使用2.5%戊二醛在4 ℃条件下固定12 h,然后用ddH2O漂洗,1%锇酸固定1 h,50%、70%、90%、100%乙醇及100%丙酮梯度脱水;再经渗透、包埋、聚合后,使用超薄切片机切片,切片厚度为70 nm;切片使用醋酸铀-柠檬酸铅染色,最后在透射电子显微镜(日本日立H7650)下观察各组心肌细胞线粒体超微结构,重点观察线粒体自噬体的变化。每组观察20个细胞,记录每个细胞内线粒体自噬体的数量。

1.6. 细胞内ROS水平检测

首先将DCFH-DA用无血清培养液稀释,使其终浓度为10 μmol/L。去除6孔板中的细胞培养液并用PBS液洗涤后,每孔加入DCFH-DA 1 mL,避光孵育20 min。最后充分洗涤细胞后,使用流式细胞仪(Beckman Coulter)检测荧光强度,即代表ROS水平。

1.7. 线粒体膜电位水平检测

吸除6孔细胞培养板中培养液,用PBS液洗涤细胞1次,收集培养板中的细胞至EP管中,再加入0.5 mL配制好的JC-1染色工作液,上下颠倒使之混匀。接着,37 ℃下孵育30 min,注意避光,600 g 4 ℃下离心3 min,弃上清。再用JC-1染色缓冲液洗涤细胞2次。JC-1染色液重悬细胞后,用荧光酶标仪(上海天普)进行检测分析。

1.8. 线粒体呼吸链复合酶Ⅱ活性检测

细胞离心取上清液,同时将工作液37 ℃预温5 min,比色皿在600 nm处以双蒸水调零;再将100 μL待测样本加入比色皿中,随即加入2.6 mL工作液,立即混匀;并开始计时,分别在反应5 s、65 s时读取吸光度值(A1、A2),两者的差值即代表该样本线粒体呼吸链复合酶Ⅱ,即琥珀酸脱氢酶(SDH)的活性,SDH活力(U/mgprot)=(A1-A2)/(取样量×待测样本蛋白浓度)。

1.9. 线粒体呼吸链复合酶IV活性检测

细胞离心取上清液,设置分光光度仪(上海天普)温度25 ℃,以950 μL缓冲液在550 nm处调零;将930 μL缓冲液加入比色皿中,随即加入20 μL线粒体提取物,充分混匀后室温孵育3 min;再加入50 μL底物工作液,立即混匀;同时开始计时,在反应第0 s和60 s分别读取550 nm处吸光度值,两者的差值即代表线粒体呼吸链复合酶Ⅳ,即细胞色素C氧化酶(COX)的活性。

1.10. 细胞凋亡检测

用4 ℃预冷的PBS洗涤细胞2次,250 μL结合缓冲液重悬细胞,调节其浓度为1×106/mL;在100 μL的细胞悬液中加入5 μLAnnexin V/FITC,室温避光孵育5 min;再加入10 μL 20 μg/mL的碘化丙锭溶液;最后加入400 μLPBS,置于流式细胞仪(Beckman Coulter)下分析。

1.11. 心肌细胞表面积测定

将培养板置于倒置相差显微镜下,观察并记录心肌细胞。每组细胞在40倍物镜下随机挑选5个视野,每个视野随机挑选10个细胞并拍照。用Image-Pro Plus6.0图像分析软件测量细胞表面积,取平均值代表该组细胞表面积。

1.12. 蛋白质合成速率检测

首先将心肌细胞制成悬液,悬液离心后弃上清,沉淀物再用含3H-亮氨酸(1 μci/mL)的无血清培养液重悬,然后在CO2培养箱中孵育1.5 h,收集细胞并用液闪仪(Perkinelmer)计数,测定3H-亮氨酸放射性参数,即为心肌细胞蛋白质合成速率。

1.13. 数据统计与分析

实验重复3次,实验数据取平均值。采用SPSS 18.0软件对数据进行统计学分析,计量资料采用均数±标准差表示,多组间比较采用单因素方差分析,组间两两比较应用LSD-t检验,以P < 0.05为差异有统计学意义的标准。

2. 结果

2.1. 迷迭香酸诱导高糖培养下心肌细胞线粒体自噬

与对照组相比,PINK1、Parkin、LC3-Ⅱ/LC3-Ⅰ表达水平在高糖组明显降低,在高糖+迷迭香酸组较高糖组明显升高(P < 0.05,图 1A~D)。

1.

