Skip to main content
Journal of Animal Science logoLink to Journal of Animal Science
. 2020 Dec 1;98(12):skaa351. doi: 10.1093/jas/skaa351

Early life thermal stress can have long-term impacts on piglets

PMCID: PMC7707371  PMID: 33260198

Graphical Abstract

graphic file with name skaa351_iffig1.jpg


Heat stress (HS) and its abatement in livestock has gained substantial attention due to the increased number and severity of climate disruptions. In response to elevated environmental temperatures, pigs experience a reduction in feed intake and altered metabolism that contributes to poor growth and increased disease susceptibility (Johnson and Baumgard, 2018). Mitigation of HS responses may include precision management (Santos et al., 2018), dietary intervention (Mayorga et al., 2018a, 2018b) and infusion of thermotolerant genetics (Gourdine et al., 2019). In this issue, behavior and growth responses were measured in piglets exposed to early life HS or in utero HS (Maskal et al., 2020; Robbins et al., 2020). Results shed new light on the physiological consequences of thermal stress.

References

  1. Gourdine J. L., Riquet J., Rosé R., Poullet N., Giorgi M., Billon Y., Renaudeau D., and Gilbert H.. . 2019. Genotype by environment interactions for performance and thermoregulation responses in growing pigs1,2. J. Anim. Sci. 97:3699–3713. doi: 10.1093/jas/skz245 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Johnson J. S., and Baumgard L. H.. . 2018. PHYSIOLOGY SYMPOSIUM: postnatal consequences of in utero heat stress in pigs1,2. J. Anim. Sci. 97:962–971. doi: 10.1093/jas/sky472 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Maskal J. M., Duttlinger A. W., Kpodo K. R., McConn B. R., Byrd C. J., Richert B. T., Marchant-Forde J. N., Lay D. C. Jr., Perry S. D., Lucy M. C., . et al.  2020. Evaluation and mitigation of the effects of in utero heat stress on piglet growth performance, post-absorptive metabolism, and stress response following weaning and transport. J. Anim. Sci. 98:1–13. doi: 10.1093/jas/skaa265 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mayorga E. J., Kvidera S. K., Horst E. A., Al-Qaisi M., Dickson M. J., Seibert J. T., Lei S., Keating A. F., Ross J. W., Rhoads R. P., . et al.  2018a. Effects of zinc amino acid complex on biomarkers of gut integrity and metabolism during and following heat stress or feed restriction in pigs. J. Anim. Sci. 96:4173–4185. doi: 10.1093/jas/sky293 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mayorga E. J., Kvidera S. K., Seibert J. T., Horst E. A., Abuajamieh M., Al-Qaisi M., Lei S., Ross J. W., Johnson C. D., Kremer B., . et al.  2018b. Effects of dietary chromium propionate on growth performance, metabolism, and immune biomarkers in heat-stressed finishing pigs1. J. Anim. Sci. 97:1185–1197. doi: 10.1093/jas/sky484 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Robbins L. A., Green-Miller A. R., Johnson J. S. and Gaskill B. N.. . 2020. Early life thermal stress: Impacts on future temperature preference in weaned pigs (3 to 15 kg). J. Anim. Sci. 98:1–9. doi: 10.1093/jas/skaa327 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Santos L. S. D., Pomar C., Campos P. H. R. F., da Silva W. C., Gobi J. P., Veira A. M., Fraga A. Z., and Hauschild L.. . 2018. Precision feeding strategy for growing pigs under heat stress conditions. J. Anim. Sci. 96:4789–4801. doi: 10.1093/jas/sky343 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Animal Science are provided here courtesy of Oxford University Press

RESOURCES