Abstract
Background
Coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, is spreading rapidly across the globe, with little proven effective therapy. Fever is seen in most cases of COVID-19, at least at the initial stages of illness. Although fever is typically treated (with antipyretics or directly with ice or other mechanical means), increasing data suggest that fever is a protective adaptive response that facilitates recovery from infectious illness.
Objective
To describe a randomized controlled pilot study of core warming patients with COVID-19 undergoing mechanical ventilation.
Methods
This prospective single-site randomized controlled pilot study will enroll 20 patients undergoing mechanical ventilation for respiratory failure due to COVID-19. Patients will be randomized 1:1 to standard-of-care or to receive core warming via an esophageal heat exchanger commonly utilized in critical care and surgical patients. The primary outcome is patient viral load measured by lower respiratory tract sample. Secondary outcomes include severity of acute respiratory distress syndrome (as measured by PaO2/FiO2 ratio) 24, 48, and 72 hours after initiation of treatment, hospital and intensive care unit length of stay, duration of mechanical ventilation, and 30-day mortality.
Results
Resulting data will provide effect size estimates to guide a definitive multi-center randomized clinical trial. ClinicalTrials.gov registration number: NCT04426344.
Conclusions
With growing data to support clinical benefits of elevated temperature in infectious illness, this study will provide data to guide further understanding of the role of active temperature management in COVID-19 treatment and provide effect size estimates to power larger studies.
Introduction
Traditionally, fever has been treated because its metabolic costs were felt to outweigh its potential physiologic benefit in an already stressed host [1]. However, increasing data suggest that fever may be a protective adaptive response that should be allowed to run its course under most circumstances [2,3]. Higher early fever is associated with a lower risk of death among patients with an ICU admission diagnosis of infection [4,5]. Fever may enhance immune-cell function [6,7], inhibit pathogen growth [8–10], and increase the activity of antimicrobial drugs [11]. Fever potentially benefits infected patients via multiple mechanisms; in vitro and animal studies have shown that elevated temperatures augment immune function, increase production of protective heat shock proteins, directly inhibit microorganism growth, reduce viral replication, and enhance antibiotic effectiveness [3,12]. More rapid recoveries are observed from chickenpox [13], malaria [14], and rhinovirus [15] infections with avoidance of antipyretic medication, and many innate and adaptive immunological processes are accelerated by fever [16–18].
Randomized controlled trials have consistently failed to find benefits to treating fever of infectious etiology [16,19–25]. Reducing patient temperature to below normal in sepsis likewise has been found to be of no benefit, or harmful [26,27]. On the other hand, warming appears to have substantial benefits in sepsis. Multiple aspects of both humoral and cellular immunity (including antibody production, T lymphocyte trafficking, T cell adhesion and migration, heat shock protein 90 (Hsp90)-induced α4 integrin activation and signaling, and macrophage function) are boosted by elevated temperature [28]. A retrospective cohort study evaluating 1,264 patients requiring mechanical ventilation found that high fever (≥39.5°C) was associated with increased risk for mortality in mechanically ventilated patients; however, in patients with sepsis, moderate fever (38.3°C-39.4°C) was protective, and antipyretic medication was not associated with changes in outcome [29]. Prospective data show that afebrile patients have higher 28-day mortality (37.5% vs 18.2%), increased acquisition of secondary infections (35.4% vs. 15.9%), and suppressed HLA-DR expression suggestive of monocyte dysfunction over time [30]. As recently as the 1910’s, the “malaria fever cure” (inducing fever to treat a range of conditions, an approach known as “pyrotherapy”) was widespread, with the originator of the idea receiving the Nobel Prize in Medicine or Physiology in 1927 [31,32]. Currently, the UK National Institute for Health and Care Excellence (NICE) recommend not using antipyretic agents “with the sole aim of reducing body temperature in children with fever [16,33]”. Actively inducing hyperthermia by directly heating the body has been used in cancer treatment, with minimal adverse effects [34–37]. Hyperthermia has been found to have positive impacts on the immune system, causing increased levels of heat-shock proteins [28,38,39], which are directly related to antigen presentation and cross‐presentation, activation of macrophages and lymphocytes, and activation and maturation of dendritic cells [40]. A pilot study of external warming of septic patients (ClinicalTrials.gov Identifier: NCT02706275) has recently been completed.