1

各组心肌细胞线粒体自噬水平变化

Changes of mitophagy level in cardiomyocytes with high glucose (HG) exposure and rosmarinic acid (RA) treatment. A-D: Expression levels of mitophagy-specific proteins PINK1, Parkin, and LC3-II/LC3-I; E: Formation of mitochondrial autophagosomes (arrows) in each group under transmission electron microscope. *P < 0.05 vs control group; #P < 0.05 vs HG group.

透射电子显微镜下可见,高糖组心肌细胞内线粒体肿胀变形、嵴结构排列紊乱,而线粒体自噬体减少;高糖+RA组心肌细胞内线粒体自噬小体数量较高糖组明显增多(图 1E)。

2.2. 迷迭香酸通过Parkin介导抑制高糖诱导的心肌细胞氧化应激

Western blot结果显示Parkin-siRNA显著抑制了Parkin的表达(图 2A)。

2.

2

各组细胞Parkin表达水平(A)、ROS水平(B)、线粒体呼吸链复合酶SDH(C)与COX(D)活性

Level of Parkin expresssion (A), ROS generation (B), and activities of mitochondrial respiratory chain complex SDH (C) and COX (D) in the cardiomyocytes. *P < 0.05 vs control group; #P < 0.05 vs HG group; P < 0.05 vs HG+RA group.

高糖组心肌细胞内ROS水平较对照组明显升高,高糖+迷迭香酸组心肌细胞内ROS水平较高糖组明显降低(图 2BP < 0.05)。高糖培养使心肌细胞线粒体呼吸链复合酶SDH、COX的活性均受到抑制,迷迭香酸部分恢复了高糖抑制的SDH与COX的活性(图 2CDP < 0.05)。Parkin-siRNA则阻断了迷迭香酸对ROS生成、线粒体呼吸链复合酶活性的影响(图 2B~DP < 0.05)。

2.3. 迷迭香酸通过Parkin介导抑制高糖诱导的心肌细胞凋亡

与对照组相比,高糖培养下心肌细胞凋亡率明显增高,线粒体膜电位水平明显降低;与高糖组相比,高糖+迷迭香酸组心肌细胞凋亡率降低,线粒体膜电位水平升高;与高糖+迷迭香酸组相比,高糖+迷迭香酸+Parkin-组心肌细胞凋亡率增高,线粒体膜电位水平降低(图 3P < 0.05)。

3.

3

各组心肌细胞凋亡率(A)与线粒体膜电位水平(B

Apoptosis rate (A) and mitochondrial membrane potential (B) in the cardiomyoctyes. *P < 0.05 vs control group; #P < 0.05 vs HG group; P < 0.05 vs HG+RA group.

2.4. 迷迭香酸通过Parkin介导改善高糖培养下心肌细胞肥大

高糖组心肌细胞表面积、蛋白质合成速率均明显高于对照组;与高糖组相比,高糖+迷迭香酸组心肌细胞表面积与蛋白质合成速率均明显下降;与高糖+迷迭香酸组相比,高糖+迷迭香酸+Parkin-组心肌细胞表面积与蛋白质合成速率均显著增高(图 4P < 0.05)。

4.

4

各组心肌细胞表面积(A)、蛋白质合成速率(B

Cell surface area (A) and protein synthesis rate (B) in the cardiomyoctyes. *P < 0.05 vs control group; #P < 0.05 vs HG group; P < 0.05 vs HG+RA group.

3. 讨论

既往研究表明,糖尿病可引起心肌细胞ROS生成增加、和/或抗氧化防御能力减弱[12-13]。ROS能够直接氧化损伤蛋白质、脂类和DNA,从而影响细胞正常功能;此外,ROS还可增加血管活性肽的释放,如血管紧张素Ⅱ、内皮肽-1、p38等,从而引起心肌细胞肥大[2, 14]。ROS还可损伤线粒体、内质网,引起细胞内钙稳态失衡、细胞凋亡,造成心肌肥大、纤维化,促进DCM的进展[3, 15]。因此,氧化应激是DCM发生、发展的重要环节。

线粒体自噬是一种选择性的自噬,通过清除受损线粒体维持线粒体质量平衡[16],并且与细胞氧化应激损伤存在密切联系。诱导线粒体自噬,可清除受损的线粒体,减少活性氧物质释放至细胞质内;反之,抑制线粒体自噬,受损的线粒体不能被清除,活性氧物质聚集,引起细胞氧化应激损伤[17-18]

迷迭香酸是从紫草科、唇形科、伞形科等植物中提取的多酚羟基酸[19],近年研究证实其具有抗氧化的作用[10-11, 20]。Sotnikova等[20]研究发现迷迭香酸的抗氧化作用可能与减少线粒体脂质氧化、改善抗氧化酶活性有关。我们的前期研究也发现迷迭香酸可恢复线粒体呼吸链复合酶活性,减少ROS的生成[10]。但迷迭香酸抗氧化的具体分子机制尚不完全清楚。在帕金森疾病模型中,迷迭香酸可使帕金森小鼠LC3Ⅱ/Ⅰ蛋白表达水平上调,PI3K、Akt和mTOR磷酸化水平下调[21]。这提示迷迭香酸可能激活线粒体自噬。本研究通过检测线粒体自噬特异性蛋白PINK1、Parkin、LC3Ⅱ/Ⅰ表达水平,以及电子显微镜下观察线粒体自噬小体的组织学变化,证实了迷迭香酸可部分恢复高糖培养下心肌细胞线粒体自噬水平。但迷迭香酸能否通过调节线粒体自噬水平改善氧化应激损伤,目前尚无报道。

线粒体自噬受多种通路调控,包括PINK1/Parkin通路、Bnip3/Nix通路及FUNDC1通路等,其中PINK1/Parkin通路是哺乳动物线粒体自噬最重要的调控通路[22-23]。在糖尿病心肌中Parkin介导的线粒体自噬水平降低,表现为PINK1、Parkin表达水平降低,线粒体自噬体形成减少,以上结果提示了PINK1/Parkin通路介导的线粒体自噬水平异常在DCM发病中发挥了作用[24-25]。既往研究发现,抑制Parkin基因表达,可降低高脂饮食小鼠心肌线粒体自噬水平,增加心肌组织脂质沉积,加重小鼠心脏舒张功能障碍[26]。褪黑素可通过激活Parkin通路,恢复DCM小鼠心肌线粒体自噬水平,从而改善DCM小鼠心室重构[25]。本研究中,通过检测氧化应激的指标证实了迷迭香酸可抑制高糖诱导的心肌细胞内ROS生成、改善SDH与COX的活性。进一步的机制研究发现,在应用Parkin-siRNA抑制Parkin表达后,迷迭香酸对ROS生成以及线粒体呼吸链复合酶活性的保护作用被阻断了。这表明,Parkin介导的线粒体自噬参与了迷迭香酸的抗氧化作用。

本研究还发现,迷迭香酸可抑制高糖诱导的心肌细胞凋亡与心肌细胞肥大,而Parkin-siRNA则阻断了迷迭香酸的上述作用。ROS可引起线粒体膜电位下降、线粒体膜通透性改变,导致细胞色素C等凋亡因子从线粒体释放至胞浆中,激活细胞凋亡通路[27-28];同时,通过多种信号通路引起心肌细胞肥大[29]。因此,迷迭香酸抗心肌细胞凋亡、肥大的作用与减少ROS生成有关,而Parkin通路参与介导了这一过程。