Many viruses replicate more robustly at cooler temperatures, such as those found in the nasal cavity (33–35°C) than at warmer core body temperature (37°C) [41–45]. Coronavirus disease 2019 (COVID-19) currently has limited treatment options besides dexamethasone [46], but its causative virus (SARS-CoV-2) may behave similarly to other viruses susceptible to temperature changes [47]. Simulations of the receptor binding domain (RBD) of SARS-CoV-2 found high flexibility near the binding site, suggesting that the RBD will have a high entropy penalty upon binding angiotensin-converting enzyme II (ACE2), and that consequently, the virus may be more temperature-sensitive in terms of human infection than other coronaviruses [48]. Notably, fever has often abated by the time a COVID-19 patient requires mechanical ventilation [49]. Additionally, patients with severe COVID-19 tend to have a high viral load and a long virus-shedding period, suggesting that the viral load of SARS-CoV-2 might be a useful marker for assessing disease severity and prognosis [50]. The aim of this study is to determine the effect of active core warming patients diagnosed with COVID-19 and undergoing mechanical ventilation. We hypothesize that active core warming will reduce the severity of acute respiratory distress syndrome, reduce the duration of mechanical ventilation, and improve survival compared to standard of care.
Study objectives
The purpose of the proposed pilot study is to determine if core warming improves respiratory physiology of mechanically ventilated patients with COVID-19, allowing earlier weaning from ventilation, and greater overall survival.
Primary objective
Determine the change in viral load measured in lower respiratory tract sample after implementation of core warming of ventilated patients, and compare this change to patients undergoing standard care.
Secondary objectives
Measure the impact of esophageal core warming on severity of acute respiratory distress syndrome as measured by PaO2/FiO2 ratio 24, 48, and 72 hours after initiation, and compare this to standard care.
Compare the duration of mechanical ventilation of patients treated with core warming to patients treated with standard care.
Compare the length of ICU and hospital stay of patients treated with core warming to patients treated with standard care.
Compare the 30-day mortality of patients treated with core warming to patients treated with standard care.
Methods
This is a single-center pilot study to evaluate if core warming improves respiratory physiology of mechanically ventilated patients with COVID-19, allowing earlier weaning from ventilation, and greater overall survival. The protocol was reviewed and approved by the Institutional Review Board of Washington University. The study is listed on ClinicalTrials.gov with identifier NCT04426344. This prospective, randomized study will include 20 patients diagnosed with COVID-19, and undergoing mechanical ventilation for the treatment of respiratory failure. Patients will be randomized in a 1:1 fashion with 10 patients (Group A) randomized to undergo core warming with an esophageal heat transfer device, and the other 10 patients (Group B) serving as the control group. Patients randomized to Group A will have the esophageal heat transfer device placed in the ICU or other clinical environment in which they are being treated after enrollment and provision of informed consent from appropriate surrogate or legally authorized representative. This study is posted on ClinicalTrials.gov with registration number: NCT04426344. The IRB of Washington University, St. Louis, is performing full review of the final protocol and expected to provide approval; the study will not start prior to IRB approval.
Screening
Subjects will be recruited from the ICU or other clinical environment in which they are being treated (Emergency Department, step-down unit, etc.). Patients will be identified by the PI or other study investigators/coordinators as available, and will be restricted to those who have been undergoing mechanical ventilation for three days or less. All patients without a DNR order with a diagnosis of COVID-19 and meeting inclusion criteria will be eligible for screening for any exclusion criteria. Written informed consent for the research study will be obtained from patient’s surrogate or legally authorized representative prior to enrollment. A formal screening log will be maintained for the trial, and available data on patients not entered into the study will be compared to those entered into the study. Baseline variables of patients entered into the study will additionally be compared by randomization arm.