综上所述,本研究证实了迷迭香酸可激活高糖培养下心肌细胞线粒体自噬,揭示了Parkin介导的线粒体自噬参与了迷迭香酸抗氧化、抗心肌细胞肥大的作用。这些结果为治疗糖尿病引起的心肌氧化应激损伤提供了新的手段,也为将Parkin介导的线粒体自噬作为防治DCM的分子靶点提供了新的科学依据。

Biography

刁佳宇,博士,主治医师,E-mail: diaojiayu2007@163.com

Funding Statement

陕西省自然科学基金(2020JQ-940)

Contributor Information

刁 佳宇 (Jiayu DIAO), Email: diaojiayu2007@163.com.

尤 红俊 (Hongjun YOU), Email: spphyxn2@163.com.

References

  • 1.Athithan L, Gulsin GS, McCann GP, et al. Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date. World J Diabetes. 2019;10(10):490–510. doi: 10.4239/wjd.v10.i10.490. [Athithan L, Gulsin GS, McCann GP, et al. Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date[J]. World J Diabetes, 2019, 10(10): 490-510.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Peoples JN, Saraf A, Ghazal N, et al. Mtiochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019;51(12):1–13. doi: 10.1038/s12276-019-0355-7. [Peoples JN, Saraf A, Ghazal N, et al. Mtiochondrial dysfunction and oxidative stress in heart disease[J]. Exp Mol Med, 2019, 51(12): 1-13.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01fa761388e078a324f37ab8060478b9. Adv Exp Med Biol. 2012;748:145–69. doi: 10.1007/978-1-4614-3573-0_6. [Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain[J]. Adv Exp Med Biol, 2012, 748: 145-69.] [DOI] [PubMed] [Google Scholar]
  • 4.Tagaya M, Arasaki K. Regulation of mitochondrial dynamics and autophagy by the mitochondria- associated membrane. http://dx.doi.org/10.1007/978-981-10-4567-7_3. Adv Exp Med Biol. 2017;997:33–47. doi: 10.1007/978-981-10-4567-7_3. [Tagaya M, Arasaki K. Regulation of mitochondrial dynamics and autophagy by the mitochondria- associated membrane[J]. Adv Exp Med Biol, 2017, 997: 33-47.] [DOI] [PubMed] [Google Scholar]
  • 5.Nah J, Miyamoto S, Sadoshima J. Mitophagy as a protective mechanism against myocardial stress. Compr Physiol. 2017;7(4):1407–24. doi: 10.1002/cphy.c170005. [Nah J, Miyamoto S, Sadoshima J. Mitophagy as a protective mechanism against myocardial stress[J]. Compr Physiol, 2017, 7(4): 1407-24.] [DOI] [PubMed] [Google Scholar]
  • 6.Clark IE, Dodson MW, Jiang CG, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441(7097):1162–6. doi: 10.1038/nature04779. [Clark IE, Dodson MW, Jiang CG, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin[J]. Nature, 2006, 441(7097): 1162-6.] [DOI] [PubMed] [Google Scholar]
  • 7.Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496(7445):372–6. doi: 10.1038/nature12043. [Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization[J]. Nature, 2013, 496(7445): 372-6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Morales PE, Arias-Durán C, Ávalos-Guajardo Y, et al. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med. 2020;71:100822. doi: 10.1016/j.mam.2019.09.006. [Morales PE, Arias-Durán C, Ávalos-Guajardo Y, et al. Emerging role of mitophagy in cardiovascular physiology and pathology[J]. Mol Aspects Med, 2020, 71: 100822.] [DOI] [PubMed] [Google Scholar]
  • 9.王佳兴. Pink1/Parkin介导的线粒体自噬在糖尿病心肌病中的作用[D].西安: 第四军医大学, 2015.
  • 10.Diao JY, Wei J, Yan R, et al. Rosmarinic Acid suppressed high glucose-induced apoptosis in H9c2 cells by ameliorating the mitochondrial function and activating STAT3. Biochem Biophys Res Commun. 2016;477(4):1024–30. doi: 10.1016/j.bbrc.2016.07.024. [Diao JY, Wei J, Yan R, et al. Rosmarinic Acid suppressed high glucose-induced apoptosis in H9c2 cells by ameliorating the mitochondrial function and activating STAT3[J]. Biochem Biophys Res Commun, 2016, 477(4): 1024-30.] [DOI] [PubMed] [Google Scholar]
  • 11.Luft JG, Steffens L, Moras AM, et al. Rosmarinic acid improves oxidative stress parameters and mitochondrial respiratory chain activity following 4-aminopyridine and picrotoxin-induced seizure in mice. Naunyn Schmiedeberg's Arch Pharmacol. 2019;392(11):1347–58. doi: 10.1007/s00210-019-01675-6. [Luft JG, Steffens L, Moras AM, et al. Rosmarinic acid improves oxidative stress parameters and mitochondrial respiratory chain activity following 4-aminopyridine and picrotoxin-induced seizure in mice[J]. Naunyn Schmiedeberg's Arch Pharmacol, 2019, 392(11): 1347-58.] [DOI] [PubMed] [Google Scholar]
  • 12.Hansen SS, Aasum E, Hafstad AD. The role of NADPH oxidases in diabetic cardiomyopathy. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1161/CIRCRESAHA.119.316337. Biochim Et Biophys Acta. 2017;1864(5):1908–13. doi: 10.1016/j.bbadis.2017.07.025. [Hansen SS, Aasum E, Hafstad AD. The role of NADPH oxidases in diabetic cardiomyopathy[J]. Biochim Et Biophys Acta, 2017, 1864 (5): 1908-13.] [DOI] [PubMed] [Google Scholar]
  • 13.Huynh K, Bernardo BC, McMullen JR, et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375–415. doi: 10.1016/j.pharmthera.2014.01.003. [Huynh K, Bernardo BC, McMullen JR, et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways[J]. Pharmacol Ther, 2014, 142(3): 375-415.] [DOI] [PubMed] [Google Scholar]
  • 14.李 丽, 顾 文燕. Notch1/Hes1通路活化通过抑制氧化应激改善高糖诱导的心肌细胞肥大. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdmyhzz201903007. 中国动脉硬化杂志. 2019;27(3):216–20. [李丽, 顾文燕. Notch1/Hes1通路活化通过抑制氧化应激改善高糖诱导的心肌细胞肥大[J].中国动脉硬化杂志, 2019, 27(3): 216-20.] [Google Scholar]
  • 15.Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med. 2020;7:12. doi: 10.3389/fcvm.2020.00012. [Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy[J]. Front Cardiovasc Med, 2020, 7: 12.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Dorn GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015;29(19):1981–91. doi: 10.1101/gad.269894.115. [Dorn GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart[J]. Genes Dev, 2015, 29(19): 1981-91.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Garza-Lombó C, Pappa A, Panayiotidis MI, et al. Redox homeostasis, oxidative stress and mitophagy. Mitochondrion. 2020;51:105–17. doi: 10.1016/j.mito.2020.01.002. [Garza-Lombó C, Pappa A, Panayiotidis MI, et al. Redox homeostasis, oxidative stress and mitophagy[J]. Mitochondrion, 2020, 51: 105-17.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.吉鸿飞. PINK1介导的线粒体自噬在糖尿病小鼠足细胞氧化应激损伤中的作用及机制研究[D].郑州: 郑州大学, 2017.