Study intervention and monitoring
Participants who have a signed research study consent form (via surrogate or legally authorized representative) will be randomized in a 1:1 fashion to core warming or to standard of care (standard temperature management and treatment). The esophageal heat transfer device will be used according to FDA 510(k) labeling (for patient warming). Patient temperature measurements will be collected for both the device and standard-of-care arms during the study period (up to 72 hours). Device placement will be performed using standard protocol per instructions for use. The esophageal heat transfer device will be set to 42°C temperature after initial placement, and maintained at 42°C for the duration of treatment. All patients will have usual standard of care labs, vital signs, and imaging for patients in critical condition undergoing mechanical ventilation in the ICU. Specific parameters to be measured include PaO2 at regular intervals appropriate for patients undergoing mechanical ventilation, and FiO2 at the time of obtaining blood gases for PaO2 measurement, to allow calculation of P/F ratio.
Control group patients will be managed as per standard of care currently utilized in the ICU, which will include the use of other methods of temperature management as warranted. This would include warming with a forced air blanket only in hypothermic patients (core temperature < 36°C) or antipyretic therapy for febrile patients, as requested by the treating physician. Episodes of hypothermia are infrequent and transient in this population, and the current standard of care generally utilizes a permissive approach to fever (allowing patients to remain mildly febrile) which will continue in the control group without modification (no intentional elevation of temperature will be provided in the control group).
Study endpoints
The purpose of this pilot study is to determine initial estimates on outcomes (viral load, PaO2/FiO2 ratio, duration of mechanical ventilation, and mortality) in order to determine adequate sample size to properly power definitive studies. Measurements will be compared at time points 24, 48, and 72 hours after initiation. Sampling for viral measurements will utilize lower respiratory tract samples, as these have been shown to be of greater sensitivity and reliability for patient monitoring [47,51,52].
Primary study endpoints
The primary endpoint of this study will be:
Viral load measured in lower respiratory tract sample 72 hours after initiation of core warming
Secondary study endpoints include:
PaO2/FiO2 ratio 24, 48, and 72 hours after initiation of core warming
Duration of mechanical ventilation
Duration of ICU and hospital stay
Patient mortality
Inclusion criteria
Patients above the age of 18 years old.
Patients with a diagnosis of COVID-19 on mechanical ventilation.
Patient maximum baseline temperature (within previous 12 hours) < 38.3°C.
Patients must have a surrogate or legally authorized representative able to understand and critically review the informed consent form.
Exclusion criteria
Patients with contraindication to core warming using an esophageal core warming device.
Patients known to be pregnant.
Patients with <40 kg of body mass.
Patients with DNR status.
Patients with acute stroke, post-cardiac arrest, or multiple sclerosis.
Subject recruitment
Subjects will be recruited from the ICU or other clinical environment in which they are being treated (Emergency Department, step-down unit, etc.). Patients will be identified by the PI or other study investigators/coordinators as available. All patients without a DNR order with a diagnosis of COVID-19 and meeting inclusion criteria will be eligible for screening for any exclusion criteria. Written informed consent for the research study will be obtained from patient’s surrogate or legally authorized representative prior to enrollment. If a patient enrolled in the study gains the capacity to consent for him/herself while the study is in progress, the patient will be approached by a study team member and the consent document will be presented directly to the patient. All questions the patient might have will be answered. The patient will be given the opportunity to either withdraw from the study or sign the consent form. The patient will be informed that his or her decision to withdraw from the study will not affect his or her medical care
Duration of study participation
Participants will be involved for approximately 1 month, including screening, treatment, and follow-up. After consent, patient participation in the intervention phase will last 72 hours for active treatment. The follow up for determination of outcome and duration of mechanical ventilation will occur at 1-month post-treatment. Additional data will be collected via chart review.
Total number of subjects and sites
This single-site study aims to recruit and randomize 20 patients. It is expected that up to 30 subjects may be consented in order to produce 20 randomized & evaluable subjects.
Core temperature modulation
Core temperature control and warming will be performed with a commercially available esophageal heat exchange device (ensoETM, Attune Medical, Chicago, IL). This device is currently used world-wide for various patient temperature management goals, including post-cardiac arrest therapeutic hypothermia [53–56], warming of burn patients [57], warming general surgical patients [58], cooling traumatic brain injury [59], cooling heat stroke [60], and the treatment of central fever [61,62]. The device is a multi-chambered silicone tube placed in the esophagus and connected to a heat exchanger to provide heat transfer to or from a patient (video available at https://vimeo.com/306506411). Modulation and control of the patient’s temperature is achieved by adjusting setpoint on the external heat exchanger, which in turn controls the circulating water temperature. Two lumens of the device connect to the external heat exchanger, while a third central lumen provides stomach access for gastric decompression or tube feeding. It is a single-use, disposable, non-implantable device with an intended duration of use of 72 hours or less.
Intervention regimen
Patients who are randomized to core warming will have the esophageal heat transfer device placed in the ICU or other treatment area where patient is undergoing mechanical ventilation. The device will remain in place until the study is completed (72 hours). The device will be set to 42°C for the duration of the study period. It is expected that patient temperature will increase from baseline by 1°C to 2°C, but due to ongoing heat loss from the patient, the expected maximum patient temperature is below 39°C. The time course of illness of COVID-19 is such that patients often no longer have fever by the time of mechanical ventilation [41]. If patient temperature increases above this range and reaches 40°C, the device will be set to an operating temperature of 40°C, thereby preventing any further increase in patient temperature. Patient temperature will be followed at intervals per standard of care in the intensive-care setting for mechanically ventilated patients (typically hourly).
Blinding
Due to the nature of this study, the physicians will not be blinded to the randomization assignment, however participants will be blinded. Once a subject is randomized, the research team will receive the randomization assignment (core warming or standard of care) and proceed with the procedures per the assignment.
Data collection
Demographics (including sex/gender, race, ethnicity, and age via date of birth)
Past medical history, social history, physical exam findings and physicians notes
Concurrent medications
Physical exam
Vital signs: temperature, blood pressure, heart rate, respiration rate, height and weight
Clinical labs: complete blood count (CBC), chemistry profiles, liver function tests, inflammatory markers (CRP, ferritin), d-dimer, arterial blood gas for determination of PaO2
Upper (nasopharyngeal) and lower (tracheal aspirate, sputum) respiratory tract viral load (cycle threshold)
Severity of illness: APACHE III, sequential organ failure assessment (SOFA) scoring systems
Ventilator settings
Pregnancy test for women of childbearing age
Adverse events or unanticipated problems
Data will be collected via chart review, and is expected to be available from routinely obtained laboratory and vital sign data recorded at routine intervals (i.e., when labs are drawn for routine care in the ICU).
Schedule of procedures and data collection
Study Phase | Screening | Randomization/Intervention Phase | Follow- up | ||
---|---|---|---|---|---|
Study Days | Day -1 to 0 | Day 0 | Day 1–2 | Day 7, 14 | Day 30 |
Informed Consent | X | ||||
Review Inclusion/Exclusion Criteria | X | ||||
Demographics | X | ||||
Medical History/Interim History* | X | X | X | ||
Physical Examination* | X | X | X | ||
Vital Signs: Temperature, BP, HR, RR* | X | X | X | ||
Height and Weight | X | ||||
Pregnancy Test | X | ||||
Clinical Laboratory Evaluation | X | X | X | ||
Respiratory tract viral load | X | ||||
Ventilator settings | X | X | X | ||
APACHE III and SOFA scores | X | X | X | ||
Clinical Imaging | X | X | X | ||
Prior/Concomitant Medications | X | X | |||
Randomization | X | ||||
Temperature monitoring | X | X | |||
PaO2, FiO2, parameter recording | X | X | |||
Discharge | X | ||||
Adverse Event / Unanticipated Problems Assessment | X | X | X |
* Interim medical history, physical exam, and vitals will be collected via chart review from routine clinical care.
Sample size and power determination
Based on a prior study in patients with sepsis, a maximum temperature of 38.3°C to 39.4°C was associated with survival (aHR 0.61 [95% CI, 0.39–0.99]) [29]. However, the effect of warming specific to COVID-19 patients remains uncertain, and as such, it is not possible to accurately perform a power calculation for this pilot study. It is believed that a total of 10 patients for each group will yield the sufficient pilot data to make an appropriate conclusion regarding the potential utility of core warming in reducing viral load, improving pulmonary physiology, reducing mechanical ventilation duration, and increasing patient survival. It is anticipated that data from this pilot study can be used for planning future larger studies.
Statistical methods
We will utilize standard measures to report outcomes and measure differences between groups. Specifically, we will use descriptive statistics, including mean (standard deviation) and median (interquartile range). Kaplan-Meier plots of important time to event outcomes and measures will be produced. Normality will be assessed using histograms and the Kolmogorov–Smirnov test. Formal hypothesis testing is not planned for this pilot feasibility study.
Efficacy analysis
This is a pilot feasibility study to determine the potential role of core warming during COVID-19 treatment.
Interim safety analysis
All subjects entered into the study and randomized at the baseline timepoint will have detailed information collected on adverse events for the overall study safety analysis. An interim safety analysis will be performed after the first 10 subjects are enrolled in the trial. At this time the safety and tolerability of the study device will be assessed and if deemed safe and appropriate, enrollment will continue to 20 subjects.
Subject population for analysis
All patients enrolled, randomized to a study arm, and completed in the study will be included for analysis.
Conclusion
We describe, before the initiation of any data collection, our approach to obtaining and analyzing data from a pilot randomized-controlled trial of core warming patients undergoing mechanical ventilation due to COVID-19. We anticipate this framework will enhance the utility of the reported results and provide a solid basis from which to design and execute subsequent investigations.
Supporting information
Data Availability
All relevant data from this study will be made available upon study completion.
Funding Statement
EK declares equity interest in Attune Medical. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
- 1.Mohr NM, Doerschug KC: Point: Should antipyretic therapy be given routinely to febrile patients in septic shock? Yes. Chest 2013, 144(4):1096–1098. 10.1378/chest.13-0916 [DOI] [PubMed] [Google Scholar]
- 2.Ray JJ, Schulman CI: Fever: suppress or let it ride? Journal of thoracic disease 2015, 7(12):E633–E636. 10.3978/j.issn.2072-1439.2015.12.28 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Drewry AM, Hotchkiss RS: Counterpoint: Should antipyretic therapy be given routinely to febrile patients in septic shock? No. Chest 2013, 144(4):1098–1101. 10.1378/chest.13-0918 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, et al. : Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. Intensive Care Med 2015, 41(5):823–832. 10.1007/s00134-015-3676-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Young PJ, Saxena M, Beasley R, Bellomo R, Bailey M, Pilcher D, et al. : Early peak temperature and mortality in critically ill patients with or without infection. Intensive Care Med 2012. [DOI] [PubMed] [Google Scholar]
- 6.Berman JD, Neva FA: Effect of temperature on multiplication of Leishmania amastigotes within human monocyte-derived macrophages in vitro. Am J Trop Med Hyg 1981, 30(2):318–321. 10.4269/ajtmh.1981.30.318 [DOI] [PubMed] [Google Scholar]
- 7.Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee C-T, Capitano M, et al. : Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. Journal of Leukocyte Biology 2011, 90(5):951–962. 10.1189/jlb.0511229 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Chu CM, Tian SF, Ren GF, Zhang YM, Zhang LX, Liu GQ: Occurrence of temperature-sensitive influenza A viruses in nature. J Virol 1982, 41(2):353–359. 10.1128/JVI.41.2.353-359.1982 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Moench LM: A Study of the Heat Sensitivity of the Meningoeoecus in Vitro within the Range of Therapeutic Temperatures. Journal of Laboratory and Clinical Medicine 1937, 22:665–676. [Google Scholar]
- 10.Small PM, Tauber MG, Hackbarth CJ, Sande MA: Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits. Infection and immunity 1986, 52(2):484–487. 10.1128/IAI.52.2.484-487.1986 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Mackowiak PA, Ruderman AE, Martin RM, Many WJ, Smith JW, Luby JP: Effects of physiologic variations in temperature on the rate of antibiotic-induced bacterial killing. American journal of clinical pathology 1981, 76(1):57–62. 10.1093/ajcp/76.1.57 [DOI] [PubMed] [Google Scholar]
- 12.Launey Y, Nesseler N, Mallédant Y, Seguin P: Clinical review: fever in septic ICU patients—friend or foe? Critical care (London, England) 2011, 15(3):222–222. 10.1186/cc10097 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Doran TF, De Angelis C, Baumgardner RA, Mellits ED: Acetaminophen: more harm than good for chickenpox? J Pediatr 1989, 114(6):1045–1048. 10.1016/s0022-3476(89)80461-5 [DOI] [PubMed] [Google Scholar]
- 14.Brandts CH, Ndjave M, Graninger W, Kremsner PG: Effect of paracetamol on parasite clearance time in Plasmodium falciparum malaria. Lancet 1997, 350(9079):704–709. 10.1016/S0140-6736(97)02255-1 [DOI] [PubMed] [Google Scholar]
- 15.Stanley ED, Jackson GG, Panusarn C, Rubenis M, Dirda V: Increased virus shedding with aspirin treatment of rhinovirus infection. Jama 1975, 231(12):1248–1251. [PubMed] [Google Scholar]
- 16.Peters MJ, Woolfall K, Khan I, Deja E, Mouncey PR, Wulff J, et al. : Permissive versus restrictive temperature thresholds in critically ill children with fever and infection: a multicentre randomized clinical pilot trial. Critical care (London, England) 2019, 23(1):69–69. 10.1186/s13054-019-2354-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Evans SS, Repasky EA, Fisher DT: Fever and the thermal regulation of immunity: the immune system feels the heat. Nature reviews Immunology 2015, 15(6):335–349. 10.1038/nri3843 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Lee CT, Zhong L, Mace TA, EA Repasky: Elevation in body temperature to fever range enhances and prolongs subsequent responsiveness of macrophages to endotoxin challenge. PLoS One 2012, 7(1):e30077 10.1371/journal.pone.0030077 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Schulman CI, Namias N, Doherty J, Manning RJ, Li P, Elhaddad A, et al. : The effect of antipyretic therapy upon outcomes in critically ill patients: a randomized, prospective study. Surg Infect (Larchmt) 2005, 6(4):369–375. 10.1089/sur.2005.6.369 [DOI] [PubMed] [Google Scholar]
- 20.Gozzoli V, Schottker P, Suter PM, Ricou B: Is it worth treating fever in intensive care unit patients? Preliminary results from a randomized trial of the effect of external cooling. Arch Intern Med 2001, 161(1):121–123. 10.1001/archinte.161.1.121 [DOI] [PubMed] [Google Scholar]
- 21.Young P, Saxena M, Bellomo R, Freebairn R, Hammond N, van Haren F, et al. : Acetaminophen for Fever in Critically Ill Patients with Suspected Infection. New England Journal of Medicine 2015, 373(23):2215–2224. 10.1056/NEJMoa1508375 [DOI] [PubMed] [Google Scholar]
- 22.Zhang Z: Antipyretic therapy in critically ill patients with established sepsis: a trial sequential analysis. PLoS One 2015, 10(2):e0117279 10.1371/journal.pone.0117279 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Dallimore J, Ebmeier S, Thayabaran D, Bellomo R, Bernard G, Schortgen F, et al. : Effect of active temperature management on mortality in intensive care unit patients. Crit Care Resusc 2018, 20(2):150–163. [PubMed] [Google Scholar]
- 24.Drewry AM, Ablordeppey EA, Murray ET, Stoll CRT, Izadi SR, Dalton CM, et al. : Antipyretic Therapy in Critically Ill Septic Patients: A Systematic Review and Meta-Analysis. Critical care medicine 2017, 45(5):806–813. 10.1097/CCM.0000000000002285 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Young PJ, Bellomo R, Bernard GR, Niven DJ, Schortgen F, Saxena M, et al. : Fever control in critically ill adults. An individual patient data meta-analysis of randomised controlled trials. Intensive Care Med 2019, 45(4):468–476. 10.1007/s00134-019-05553-w [DOI] [PubMed] [Google Scholar]
- 26.Itenov TS, Johansen ME, Bestle M, Thormar K, Hein L, Gyldensted L, et al. : Induced hypothermia in patients with septic shock and respiratory failure (CASS): a randomised, controlled, open-label trial. The Lancet Respiratory medicine 2018, 6(3):183–192. 10.1016/S2213-2600(18)30004-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Saoraya J, Musikatavorn K, Puttaphaisan P, Komindr A, Srisawat N: Intensive fever control using a therapeutic normothermia protocol in patients with febrile early septic shock: A randomized feasibility trial and exploration of the immunomodulatory effects. SAGE Open Medicine 2020, 8:2050312120928732. 10.1177/2050312120928732 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Lin C, Zhang Y, Zhang K, Zheng Y, Lu L, Chang H, et al. : Fever Promotes T Lymphocyte Trafficking via a Thermal Sensory Pathway Involving Heat Shock Protein 90 and alpha4 Integrins. Immunity 2019, 50(1):137–151.e136. 10.1016/j.immuni.2018.11.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Evans EM, Doctor RJ, Gage BF, Hotchkiss RS, Fuller BM, Drewry AM: The Association of Fever and Antipyretic Medication With Outcomes in Mechanically Ventilated Patients: A Cohort Study. Shock 2019, 52(2):152–159. 10.1097/SHK.0000000000001368 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Drewry AM, Ablordeppey EA, Murray ET, Dalton CM, Fuller BM, Kollef MH, et al. : Monocyte Function and Clinical Outcomes in Febrile and Afebrile Patients With Severe Sepsis. Shock 2018, 50(4):381–387. 10.1097/SHK.0000000000001083 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Raju TN: Hot brains: manipulating body heat to save the brain. Pediatrics 2006, 117(2):e320–321. 10.1542/peds.2005-1934 [DOI] [PubMed] [Google Scholar]
- 32.Epstein NN: Artificial Fever as a Therapeutic Procedure. Cal West Med 1936, 44(5):357–358. [PMC free article] [PubMed] [Google Scholar]
- 33.Davis T: NICE guideline: feverish illness in children—assessment and initial management in children younger than 5 years. Archives of disease in childhood Education and practice edition 2013, 98(6):232–235. 10.1136/archdischild-2013-304792 [DOI] [PubMed] [Google Scholar]
- 34.van der Zee J: Heating the patient: a promising approach? Annals of Oncology 2002, 13(8):1173–1184. 10.1093/annonc/mdf280 [DOI] [PubMed] [Google Scholar]
- 35.Bull JMC: Clinical Practice of Whole-Body Hyperthermia: New Directions In: Thermoradiotherapy and Thermochemotherapy. Medical Radiology (Diagnostic Imaging and Radiation Oncology). Berlin, Heidelberg: Springer; 1996. [Google Scholar]
- 36.Westermann AM, Grosen EA, Katschinski DM, Jäger D, Rietbroek R, Schink JC, et al. : A pilot study of whole body hyperthermia and carboplatin in platinum-resistant ovarian cancer. European Journal of Cancer 2001, 37(9):1111–1117. 10.1016/s0959-8049(01)00074-0 [DOI] [PubMed] [Google Scholar]
- 37.Robins HI, Dennis WH, Neville AJ, Shecterle LM, Martin PA, Grossman J, et al. : A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device. Cancer research 1985, 45(8):3937–3944. [PubMed] [Google Scholar]
- 38.Shi H, Cao T, Connolly JE, Monnet L, Bennett L, Chapel S, et al. : Hyperthermia Enhances CTL Cross-Priming. The Journal of Immunology 2006, 176(4):2134–2141. 10.4049/jimmunol.176.4.2134 [DOI] [PubMed] [Google Scholar]
- 39.Basu S, Srivastava PK: Fever‐like temperature induces maturation of dendritic cells through induction of hsp90. International Immunology 2003, 15(9):1053–1061. 10.1093/intimm/dxg104 [DOI] [PubMed] [Google Scholar]
- 40.Tsan M-F, Gao B: Heat shock proteins and immune system. Journal of Leukocyte Biology 2009, 85(6):905–910. 10.1189/jlb.0109005 [DOI] [PubMed] [Google Scholar]
- 41.Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, et al. : Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proceedings of the National Academy of Sciences 2015, 112(3):827–832. 10.1073/pnas.1411030112 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Ping CK: Rapid response to: Graphic Outbreak of severe acute respiratory syndrome in Hong Kong Special Administrative Region: case report. BMJ 2003, 326(850). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Laporte M, Stevaert A, Raeymaekers V, Boogaerts T, Nehlmeier I, Chiu W, et al. : Hemagglutinin Cleavability, Acid Stability, and Temperature Dependence Optimize Influenza B Virus for Replication in Human Airways. Journal of Virology 2019, 94(1):e01430–01419. 10.1128/JVI.01430-19 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. : SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 2020, 382(12):1177–1179. 10.1056/NEJMc2001737 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Chan KH, Peiris JS, Lam SY, Poon LL, Yuen KY, Seto WH: The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Advances in virology 2011, 2011:734690 10.1155/2011/734690 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. New England Journal of Medicine 2020. [Google Scholar]
- 47.Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. : Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020. 10.1001/jama.2020.3786 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.He J, Tao H, Yan Y, Huang S-Y, Xiao Y: Molecular mechanism of evolution and human infection with the novel coronavirus (2019-nCoV). bioRxiv 2020:2020.2002.2017.952903. 10.3390/v12040428 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. : Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020, 395(10229):1054–1062. 10.1016/S0140-6736(20)30566-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Liu Y, Yan L-M, Wan L, Xiang T-X, Le A, Liu J-M, et al. : Viral dynamics in mild and severe cases of COVID-19. The Lancet Infectious Diseases. 10.1016/S1473-3099(20)30232-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Williams TGS, Snell LB, Taj U, Douthwaite ST: The role of lower respiratory tract samples in the diagnosis of COVID-19. Infectious Diseases 2020, 52(7):524–525. 10.1080/23744235.2020.1761999 [DOI] [PubMed] [Google Scholar]
- 52.Yu F, Yan L, Wang N, Yang S, Wang L, Tang Y, et al. : Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clinical Infectious Diseases 2020, 71(15):793–798. 10.1093/cid/ciaa345 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Goury A, Poirson F, Chaput U, Voicu S, Garcon P, Beeken T, et al. : Targeted Temperature Management Using The "Esophageal Cooling Device" After Cardiac Arrest (The COOL Study): A feasibility and safety study. Resuscitation 2017, 121:54–61. 10.1016/j.resuscitation.2017.09.021 [DOI] [PubMed] [Google Scholar]
- 54.Hegazy AF, Lapierre DM, Butler R, Martin J, Althenayan E: The esophageal cooling device: A new temperature control tool in the intensivist's arsenal. Heart & Lung: The Journal of Acute and Critical Care 2017, 46(3):143–148. 10.1016/j.hrtlng.2017.03.001 [DOI] [PubMed] [Google Scholar]
- 55.Markota A, Fluher J, Kit B, Balazic P, Sinkovic A: The introduction of an esophageal heat transfer device into a therapeutic hypothermia protocol: A prospective evaluation. Am J Emerg Med 2016, 34(4):741–745. 10.1016/j.ajem.2016.01.028 [DOI] [PubMed] [Google Scholar]
- 56.Khan I, Haymore J, Barnaba B, Armahizer M, Melinosky C, Bautista MA, et al. : Esophageal Cooling Device Versus Other Temperature Modulation Devices for Therapeutic Normothermia in Subarachnoid and Intracranial Hemorrhage. Ther Hypothermia Temp Manag 2018, 8(1):53–58. 10.1089/ther.2017.0033 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Williams D, Leslie G, Kyriazis D, O'Donovan B, Bowes J, Dingley J: Use of an Esophageal Heat Exchanger to Maintain Core Temperature during Burn Excisions and to Attenuate Pyrexia on the Burns Intensive Care Unit. Case Reports in Anesthesiology 2016, 2016:6 10.1155/2016/7306341 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Kalasbail P, Makarova N, Garrett F, Sessler DI: Heating and Cooling Rates With an Esophageal Heat Exchange System. Anesth Analg 2018, 126(4):1190–1195. 10.1213/ANE.0000000000002691 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Bhatti F, Naiman M, Tsarev A, Kulstad E: Esophageal Temperature Management in Patients Suffering from Traumatic Brain Injury. Ther Hypothermia Temp Manag 2019. 10.1089/ther.2018.0034 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Martin KR, Naiman M, Espinoza M: Using Esophageal Temperature Management to Treat Severe Heat Stroke: A Case Report. J Neurosci Nurs 2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Hegazy AF, Lapierre DM, Butler R, Althenayan E: Temperature control in critically ill patients with a novel esophageal cooling device: a case series. BMC anesthesiology 2015, 15:152 10.1186/s12871-015-0133-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Markota A, Košir AS, Balažič P, Živko I, Sinkovič A: A Novel Esophageal Heat Transfer Device for Temperature Management in an Adult Patient with Severe Meningitis. Journal of Emergency Medicine 2017, 52(1):e27–e28. [DOI] [PubMed] [Google Scholar]