  • 19.Shekarchi M, Hajimehdipoor H, Saeidnia S, et al. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn Mag. 2012;8(29):37. doi: 10.4103/0973-1296.93316. [Shekarchi M, Hajimehdipoor H, Saeidnia S, et al. Comparative study of rosmarinic acid content in some plants of Labiatae family[J]. Pharmacogn Mag, 2012, 8(29): 37.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Sotnikova R, Kaprinay B, Navarova J. Rosmarinic acid mitigates signs of systemic oxidative stress in streptozotocin-induced diabetes in rats. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8fdf23daaaa37fa2539cd8cc5a1b7bf. Gen Physiol Biophys. 2015;34(4):449–52. doi: 10.4149/gpb_2015025. [Sotnikova R, Kaprinay B, Navarova J. Rosmarinic acid mitigates signs of systemic oxidative stress in streptozotocin-induced diabetes in rats[J]. Gen Physiol Biophys, 2015, 34(4): 449-52.] [DOI] [PubMed] [Google Scholar]
  • 21.吕 润潇, 杜 莉莉, 周 凤华, et al. 迷迭香酸抑制PI3K/Akt/mTOR信号通路促进细胞自噬缓解帕金森的机制研究. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nxyxyxb201912001. 宁夏医科大学学报. 2019;41(12):1189–94. [吕润潇, 杜莉莉, 周凤华, 等.迷迭香酸抑制PI3K/Akt/mTOR信号通路促进细胞自噬缓解帕金森的机制研究[J].宁夏医科大学学报, 2019, 41(12): 1189-94.] [Google Scholar]
  • 22.Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/parkin mitophagy. Trends Cell Biol. 2016;26(10):733–44. doi: 10.1016/j.tcb.2016.05.008. [Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/parkin mitophagy[J]. Trends Cell Biol, 2016, 26 (10): 733-44.] [DOI] [PubMed] [Google Scholar]
  • 23.马 文科, 戴 舒惠, 罗 鹏, et al. 线粒体自噬的研究进展. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swcx201706046. 现代生物医学进展. 2017;17(6):1176–9. [马文科, 戴舒惠, 罗鹏, 等.线粒体自噬的研究进展[J].现代生物医学进展, 2017, 17(6): 1176-9.] [Google Scholar]
  • 24.Xu XM, Kobayashi S, Chen K, et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem. 2013;288(25):18077–92. doi: 10.1074/jbc.M113.474650. [Xu XM, Kobayashi S, Chen K, et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes[J]. J Biol Chem, 2013, 288(25): 18077-92.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Wang SJ, Zhao ZJ, Feng XY, et al. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med. 2018;22(10):5132–44. doi: 10.1111/jcmm.13802. [Wang SJ, Zhao ZJ, Feng XY, et al. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition[J]. J Cell Mol Med, 2018, 22(10): 5132-44.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Tong MM, Saito T, Zhai PY, et al. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res. 2019;124(9):1360–71. doi: 10.1161/CIRCRESAHA.118.314607. [Tong MM, Saito T, Zhai PY, et al. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy[J]. Circ Res, 2019, 124(9): 1360-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–9. doi: 10.1126/science.1099320. [Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science, 2004, 305(5684): 626-9.] [DOI] [PubMed] [Google Scholar]
  • 28.Yu GW, Luo HW, Zhang N, et al. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation. Int J Mol Sci. 2019;20(24):6268. doi: 10.3390/ijms20246268. [Yu GW, Luo HW, Zhang N, et al. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation[J]. Int J Mol Sci, 2019, 20(24): 6268.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Li XR, Lan YH, Wang Y, et al. Telmisartan suppresses cardiac hypertrophy by inhibiting cardiomyocyte apoptosis via the NFAT/ANP/BNP signaling pathway. Mol Med Rep. 2017;15(5):2574–82. doi: 10.3892/mmr.2017.6318. [Li XR, Lan YH, Wang Y, et al. Telmisartan suppresses cardiac hypertrophy by inhibiting cardiomyocyte apoptosis via the NFAT/ANP/BNP signaling pathway[J]. Mol Med Rep, 2017, 15(5): 2574-82.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES