Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Dec 2;64(2):171–203. doi: 10.1007/s11426-020-9864-7

Nucleic Acids Analysis

Yongxi Zhao 1,#, Xiaolei Zuo 2,#, Qian Li 3,#, Feng Chen 1, Yan-Ru Chen 4, Jinqi Deng 5, Da Han 2, Changlong Hao 6, Fujian Huang 7, Yanyi Huang 8, Guoliang Ke 9, Hua Kuang 6, Fan Li 2, Jiang Li 10,11, Min Li 2, Na Li 12, Zhenyu Lin 13, Dingbin Liu 14, Juewen Liu 15, Libing Liu 16,17, Xiaoguo Liu 3, Chunhua Lu 13, Fang Luo 13, Xiuhai Mao 2, Jiashu Sun 5, Bo Tang 12, Fei Wang 3, Jianbin Wang 18, Lihua Wang 10,11, Shu Wang 15, Lingling Wu 2, Zai-Sheng Wu 4, Fan Xia 7, Chuanlai Xu 6, Yang Yang 2, Bi-Feng Yuan 19, Quan Yuan 9, Chao Zhang 2, Zhi Zhu 20, Chaoyong Yang 2,20,, Xiao-Bing Zhang 9,, Huanghao Yang 13,, Weihong Tan 2,9,, Chunhai Fan 2,3,
PMCID: PMC7716629  PMID: 33293939

Abstract

Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided. graphic file with name 11426_2020_9864_Fig1_HTML.jpg

Keywords: nucleic acids analysis, signal amplification, DNA nanotechnology, aptamer, biosensing

Acknowledgements

The authors appreciate the invitation of the Editor-in-Chief Li-Jun Wan and the help of the editorial team of Science China Chemistry.

Footnotes

Conflict of interest

The authors declare no conflict of interest.

These authors contributed equally to this work.

Contributor Information

Chaoyong Yang, Email: cyyang@xmu.edu.cn.

Xiao-Bing Zhang, Email: xbzhang@hnu.edu.cn.

Huanghao Yang, Email: hhyang@fzu.edu.cn.

Weihong Tan, Email: tan@hnu.edu.cn.

Chunhai Fan, Email: fanchunhai@sjtu.edu.cn.

References

  • 1.Zhao Y, Chen F, Li Q, Wang L, Fan C. Chem Rev. 2015;115:12491–12545. doi: 10.1021/acs.chemrev.5b00428. [DOI] [PubMed] [Google Scholar]
  • 2.Seeman NC, Sleiman HF. Nat Rev Mater. 2018;3:17068. [Google Scholar]
  • 3.Zheng J, Yang R, Shi M, Wu C, Fang X, Li Y, Li J, Tan W. Chem Soc Rev. 2015;44:3036–3055. doi: 10.1039/c5cs00020c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Wang X, Chen F, Zhang D, Zhao Y, Wei J, Wang L, Song S, Fan C, Zhao Y. Chem Sci. 2017;8:4764–4770. doi: 10.1039/c7sc01035d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Duan R, Zuo X, Wang S, Quan X, Chen D, Chen Z, Jiang L, Fan C, Xia F. J Am Chem Soc. 2013;135:4604–4607. doi: 10.1021/ja311313b. [DOI] [PubMed] [Google Scholar]
  • 6.Shen J, Li Y, Gu H, Xia F, Zuo X. Chem Rev. 2014;114:7631–7677. doi: 10.1021/cr300248x. [DOI] [PubMed] [Google Scholar]
  • 7.Gomez D, Shankman LS, Nguyen AT, Owens GK. Nat Methods. 2013;10:171–177. doi: 10.1038/nmeth.2332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Wang L, Zhang Y, Zhang C. Anal Chem. 2013;85:11509–11517. doi: 10.1021/ac402747r. [DOI] [PubMed] [Google Scholar]
  • 9.Tanaka Y, Xi H, Sato K, Mawatari K, Renberg B, Nilsson M, Kitamori T. Anal Chem. 2011;83:3352–3357. doi: 10.1021/ac103185j. [DOI] [PubMed] [Google Scholar]
  • 10.Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan GC, Chen M, Guo G. Cell. 2018;172:1091–1107.e17. doi: 10.1016/j.cell.2018.02.001. [DOI] [PubMed] [Google Scholar]
  • 11.Li X, Zhang D, Zhang H, Guan Z, Song Y, Liu R, Zhu Z, Yang C. Anal Chem. 2018;90:2570–2577. doi: 10.1021/acs.analchem.7b04040. [DOI] [PubMed] [Google Scholar]
  • 12.Fu Y, Li C, Lu S, Zhou W, Tang F, Xie XS, Huang Y. Proc Natl Acad Sci USA. 2015;112:11923–11928. doi: 10.1073/pnas.1513988112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chen Z, Zhou W, Qiao S, Kang L, Duan H, Xie XS, Huang Y. Nat Biotechnol. 2017;35:1170–1178. doi: 10.1038/nbt.3982. [DOI] [PubMed] [Google Scholar]
  • 14.Sundah NR, Ho NRY, Lim GS, Natalia A, Ding X, Liu Y, Seet JE, Chan CW, Loh TP, Shao H. Nat Biomed Eng. 2019;3:684–694. doi: 10.1038/s41551-019-0417-0. [DOI] [PubMed] [Google Scholar]
  • 15.Goodnow RA, Jr., Dumelin CE, Keefe AD. Nat Rev Drug Discov. 2017;16:131–147. doi: 10.1038/nrd.2016.213. [DOI] [PubMed] [Google Scholar]
  • 16.Fu Y, Zhang F, Zhang X, Yin J, Du M, Jiang M, Liu L, Li J, Huang Y, Wang J. Commun Biol. 2019;2:147. doi: 10.1038/s42003-019-0401-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Fu Y, Chen H, Liu L, Huang Y. Anal Chem. 2016;88:10795–10799. doi: 10.1021/acs.analchem.6b02581. [DOI] [PubMed] [Google Scholar]
  • 18.Chen C, Xing D, Tan L, Li H, Zhou G, Huang L, Xie XS. Science. 2017;356:189–194. doi: 10.1126/science.aak9787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wu C, Cansiz S, Zhang L, Teng IT, Qiu L, Li J, Liu Y, Zhou C, Hu R, Zhang T, Cui C, Cui L, Tan W. J Am Chem Soc. 2015;137:4900–4903. doi: 10.1021/jacs.5b00542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Qing Z, Xu J, Hu J, Zheng J, He L, Zou Z, Yang S, Tan W, Yang R. Angew Chem Int Ed. 2019;58:11574–11585. doi: 10.1002/anie.201812449. [DOI] [PubMed] [Google Scholar]
  • 21.He X, Zeng T, Li Z, Wang G, Ma N. Angew Chem Int Ed. 2016;55:3073–3076. doi: 10.1002/anie.201509726. [DOI] [PubMed] [Google Scholar]
  • 22.Gao R, Xu L, Hao C, Xu C, Kuang H. Angew Chem. 2019;131:3953–3957. [Google Scholar]
  • 23.Chen F, Xue J, Bai M, Qin J, Zhao Y. Chem Sci. 2019;10:3103–3109. doi: 10.1039/c8sc05302b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Chen F, Bai M, Cao K, Zhao Y, Wei J, Zhao Y. Adv Funct Mater. 2017;27:1702748. [Google Scholar]
  • 25.Chen F, Bai M, Cao K, Zhao Y, Cao X, Wei J, Wu N, Li J, Wang L, Fan C, Zhao Y. ACS Nano. 2017;11:11908–11914. doi: 10.1021/acsnano.7b06728. [DOI] [PubMed] [Google Scholar]
  • 26.Rouhanifard SH, Mellis IA, Dunagin M, Bayatpour S, Jiang CL, Dardani I, Symmons O, Emert B, Torre E, Cote A, Sullivan A, Stamatoyannopoulos JA, Raj A. Nat Biotechnol. 2019;37:84–89. doi: 10.1038/nbt0119-102b. [DOI] [PubMed] [Google Scholar]
  • 27.Lin R, Feng Q, Li P, Zhou P, Wang R, Liu Z, Wang Z, Qi X, Tang N, Shao F, Luo M. Nat Methods. 2018;15:275–278. doi: 10.1038/nmeth.4611. [DOI] [PubMed] [Google Scholar]
  • 28.Chen F, Xue J, Zhang J, Bai M, Yu X, Fan C, Zhao Y. J Am Chem Soc. 2020;142:2889–2896. doi: 10.1021/jacs.9b11393. [DOI] [PubMed] [Google Scholar]
  • 29.Chen F, Bai M, Cao X, Zhao Y, Xue J, Zhao Y. Nucleic Acids Res. 2019;47:e145. doi: 10.1093/nar/gkz852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Tan W, Donovan MJ, Jiang J. Chem Rev. 2013;113:2842–2862. doi: 10.1021/cr300468w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.McGhee CE, Loh KY, Lu Y. Curr Opin Biotech. 2017;45:191–201. doi: 10.1016/j.copbio.2017.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Peng H, Li XF, Zhang H, Le XC. Nat Commun. 2017;8:14378. doi: 10.1038/ncomms14378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Chem Soc Rev. 2016;45:2583–2602. doi: 10.1039/c5cs00645g. [DOI] [PubMed] [Google Scholar]
  • 34.Das J, Ivanov I, Sargent EH, Kelley SO. J Am Chem Soc. 2016;138:11009–11016. doi: 10.1021/jacs.6b05679. [DOI] [PubMed] [Google Scholar]
  • 35.Chen F, Bai M, Zhao Y, Cao K, Cao X, Zhao Y. Anal Chem. 2018;90:2271–2276. doi: 10.1021/acs.analchem.7b04634. [DOI] [PubMed] [Google Scholar]
  • 36.Wilner OI, Willner I. Chem Rev. 2012;112:2528–2556. doi: 10.1021/cr200104q. [DOI] [PubMed] [Google Scholar]
  • 37.Li J, Mo L, Lu CH, Fu T, Yang HH, Tan W. Chem Soc Rev. 2016;45:1410–1431. doi: 10.1039/c5cs00586h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Müller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, von Stetten F. Lab Chip. 2010;10:887–893. doi: 10.1039/b921140c. [DOI] [PubMed] [Google Scholar]
  • 39.Wang CH, Lien KY, Wang TY, Chen TY, Lee GB. Biosens Bioelectron. 2011;26:2045–2052. doi: 10.1016/j.bios.2010.08.083. [DOI] [PubMed] [Google Scholar]
  • 40.Garibyan L, Avashia N. J Invest Dermatology. 2013;133:1–4. doi: 10.1038/jid.2013.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Petralia S, Conoci S. ACS Sens. 2017;2:876–891. doi: 10.1021/acssensors.7b00299. [DOI] [PubMed] [Google Scholar]
  • 42.Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Cold Spring Harbor Symposia Quantitative Biol. 1986;51:263–273. doi: 10.1101/sqb.1986.051.01.032. [DOI] [PubMed] [Google Scholar]
  • 43.Ståhlberg A, Krzyzanowski PM, Jackson JB, Egyud M, Stein L, Godfrey TE. Nucleic Acids Res. 2016;44:e105. doi: 10.1093/nar/gkw224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Tian H, Sun Y, Liu C, Duan X, Tang W, Li Z. Anal Chem. 2016;88:11384–11389. doi: 10.1021/acs.analchem.6b01225. [DOI] [PubMed] [Google Scholar]
  • 45.Arefian E, Kiani J, Soleimani M, Shariati SAM, Aghaee-Bakhtiari SH, Atashi A, Gheisari Y, Ahmadbeigi N, Banaei-Moghaddam AM, Naderi M, Namvarasl N, Good L, Faridani OR. Nucleic Acids Res. 2011;39:e80. doi: 10.1093/nar/gkr214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Clinica Chim Acta. 2015;439:231–250. doi: 10.1016/j.cca.2014.10.017. [DOI] [PubMed] [Google Scholar]
  • 47.Nacham O, Clark KD, Anderson JL. Anal Chem. 2016;88:7813–7820. doi: 10.1021/acs.analchem.6b01861. [DOI] [PubMed] [Google Scholar]
  • 48.Bonetta L. Nat Methods. 2005;2:305–312. [Google Scholar]
  • 49.Dong J, Chen G, Wang W, Huang X, Peng H, Pu Q, Du F, Cui X, Deng Y, Tang Z. Anal Chem. 2018;90:7107–7111. doi: 10.1021/acs.analchem.8b01111. [DOI] [PubMed] [Google Scholar]
  • 50.Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, Lin M, Ying Hui L, Xu F. Biosens Bioelectron. 2017;90:459–474. doi: 10.1016/j.bios.2016.09.082. [DOI] [PubMed] [Google Scholar]
  • 51.Wong YK, Tsang HF, Xue VW, Chan CM, Au TC, Cho WC, Chan LW, Wong SC. Expert Rev Precision Med Drug Dev. 2017;2:177–186. [Google Scholar]
  • 52.Wang P, Jing F, Li G, Wu Z, Cheng Z, Zhang J, Zhang H, Jia C, Jin Q, Mao H, Zhao J. Biosens Bioelectron. 2015;74:836–842. doi: 10.1016/j.bios.2015.07.048. [DOI] [PubMed] [Google Scholar]
  • 53.Wang F, Zhu L, Liu B, Zhu X, Wang N, Deng T, Kang D, Pan J, Yang W, Gao H, Guo Y. Anal Chem. 2018;90:8919–8926. doi: 10.1021/acs.analchem.8b01096. [DOI] [PubMed] [Google Scholar]
  • 54.Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y. Genome Biol. 2015;16:148. doi: 10.1186/s13059-015-0706-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Saiki R, Gelfand D, Stoffel S, Scharf S, Higuchi R, Horn G, Mullis K, Erlich H. Science. 1998;239:487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  • 56.Giljohann DA, Mirkin CA. Nature. 2009;462:461–464. doi: 10.1038/nature08605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Guo Q, Yang X, Wang K, Tan W, Li W, Tang H, Li H. Nucleic Acids Res. 2009;37:e20. doi: 10.1093/nar/gkn1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Connolly A, Trau M. Angew Chem Int Ed. 2010;49:2720–2723. doi: 10.1002/anie.200906992. [DOI] [PubMed] [Google Scholar]
  • 59.Deng R, Tang L, Tian Q, Wang Y, Lin L, Li J. Angew Chem Int Ed. 2014;53:2389–2393. doi: 10.1002/anie.201309388. [DOI] [PubMed] [Google Scholar]
  • 60.Zhao W, Ali M, Brook M, Li Y. Angew Chem Int Ed. 2008;47:6330–6337. doi: 10.1002/anie.200705982. [DOI] [PubMed] [Google Scholar]
  • 61.Deng R, Zhang K, Wang L, Ren X, Sun Y, Li J. Chem. 2018;4:1373–1386. [Google Scholar]
  • 62.Tomita N, Mori Y, Kanda H, Notomi T. Nat Protoc. 2008;3:877–882. doi: 10.1038/nprot.2008.57. [DOI] [PubMed] [Google Scholar]
  • 63.Notomi T. Nucleic Acids Res. 2000;28:63e–63. doi: 10.1093/nar/28.12.e63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Weusten JJAM. Nucleic Acids Res. 2002;30:26e–26. doi: 10.1093/nar/gnf137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.D’Souza DH, Jaykus LA. J Appl Microbiol. 2003;95:1343–1350. doi: 10.1046/j.1365-2672.2003.02106.x. [DOI] [PubMed] [Google Scholar]
  • 66.Jia H, Li Z, Liu C, Cheng Y. Angew Chem Int Ed. 2010;49:5498–5501. doi: 10.1002/anie.201001375. [DOI] [PubMed] [Google Scholar]
  • 67.Connolly AR, Trau M. Nat Protoc. 2011;6:772–778. doi: 10.1038/nprot.2011.326. [DOI] [PubMed] [Google Scholar]
  • 68.Yao GH, Liang RP, Yu XD, Huang CF, Zhang L, Qiu JD. Anal Chem. 2015;87:929–936. doi: 10.1021/ac503016f. [DOI] [PubMed] [Google Scholar]
  • 69.Hou T, Wang X, Liu X, Lu T, Liu S, Li F. Anal Chem. 2014;86:884–890. doi: 10.1021/ac403458b. [DOI] [PubMed] [Google Scholar]
  • 70.Liu J, Lu Y. J Am Chem Soc. 2003;125:6642–6643. doi: 10.1021/ja034775u. [DOI] [PubMed] [Google Scholar]
  • 71.Wang F, Elbaz J, Teller C, Willner I. Angew Chem Int Ed. 2011;50:295–299. doi: 10.1002/anie.201005246. [DOI] [PubMed] [Google Scholar]
  • 72.Dirks RM, Pierce NA. Proc Natl Acad Sci USA. 2004;101:15275–15278. doi: 10.1073/pnas.0407024101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Yang L, Liu C, Ren W, Li Z. ACS Appl Mater Interfaces. 2012;4:6450–6453. doi: 10.1021/am302268t. [DOI] [PubMed] [Google Scholar]
  • 74.Wang F, Elbaz J, Orbach R, Magen N, Willner I. J Am Chem Soc. 2011;133:17149–17151. doi: 10.1021/ja2076789. [DOI] [PubMed] [Google Scholar]
  • 75.Yang X, Yu Y, Gao Z. ACS Nano. 2014;8:4902–4907. doi: 10.1021/nn5008786. [DOI] [PubMed] [Google Scholar]
  • 76.Huang F, Zhou X, Yao D, Xiao S, Liang H. Small. 2015;11:5800–5806. doi: 10.1002/smll.201501826. [DOI] [PubMed] [Google Scholar]
  • 77.Huang F, You M, Han D, Xiong X, Liang H, Tan W. J Am Chem Soc. 2013;135:7967–7973. doi: 10.1021/ja4018495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Yin P, Choi HMT, Calvert CR, Pierce NA. Nature. 2008;451:318–322. doi: 10.1038/nature06451. [DOI] [PubMed] [Google Scholar]
  • 79.Jiang YS, Li B, Milligan JN, Bhadra S, Ellington AD. J Am Chem Soc. 2013;135:7430–7433. doi: 10.1021/ja4023978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Chen X, Briggs N, McLain JR, Ellington AD. Proc Natl Acad Sci USA. 2013;110:5386–5391. doi: 10.1073/pnas.1222807110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Jiang YS, Bhadra S, Li B, Ellington AD. Angew Chem Int Ed. 2014;53:1845–1848. doi: 10.1002/anie.201307418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Fan C, Plaxco KW, Heeger AJ. Proc Natl Acad Sci USA. 2003;100:9134–9137. doi: 10.1073/pnas.1633515100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Li F, Pei H, Wang L, Lu J, Gao J, Jiang B, Zhao X, Fan C. Adv Funct Mater. 2013;23:4140–4148. [Google Scholar]
  • 84.Kang D, Zuo X, Yang R, Xia F, Plaxco KW, White RJ. Anal Chem. 2009;81:9109–9113. doi: 10.1021/ac901811n. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW. Proc Natl Acad Sci USA. 2010;107:10837–10841. doi: 10.1073/pnas.1005632107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Cai B, Wang S, Huang L, Ning Y, Zhang Z, Zhang GJ. ACS Nano. 2014;8:2632–2638. doi: 10.1021/nn4063424. [DOI] [PubMed] [Google Scholar]
  • 87.Wang J. Biosens Bioelectron. 1998;13:757–762. doi: 10.1016/s0956-5663(98)00039-6. [DOI] [PubMed] [Google Scholar]
  • 88.Wang J, Palecek E, Nielsen PE, Rivas G, Cai X, Shiraishi H, Dontha N, Luo D, Farias PAM. J Am Chem Soc. 1996;118:7667–7670. [Google Scholar]
  • 89.Li F, Huang Y, Yang Q, Zhong Z, Li D, Wang L, Song S, Fan C. Nanoscale. 2010;2:1021–1026. doi: 10.1039/b9nr00401g. [DOI] [PubMed] [Google Scholar]
  • 90.Wang Q, Chen L, Long Y, Tian H, Wu J. Theranostics. 2013;3:395–408. doi: 10.7150/thno.5935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, Alland D. Nat Biotechnol. 1998;16:359–363. doi: 10.1038/nbt0498-359. [DOI] [PubMed] [Google Scholar]
  • 92.Ranallo S, Rossetti M, Plaxco KW, Vallée-Bélisle A, Ricci F. Angew Chem Int Ed. 2015;54:13214–13218. doi: 10.1002/anie.201505179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Tyagi S, Kramer FR. Nat Biotechnol. 1996;14:303–308. doi: 10.1038/nbt0396-303. [DOI] [PubMed] [Google Scholar]
  • 94.Halo TL, McMahon KM, Angeloni NL, Xu Y, Wang W, Chinen AB, Malin D, Strekalova E, Cryns VL, Cheng C, Mirkin CA, Shad Thaxton C. Proc Natl Acad Sci USA. 2014;111:17104–17109. doi: 10.1073/pnas.1418637111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Dai Y, Furst A, Liu CC. Trends Biotech. 2019;37:1367–1382. doi: 10.1016/j.tibtech.2019.10.001. [DOI] [PubMed] [Google Scholar]
  • 96.Dunn AR, Hassell JA. Cell. 1977;12:23–36. doi: 10.1016/0092-8674(77)90182-9. [DOI] [PubMed] [Google Scholar]
  • 97.Sylla Niang M, Drame N, Jalloh M, Labou I, Niang L, Gaye GW, Gueye SM. Immuno-analyse Biologie Spécialisée. 2010;25:67–71. [Google Scholar]
  • 98.Takeuchi T, Matile S. J Am Chem Soc. 2009;131:18048–18049. doi: 10.1021/ja908909m. [DOI] [PubMed] [Google Scholar]
  • 99.Xia F, White RJ, Zuo X, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ. J Am Chem Soc. 2010;132:14346–14348. doi: 10.1021/ja104998m. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Song F, Deng R, Liu H, Wang A, Ma C, Wei Y, Cui X, Wan Y, Li J. Anal Chem. 2019;91:14043–14048. doi: 10.1021/acs.analchem.9b03717. [DOI] [PubMed] [Google Scholar]
  • 101.Liu JM, Liu YY, Zhang DD, Fang GZ, Wang S. ACS Appl Mater Interfaces. 2016;8:29939–29949. doi: 10.1021/acsami.6b09580. [DOI] [PubMed] [Google Scholar]
  • 102.Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. J Am Chem Soc. 2007;129:1042–1043. doi: 10.1021/ja067024b. [DOI] [PubMed] [Google Scholar]
  • 103.Lin M, Wen Y, Li L, Pei H, Liu G, Song H, Zuo X, Fan C, Huang Q. Anal Chem. 2014;86:2285–2288. doi: 10.1021/ac500251t. [DOI] [PubMed] [Google Scholar]
  • 104.Lu HJ, Pan JB, Wang YZ, Ji SY, Zhao W, Luo XL, Xu JJ, Chen HY. Anal Chem. 2018;90:10434–10441. doi: 10.1021/acs.analchem.8b02347. [DOI] [PubMed] [Google Scholar]
  • 105.Gui G, Zhuo Y, Chai YQ, Liao N, Zhao M, Han J, Zhu Q, Yuan R, Xiang Y. Biosens Bioelectron. 2013;47:524–529. doi: 10.1016/j.bios.2013.03.075. [DOI] [PubMed] [Google Scholar]
  • 106.Ren H, Long Z, Shen X, Zhang Y, Sun J, Ouyang J, Na N. ACS Appl Mater Interfaces. 2018;10:25621–25628. doi: 10.1021/acsami.8b03429. [DOI] [PubMed] [Google Scholar]
  • 107.Fan D, Liu X, Bao C, Feng J, Wang H, Ma H, Wu D, Wei Q. Biosens Bioelectron. 2019;129:124–131. doi: 10.1016/j.bios.2019.01.029. [DOI] [PubMed] [Google Scholar]
  • 108.Feng J, Li Y, Li M, Li F, Han J, Dong Y, Chen Z, Wang P, Liu H, Wei Q. Biosens Bioelectron. 2017;91:441–448. doi: 10.1016/j.bios.2016.12.070. [DOI] [PubMed] [Google Scholar]
  • 109.Kim SH, Nam O, Jin ES, Gu MB. Biosens Bioelectron. 2019;123:160–166. doi: 10.1016/j.bios.2018.08.021. [DOI] [PubMed] [Google Scholar]
  • 110.Shao H, Lin H, Guo Z, Lu J, Jia Y, Ye M, Su F, Niu L, Kang W, Wang S, Hu Y, Huang Y. Biosens Bioelectron. 2019;143:111616. doi: 10.1016/j.bios.2019.111616. [DOI] [PubMed] [Google Scholar]
  • 111.Li LL, Liu X, Yang L, Zhang S, Zheng HJ, Tang Y, Wong DKY. Biosens Bioelectron. 2019;142:111525. doi: 10.1016/j.bios.2019.111525. [DOI] [PubMed] [Google Scholar]
  • 112.Zhong H, Yu C, Gao R, Chen J, Yu Y, Geng Y, Wen Y, He J. Biosens Bioelectron. 2019;144:111635. doi: 10.1016/j.bios.2019.111635. [DOI] [PubMed] [Google Scholar]
  • 113.Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D. Anal Chem. 2012;84:5392–5399. doi: 10.1021/ac3009065. [DOI] [PubMed] [Google Scholar]
  • 114.Song X, Yue Z, Hong T, Wang Z, Zhang S. Anal Chem. 2019;91:8549–8557. doi: 10.1021/acs.analchem.9b01805. [DOI] [PubMed] [Google Scholar]
  • 115.Zhu L, Chen D, Lu X, Qi Y, He P, Liu C, Li Z. Chem Sci. 2018;9:6605–6613. doi: 10.1039/c8sc02752h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C. J Am Chem Soc. 2006;128:8575–8580. doi: 10.1021/ja061521a. [DOI] [PubMed] [Google Scholar]
  • 117.Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C. Angew Chem Int Ed. 2015;54:2151–2155. doi: 10.1002/anie.201410720. [DOI] [PubMed] [Google Scholar]
  • 118.Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C. Nat Protoc. 2016;11:1244–1263. doi: 10.1038/nprot.2016.071. [DOI] [PubMed] [Google Scholar]
  • 119.Zhu D, Pei H, Yao G, Wang L, Su S, Chao J, Wang L, Aldalbahi A, Song S, Shi J, Hu J, Fan C, Zuo X. Adv Mater. 2016;28:6860–6865. doi: 10.1002/adma.201506407. [DOI] [PubMed] [Google Scholar]
  • 120.Song P, Shen J, Ye D, Dong B, Wang F, Pei H, Wang J, Shi J, Wang L, Xue W, Huang Y, Huang G, Zuo X, Fan C. Nat Commun. 2020;11:838. doi: 10.1038/s41467-020-14664-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Liu Q, Ge Z, Mao X, Zhou G, Zuo X, Shen J, Shi J, Li J, Wang L, Chen X, Fan C. Angew Chem Int Ed. 2018;57:7131–7135. doi: 10.1002/anie.201802701. [DOI] [PubMed] [Google Scholar]
  • 122.Li F, Mao X, Li F, Li M, Shen J, Ge Z, Fan C, Zuo X. J Am Chem Soc. 2020;142:9975–9981. doi: 10.1021/jacs.9b13737. [DOI] [PubMed] [Google Scholar]
  • 123.Ye D, Li L, Li Z, Zhang Y, Li M, Shi J, Wang L, Fan C, Yu J, Zuo X. Nano Lett. 2018;19:369–374. doi: 10.1021/acs.nanolett.8b04051. [DOI] [PubMed] [Google Scholar]
  • 124.Li M, Ding H, Lin M, Yin F, Song L, Mao X, Li F, Ge Z, Wang L, Zuo X, Ma Y, Fan C. J Am Chem Soc. 2019;141:18910–18915. doi: 10.1021/jacs.9b11015. [DOI] [PubMed] [Google Scholar]
  • 125.Ankenbruck N, Courtney T, Naro Y, Deiters A. Angew Chem Int Ed. 2018;57:2768–2798. doi: 10.1002/anie.201700171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. Nature. 2017;550:345–353. doi: 10.1038/nature24286. [DOI] [PubMed] [Google Scholar]
  • 127(a).Lee L S L. Nucleic Acids Res. 1997;25:7–13. doi: 10.1093/nar/25.7.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127(b).Heiner C R. Nucleic Acids Res. 1997;25:7–13. doi: 10.1093/nar/25.22.4500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127(c).Benson S C. Nucleic Acids Res. 1997;25:7–13. [Google Scholar]
  • 127(d).Rosenblum B B. Nucleic Acids Res. 1997;25:7–13. doi: 10.1093/nar/25.19.3925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127(e).Menchen S M. Nucleic Acids Res. 1997;25:7–13. doi: 10.1093/nar/25.22.4500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127(f).Graham R J. Nucleic Acids Res. 1997;25:7–13. doi: 10.1093/nar/25.14.2816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127(g).Constantinescu A. Nucleic Acids Res. 1997;25:7–13. [Google Scholar]
  • 127(h).Upadhya K G. Nucleic Acids Res. 1997;25:7–13. doi: 10.1093/nar/25.14.2816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127(i).Stoesser G, Sterk P, Tuli MA, Stoehr PJ, Cameron GN. Nucleic Acids Res. 1997;25:7–13. doi: 10.1093/nar/25.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM. Science. 2005;309:1728–1732. doi: 10.1126/science.1117389. [DOI] [PubMed] [Google Scholar]
  • 129.Merriman B, R&D Team IT. Rothberg JM. ELECTROPHORESIS. 2012;33:3397–3417. doi: 10.1002/elps.201200424. [DOI] [PubMed] [Google Scholar]
  • 130.Streets AM, Huang Y. Biomicrofluidics. 2013;7:011302. doi: 10.1063/1.4789751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Braslavsky I, Hebert B, Kartalov E, Quake SR. Proc Natl Acad Sci USA. 2003;100:3960–3964. doi: 10.1073/pnas.0230489100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Bentley DR, Balasubramanian S, Swerdlow HP, et al. Nature. 2008;456:53–59. doi: 10.1038/nature07517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Margulies M, Egholm M, Altman WE, et al. Nature. 2005;437:376–380. doi: 10.1038/nature03959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Rothberg JM, Hinz W, Rearick TM, et al. Nature. 2011;475:348–352. doi: 10.1038/nature10242. [DOI] [PubMed] [Google Scholar]
  • 135.Venter JCA, M.D, Myers E W, Li P W, et al. Science. 2001;291:51. [Google Scholar]
  • 136.Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SBH, Hood LE. Nature. 1986;321:674–679. doi: 10.1038/321674a0. [DOI] [PubMed] [Google Scholar]
  • 137.Metzker ML. Nat Rev Genet. 2010;11:31–46. doi: 10.1038/nrg2626. [DOI] [PubMed] [Google Scholar]
  • 138.Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE. Anal Chem. 2011;83:4327–4341. doi: 10.1021/ac2010857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. Cell. 2013;155:27–38. doi: 10.1016/j.cell.2013.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Goodwin S, McPherson JD, McCombie WR. Nat Rev Genet. 2016;17:333–351. doi: 10.1038/nrg.2016.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Hindorff LA, Bonham VL, Brody LC, Ginoza MEC, Hutter CM, Manolio TA, Green ED. Nat Rev Genet. 2018;19:175–185. doi: 10.1038/nrg.2017.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Stark R, Grzelak M, Hadfield J. Nat Rev Genet. 2019;20:631–656. doi: 10.1038/s41576-019-0150-2. [DOI] [PubMed] [Google Scholar]
  • 143.Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Nat Rev Genet. 2019;20:235–248. doi: 10.1038/s41576-018-0092-0. [DOI] [PubMed] [Google Scholar]
  • 144.Ho SS, Urban AE, Mills RE. Nat Rev Genet. 2020;21:171–189. doi: 10.1038/s41576-019-0180-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Ramanathan M, Porter DF, Khavari PA. Nat Methods. 2019;16:225–234. doi: 10.1038/s41592-019-0330-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Wong FCK, Lo YMD. Annu Rev Med. 2016;67:419–432. doi: 10.1146/annurev-med-091014-115715. [DOI] [PubMed] [Google Scholar]
  • 147.Bianchi DW, Chiu RWK. N Engl J Med. 2018;379:464–473. doi: 10.1056/NEJMra1705345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Bayley H. Clin Chem. 2015;61:25–31. doi: 10.1373/clinchem.2014.223016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Quick J, Loman NJ, Duraffour S, et al. Nature. 2016;530:228–232. doi: 10.1038/nature16996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Rang FJ, Kloosterman WP, de Ridder J. Genome Biol. 2018;19:90. doi: 10.1186/s13059-018-1462-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Mostovoy Y, Levy-Sakin M, Lam J, Lam ET, Hastie AR, Marks P, Lee J, Chu C, Lin C, Džakula Ž, Cao H, Schlebusch SA, Giorda K, Schnall-Levin M, Wall JD, Kwok PY. Nat Methods. 2016;13:587–590. doi: 10.1038/nmeth.3865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Kuleshov V, Xie D, Chen R, Pushkarev D, Ma Z, Blauwkamp T, Kertesz M, Snyder M. Nat Biotechnol. 2014;32:261–266. doi: 10.1038/nbt.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Amini S, Pushkarev D, Christiansen L, Kostem E, Royce T, Turk C, Pignatelli N, Adey A, Kitzman JO, Vijayan K, Ronaghi M, Shendure J, Gunderson KL, Steemers FJ. Nat Genet. 2014;46:1343–1349. doi: 10.1038/ng.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Wu AR, Wang J, Streets AM, Huang Y. Annu Rev Anal Chem. 2017;10:439–462. doi: 10.1146/annurev-anchem-061516-045228. [DOI] [PubMed] [Google Scholar]
  • 155.Streets AM, Zhang X, Cao C, Pang Y, Wu X, Xiong L, Yang L, Fu Y, Zhao L, Tang F, Huang Y. Proc Natl Acad Sci USA. 2014;111:7048–7053. doi: 10.1073/pnas.1402030111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, Huang Y, Wang J. Mol Cell. 2019;73:130–142.e5. doi: 10.1016/j.molcel.2018.10.020. [DOI] [PubMed] [Google Scholar]
  • 157.Dang Y, Yan L, Hu B, Fan X, Ren Y, Li R, Lian Y, Yan J, Li Q, Zhang Y, Li M, Ren X, Huang J, Wu Y, Liu P, Wen L, Zhang C, Huang Y, Tang F, Qiao J. Genome Biol. 2016;17:130. doi: 10.1186/s13059-016-0991-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Di L, Fu Y, Sun Y, Li J, Liu L, Yao J, Wang G, Wu Y, Lao K, Lee RW, Zheng G, Xu J, Oh J, Wang D, Xie XS, Huang Y, Wang J. Proc Natl Acad Sci USA. 2020;117:2886–2893. doi: 10.1073/pnas.1919800117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Nat Methods. 2014;11:360–361. doi: 10.1038/nmeth.2892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Science. 2015;348:aaa6090. doi: 10.1126/science.aaa6090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J, Nolan GP, Bava FA, Deisseroth K. Science. 2018;361:eaat5691. doi: 10.1126/science.aat5691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SSF, Li C, Amamoto R, Peters DT, Turczyk BM, Marblestone AH, Inverso SA, Bernard A, Mali P, Rios X, Aach J, Church GM. Science. 2014;343:1360–1363. doi: 10.1126/science.1250212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Nordhoff E, Kirpekar F, Roepstorff P. Mass Spectrom Rev. 1996;15:67–138. doi: 10.1002/(SICI)1098-2787(1996)15:2<67::AID-MAS1>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  • 164.Xiong J, Yuan BF, Feng YQ. Chem Res Toxicol, 2019, 32: acs.chemrestox.9b00042
  • 165.Liu T, Ma CJ, Yuan BF, Feng YQ. Sci China Chem. 2018;61:381–392. [Google Scholar]
  • 166.Dor Y, Cedar H. Lancet. 2018;392:777–786. doi: 10.1016/S0140-6736(18)31268-6. [DOI] [PubMed] [Google Scholar]
  • 167.Qi C, Jiang H, Xiong J, Yuan B, Feng Y. Chin Chem Lett. 2019;30:553–557. [Google Scholar]
  • 168.Lan MD, Yuan BF, Feng YQ. Chin Chem Lett. 2019;30:1–6. [Google Scholar]
  • 169.Qi BL, Liu P, Wang QY, Cai WJ, Yuan BF, Feng YQ. TrAC Trends Anal Chem. 2014;59:121–132. [Google Scholar]
  • 170.Liu FL, Qi CB, Cheng QY, Ding JH, Yuan BF, Feng YQ. Anal Chem. 2020;92:2301–2309. doi: 10.1021/acs.analchem.9b05122. [DOI] [PubMed] [Google Scholar]
  • 171.Feng Y, Ma CJ, Ding JH, Qi CB, Xu XJ, Yuan BF, Feng YQ. Anal Chim Acta. 2020;1098:56–65. doi: 10.1016/j.aca.2019.11.016. [DOI] [PubMed] [Google Scholar]
  • 172.Jiang HP, Xiong J, Liu FL, Ma CJ, Tang XL, Yuan BF, Feng YQ. Chem Sci. 2018;9:4160–4167. doi: 10.1039/c7sc05472f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Cheng QY, Xiong J, Wang F, Yuan BF, Feng YQ. Chin Chem Lett. 2018;29:115–118. [Google Scholar]
  • 174.Zeng H, Qi CB, Liu T, Xiao HM, Cheng QY, Jiang HP, Yuan BF, Feng YQ. Anal Chem. 2017;89:4153–4160. doi: 10.1021/acs.analchem.7b00052. [DOI] [PubMed] [Google Scholar]
  • 175.Huang W, Lan MD, Qi CB, Zheng SJ, Wei SZ, Yuan BF, Feng YQ. Chem Sci. 2016;7:5495–5502. doi: 10.1039/c6sc01589a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Qi C, Ding J, Yuan B, Feng Y. Chin Chem Lett. 2019;30:1618–1626. [Google Scholar]
  • 177.Huber CG, Oberacher H. Mass Spectrom Rev. 2001;20:310–343. doi: 10.1002/mas.10011. [DOI] [PubMed] [Google Scholar]
  • 178.Ni J, Pomerantz SC, Rozenski J, Zhang Y, McCloskey JA. Anal Chem. 1996;68:1989–1999. doi: 10.1021/ac960270t. [DOI] [PubMed] [Google Scholar]
  • 179.Liu S, Wang Y. Chem Soc Rev. 2015;44:7829–7854. doi: 10.1039/c5cs00316d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Chen B, Yuan BF, Feng YQ. Anal Chem. 2019;91:743–756. doi: 10.1021/acs.analchem.8b04078. [DOI] [PubMed] [Google Scholar]
  • 181.Kolpashchikov DM. Chem Rev. 2010;110:4709–4723. doi: 10.1021/cr900323b. [DOI] [PubMed] [Google Scholar]
  • 182.Epstein JR, Biran I, Walt DR. Anal Chim Acta. 2002;469:3–36. [Google Scholar]
  • 183.Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. Chem Rev. 2013;113:6207–6233. doi: 10.1021/cr300362f. [DOI] [PubMed] [Google Scholar]
  • 184.Xue J, Chen F, Bai M, Cao X, Huang P, Zhao Y. Anal Chem. 2019;91:4696–4701. doi: 10.1021/acs.analchem.9b00089. [DOI] [PubMed] [Google Scholar]
  • 185.Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Chem Rev. 2015;115:10530–10574. doi: 10.1021/acs.chemrev.5b00321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Chem Rev. 2019;119:11631–11717. doi: 10.1021/acs.chemrev.9b00121. [DOI] [PubMed] [Google Scholar]
  • 187.Wu L, Qu X. Chem Soc Rev. 2015;44:2963–2997. doi: 10.1039/c4cs00370e. [DOI] [PubMed] [Google Scholar]
  • 188.Ma D, Liu T, Yao Q, Peng X. Sci China Chem. 2018;61:468–475. [Google Scholar]
  • 189.He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv Funct Mater. 2010;20:453–459. [Google Scholar]
  • 190.Pan W, Zhang T, Yang H, Diao W, Li N, Tang B. Anal Chem. 2013;85:10581–10588. doi: 10.1021/ac402700s. [DOI] [PubMed] [Google Scholar]
  • 191.Venkatesan N, Jun Seo Y, Hyean Kim B. Chem Soc Rev. 2008;37:648–663. doi: 10.1039/b705468h. [DOI] [PubMed] [Google Scholar]
  • 192.Lin Q, Ye X, Huang Z, Yang B, Fang X, Chen H, Kong J. Anal Chem. 2019;91:15694–15702. doi: 10.1021/acs.analchem.9b03861. [DOI] [PubMed] [Google Scholar]
  • 193.Yoshino Y, Sato Y, Nishizawa S. Anal Chem. 2019;91:14254–14260. doi: 10.1021/acs.analchem.9b01997. [DOI] [PubMed] [Google Scholar]
  • 194.Bai M, Chen F, Cao X, Zhao Y, Xue J, Yu X, Fan C, Zhao Y. Angew Chem Int Ed. 2020;59:13267–13272. doi: 10.1002/anie.202001598. [DOI] [PubMed] [Google Scholar]
  • 195.Shen Y, Zhang N, Sun Y, Zhao WW, Ye D, Xu JJ, Chen HY. ACS Appl Mater Interfaces. 2017;9:25107–25113. doi: 10.1021/acsami.7b05871. [DOI] [PubMed] [Google Scholar]
  • 196.Zou X, Shi Y, Zhu R, Han J, Han S. Anal Chem. 2019;91:15899–15907. doi: 10.1021/acs.analchem.9b04364. [DOI] [PubMed] [Google Scholar]
  • 197.Li N, Chang C, Pan W, Tang B. Angew Chem Int Ed. 2012;51:7426–7430. doi: 10.1002/anie.201203767. [DOI] [PubMed] [Google Scholar]
  • 198.Wu H, Chen TT, Wang XN, Ke Y, Jiang JH. Chem Sci. 2020;11:62–69. doi: 10.1039/c9sc03469b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Zhao J, Chu H, Zhao Y, Lu Y, Li L. J Am Chem Soc. 2019;141:7056–7062. doi: 10.1021/jacs.9b01931. [DOI] [PubMed] [Google Scholar]
  • 200.Raman CV, Krishnan KS. Nature. 1928;121:501–502. [Google Scholar]
  • 201.Fleischmann M, Hendra PJ, McQuillan AJ. Chem Phys Lett. 1974;26:163–166. [Google Scholar]
  • 202.Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. ACS Nano. 2020;14:28–117. doi: 10.1021/acsnano.9b04224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS. Appl Spectrosc. 2002;56:150–154. [Google Scholar]
  • 204.Chao J, Cao W, Su S, Weng L, Song S, Fan C, Wang L. J Mater Chem B. 2016;4:1757–1769. doi: 10.1039/c5tb02135a. [DOI] [PubMed] [Google Scholar]
  • 205.Kneipp J, Kneipp H, Kneipp K. Chem Soc Rev. 2008;37:1052–1060. doi: 10.1039/b708459p. [DOI] [PubMed] [Google Scholar]
  • 206.Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. Nano Lett. 2006;6:2225–2231. doi: 10.1021/nl061517x. [DOI] [PubMed] [Google Scholar]
  • 207.Kneipp J, Kneipp H, Rice WL, Kneipp K. Anal Chem. 2005;77:2381–2385. doi: 10.1021/ac050109v. [DOI] [PubMed] [Google Scholar]
  • 208.Wang Y, Li D, Li P, Wang W, Ren W, Dong S, Wang E. J Phys Chem C. 2007;111:16833–16839. [Google Scholar]
  • 209.Zhang P, Fu H, Du S, Wang F, Yang J, Cai W, Liu D. Anal Chem. 2019;91:15740–15747. doi: 10.1021/acs.analchem.9b03943. [DOI] [PubMed] [Google Scholar]
  • 210.Ma W, Sun M, Fu P, Li S, Xu L, Kuang H, Xu C. Adv Mater. 2017;29:1703410. doi: 10.1002/adma.201703410. [DOI] [PubMed] [Google Scholar]
  • 211.Zhou W, Li Q, Liu H, Yang J, Liu D. ACS Nano. 2017;11:3532–3541. doi: 10.1021/acsnano.7b00531. [DOI] [PubMed] [Google Scholar]
  • 212.Xu L, Gao Y, Kuang H, Liz-Marzán LM, Xu C. Angew Chem Int Ed. 2018;57:10544–10548. doi: 10.1002/anie.201805640. [DOI] [PubMed] [Google Scholar]
  • 213.Liu H, Li Q, Li M, Ma S, Liu D. Anal Chem. 2017;89:4776–4780. doi: 10.1021/acs.analchem.7b00461. [DOI] [PubMed] [Google Scholar]
  • 214.Wang HN, Register JK, Fales AM, Gandra N, Cho EH, Boico A, Palmer GM, Klitzman B, Vo-Dinh T. Nano Res. 2018;11:4005–4016. [Google Scholar]
  • 215.Bettazzi F, Hamid-Asl E, Esposito CL, Quintavalle C, Formisano N, Laschi S, Catuogno S, Iaboni M, Marrazza G, Mascini M, Cerchia L, De Franciscis V, Condorelli G, Palchetti I. Anal Bioanal Chem. 2013;405:1025–1034. doi: 10.1007/s00216-012-6476-7. [DOI] [PubMed] [Google Scholar]
  • 216.Lee AC, Dai Z, Chen B, Wu H, Wang J, Zhang A, Zhang L, Lim TM, Lin Y. Anal Chem. 2008;80:9402–9410. doi: 10.1021/ac801263r. [DOI] [PubMed] [Google Scholar]
  • 217.Islam MN, Gopalan V, Haque MH, Masud MK, Hossain MSA, Yamauchi Y, Nguyen NT, Lam AKY, Shiddiky MJA. Biosens Bioelectron. 2017;98:227–233. doi: 10.1016/j.bios.2017.06.051. [DOI] [PubMed] [Google Scholar]
  • 218.Kilic T, Topkaya SN, Ozkan Ariksoysal D, Ozsoz M, Ballar P, Erac Y, Gozen O. Biosens Bioelectron. 2012;38:195–201. doi: 10.1016/j.bios.2012.05.031. [DOI] [PubMed] [Google Scholar]
  • 219.Won BY, Shin S, Fu R, Shin SC, Cho DY, Park HG. Biosens Bioelectron. 2011;30:73–77. doi: 10.1016/j.bios.2011.08.029. [DOI] [PubMed] [Google Scholar]
  • 220.Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M. Anal Biochem. 2011;417:73–79. doi: 10.1016/j.ab.2011.05.034. [DOI] [PubMed] [Google Scholar]
  • 221.Pal S, Alocilja EC. Biosens Bioelectron. 2010;26:1624–1630. doi: 10.1016/j.bios.2010.08.035. [DOI] [PubMed] [Google Scholar]
  • 222.Lau HY, Wu H, Wee EJH, Trau M, Wang Y, Botella JR. Sci Rep. 2017;7:38896. doi: 10.1038/srep38896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Henihan G, Schulze H, Corrigan DK, Giraud G, Terry JG, Hardie A, Campbell CJ, Walton AJ, Crain J, Pethig R, Templeton KE, Mount AR, Bachmann TT. Biosens Bioelectron. 2016;81:487–494. doi: 10.1016/j.bios.2016.03.037. [DOI] [PubMed] [Google Scholar]
  • 224.Ahmed MU, Nahar S, Safavieh M, Zourob M. Analyst. 2013;138:907–915. doi: 10.1039/c2an36153a. [DOI] [PubMed] [Google Scholar]
  • 225.de la Escosura-Muniz A, Baptista-Pires L, Serrano L, Altet L, Francino O, Sánchez A, Merkoçi A. Small. 2016;12:205–213. doi: 10.1002/smll.201502350. [DOI] [PubMed] [Google Scholar]
  • 226.Manzanares-Palenzuela CL, Martín-Clemente JP, Lobo-Castañón MJ, López-Ruiz B. Talanta. 2017;164:261–267. doi: 10.1016/j.talanta.2016.11.040. [DOI] [PubMed] [Google Scholar]
  • 227.del Río JS, Svobodova M, Bustos P, Conejeros P, O’Sullivan CK. Anal Bioanal Chem. 2016;408:8611–8620. doi: 10.1007/s00216-016-9639-0. [DOI] [PubMed] [Google Scholar]
  • 228.Barrios Eguiluz KI, Salazar-Banda GR, Funes-Huacca ME, Alberice JV, Carrilho E, Spinola Machado SA, Avaca LA. Analyst. 2009;134:314–319. doi: 10.1039/b809080g. [DOI] [PubMed] [Google Scholar]
  • 229.Paniel N, Baudart J. Talanta. 2013;115:133–142. doi: 10.1016/j.talanta.2013.04.050. [DOI] [PubMed] [Google Scholar]
  • 230.Huffnagle IM, Joyner A, Rumble B, Hysa S, Rudel D, Hvastkovs EG. Anal Chem. 2014;86:8418–8424. doi: 10.1021/ac502007g. [DOI] [PubMed] [Google Scholar]
  • 231.Cao Y, Hjort M, Chen H, Birey F, Leal-Ortiz SA, Han CM, Santiago JG, Paşca SP, Wu JC, Melosh NA. Proc Natl Acad Sci USA. 2017;114:E1866–E1874. doi: 10.1073/pnas.1615375114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Liu J, Zhou H, Xu JJ, Chen HY. Analyst. 2012;137:3940–3945. doi: 10.1039/c2an35463b. [DOI] [PubMed] [Google Scholar]
  • 233.Zhang Y, Xu G, Lian G, Luo F, Xie Q, Lin Z, Chen G. Biosens Bioelectron. 2020;147:111789. doi: 10.1016/j.bios.2019.111789. [DOI] [PubMed] [Google Scholar]
  • 234.Wu MS, Qian G, Xu JJ, Chen HY. Anal Chem. 2012;84:5407–5414. doi: 10.1021/ac3009912. [DOI] [PubMed] [Google Scholar]
  • 235.Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Anal Chem. 2019;91:12581–12586. doi: 10.1021/acs.analchem.9b03694. [DOI] [PubMed] [Google Scholar]
  • 236.McKeague M, McConnell EM, Cruz-Toledo J, Bernard ED, Pach A, Mastronardi E, Zhang X, Beking M, Francis T, Giamberardino A, Cabecinha A, Ruscito A, Aranda-Rodriguez R, Dumontier M, De-Rosa MC. J Mol Evol. 2015;81:150–161. doi: 10.1007/s00239-015-9708-6. [DOI] [PubMed] [Google Scholar]
  • 237.Savory N, Abe K, Sode K, Ikebukuro K. Biosens Bioelectron. 2010;26:1386–1391. doi: 10.1016/j.bios.2010.07.057. [DOI] [PubMed] [Google Scholar]
  • 238.Hamula CLA, Zhang H, Li F, Wang Z, Chris Le X, Li XF. TrAC Trends Anal Chem. 2011;30:1587–1597. doi: 10.1016/j.trac.2011.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Mascini M, Palchetti I, Tombelli S. Angew Chem Int Ed. 2012;51:1316–1332. doi: 10.1002/anie.201006630. [DOI] [PubMed] [Google Scholar]
  • 240.Elenko MP, Szostak JW, van Oijen AM. J Am Chem Soc. 2009;131:9866–9867. doi: 10.1021/ja901880v. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Zhao Y, Xu D, Tan W. Integr Biol. 2017;9:188–205. doi: 10.1039/c6ib00239k. [DOI] [PubMed] [Google Scholar]
  • 242.Wengerter BC, Katakowski JA, Rosenberg JM, Park CG, Almo SC, Palliser D, Levy M. Mol Ther. 2014;22:1375–1387. doi: 10.1038/mt.2014.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Wang J, Wei Y, Hu X, Fang YY, Li X, Liu J, Wang S, Yuan Q. J Am Chem Soc. 2015;137:10576–10584. doi: 10.1021/jacs.5b04894. [DOI] [PubMed] [Google Scholar]
  • 244.Mallikaratchy PR, Ruggiero A, Gardner JR, Kuryavyi V, Maguire WF, Heaney ML, McDevitt MR, Patel DJ, Scheinberg DA. Nucleic Acids Res. 2011;39:2458–2469. doi: 10.1093/nar/gkq996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Malik MT, O’Toole MG, Casson LK, Thomas SD, Bardi GT, Reyes-Reyes EM, Ng CK, Kang KA, Bates PJ. Oncotarget. 2015;6:22270–22281. doi: 10.18632/oncotarget.4207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Sprangers AJ, Hao L, Banga RJ, Mirkin CA. Small. 2017;13:1602753. doi: 10.1002/smll.201602753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Lee J, Lee KH, Jeon J, Dragulescu-Andrasi A, Xiao F, Rao J. ACS Chem Biol. 2010;5:1065–1074. doi: 10.1021/cb1001894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Wang X, Hoshika S, Peterson RJ, Kim MJ, Benner SA, Kahn JD. ACS Synth Biol. 2017;6:782–792. doi: 10.1021/acssynbio.6b00224. [DOI] [PubMed] [Google Scholar]
  • 249.Matsunaga KI, Kimoto M, Hanson C, Sanford M, Young HA, Hirao I. Sci Rep. 2016;5:18478. doi: 10.1038/srep18478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Zhu G, Niu G, Chen X. Bioconjugate Chem. 2015;26:2186–2197. doi: 10.1021/acs.bioconjchem.5b00291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Breaker RR, Joyce GF. Chem Biol. 1994;1:223–229. doi: 10.1016/1074-5521(94)90014-0. [DOI] [PubMed] [Google Scholar]
  • 252.Lan T, Furuya K, Lu Y. Chem Commun. 2010;46:3896–3898. doi: 10.1039/b926910j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Zhou W, Saran R, Liu J. Chem Rev. 2017;117:8272–8325. doi: 10.1021/acs.chemrev.7b00063. [DOI] [PubMed] [Google Scholar]
  • 254.Li J, Lu Y. J Am Chem Soc. 2000;122:10466–10467. [Google Scholar]
  • 255.Lake RJ, Yang Z, Zhang JJ, Lu Y. Acc Chem Res. 2019;52:3275–3286. doi: 10.1021/acs.accounts.9b00419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y. Proc Natl Acad Sci USA. 2007;104:2056–2061. doi: 10.1073/pnas.0607875104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Torabi SF, Wu P, McGhee CE, Chen L, Hwang K, Zheng N, Cheng J, Lu Y. Proc Natl Acad Sci USA. 2015;112:5903–5908. doi: 10.1073/pnas.1420361112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Huang PJJ, Vazin M, Lin JJ, Pautler R, Liu J. ACS Sens. 2016;1:732–738. [Google Scholar]
  • 259.He Y, Chen D, Huang PJJ, Zhou Y, Ma L, Xu K, Yang R, Liu J. Nucleic Acids Res. 2018;46:10262–10271. doi: 10.1093/nar/gky807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Huang PJJ, Liu J. Nucleic Acids Res. 2015;43:6125–6133. doi: 10.1093/nar/gkv519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261.Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin D. Angew Chem Int Ed. 2008;47:4346–4350. doi: 10.1002/anie.200800960. [DOI] [PubMed] [Google Scholar]
  • 262.Huang P-J, Rochambeau D, Sleiman HF, Liu J. Angew Chem Int Ed. 2020;59:3573–3577. doi: 10.1002/anie.201915675. [DOI] [PubMed] [Google Scholar]
  • 263.Roth A, Breaker RR. Proc Natl Acad Sci USA. 1998;95:6027–6031. doi: 10.1073/pnas.95.11.6027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 264.Shen Z, Wu Z, Chang D, Zhang W, Tram K, Lee C, Kim P, Salena BJ, Li Y. Angew Chem Int Ed. 2016;55:2431–2434. doi: 10.1002/anie.201510125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Ali MM, Aguirre SD, Lazim H, Li Y. Angew Chem Int Ed. 2011;50:3751–3754. doi: 10.1002/anie.201100477. [DOI] [PubMed] [Google Scholar]
  • 266.Travascio P, Li Y, Sen D. Chem Biol. 1998;5:505–517. doi: 10.1016/s1074-5521(98)90006-0. [DOI] [PubMed] [Google Scholar]
  • 267.Peng D, Li Y, Huang Z, Liang RP, Qiu JD, Liu J. Anal Chem. 2019;91:11403–11408. doi: 10.1021/acs.analchem.9b02759. [DOI] [PubMed] [Google Scholar]
  • 268.Carmi N, Balkhi SR, Breaker RR. Proc Natl Acad Sci USA. 1998;95:2233–2237. doi: 10.1073/pnas.95.5.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 269.Gu H, Furukawa K, Weinberg Z, Berenson DF, Breaker RR. J Am Chem Soc. 2013;135:9121–9129. doi: 10.1021/ja403585e. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Chandrasekar J, Silverman SK. Proc Natl Acad Sci USA. 2013;110:5315–5320. doi: 10.1073/pnas.1221946110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Cuenoud B, Szostak JW. Nature. 1995;375:611–614. doi: 10.1038/375611a0. [DOI] [PubMed] [Google Scholar]
  • 272.Famulok M, Hartig JS, Mayer G. Chem Rev. 2007;107:3715–3743. doi: 10.1021/cr0306743. [DOI] [PubMed] [Google Scholar]
  • 273.Seeman NC. Nano Lett. 2020;20:1477–1478. doi: 10.1021/acs.nanolett.0c00325. [DOI] [PubMed] [Google Scholar]
  • 274.Seeman NC. Annu Rev Biophys Biomol Struct. 1998;27:225–248. doi: 10.1146/annurev.biophys.27.1.225. [DOI] [PubMed] [Google Scholar]
  • 275.Seeman NC. Mol Biotechnol. 2007;37:246–257. doi: 10.1007/s12033-007-0059-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Rothemund PWK. Nature. 2006;440:297–302. doi: 10.1038/nature04586. [DOI] [PubMed] [Google Scholar]
  • 277.Wei B, Dai M, Yin P. Nature. 2012;485:623–626. doi: 10.1038/nature11075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278.Ong LL, Hanikel N, Yaghi OK, Grun C, Strauss MT, Bron P, Lai-Kee-Him J, Schueder F, Wang B, Wang P, Kishi JY, Myhrvold C, Zhu A, Jungmann R, Bellot G, Ke Y, Yin P. Nature. 2017;552:72–77. doi: 10.1038/nature24648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Zhang DY, Seelig G. Nat Chem. 2011;3:103–113. doi: 10.1038/nchem.957. [DOI] [PubMed] [Google Scholar]
  • 280.Ijäs H, Nummelin S, Shen B, Kostiainen M, Linko V. IJMS. 2018;19:2114. doi: 10.3390/ijms19072114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 281.Bath J, Turberfield AJ. Nat Nanotech. 2007;2:275–284. doi: 10.1038/nnano.2007.104. [DOI] [PubMed] [Google Scholar]
  • 282.Sparvath SL, Geary CW, Andersen ES. Methods Mol Biol. 2017;1500:51–80. doi: 10.1007/978-1-4939-6454-3_5. [DOI] [PubMed] [Google Scholar]
  • 283.Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, Jaeger L. Science. 2004;306:2068–2072. doi: 10.1126/science.1104686. [DOI] [PubMed] [Google Scholar]
  • 284.Guo P. Nat Nanotech. 2010;5:833–842. doi: 10.1038/nnano.2010.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 285.Geary C, Rothemund PWK, Andersen ES. Science. 2014;345:799–804. doi: 10.1126/science.1253920. [DOI] [PubMed] [Google Scholar]
  • 286.Bastings MMC, Anastassacos FM, Ponnuswamy N, Leifer FG, Cuneo G, Lin C, Ingber DE, Ryu JH, Shih WM. Nano Lett. 2018;18:3557–3564. doi: 10.1021/acs.nanolett.8b00660. [DOI] [PubMed] [Google Scholar]
  • 287.Delebecque CJ, Lindner AB, Silver PA, Aldaye FA. Science. 2011;333:470–474. doi: 10.1126/science.1206938. [DOI] [PubMed] [Google Scholar]
  • 288.Han D, Qi X, Myhrvold C, Wang B, Dai M, Jiang S, Bates M, Liu Y, An B, Zhang F, Yan H, Yin P. Science. 2017;358:eaao2648. doi: 10.1126/science.aao2648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Monferrer A, Zhang D, Lushnikov AJ, Hermann T. Nat Commun. 2019;10:608. doi: 10.1038/s41467-019-08521-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Xia K, Shen J, Li Q, Fan C, Gu H. ACS Nano. 2020;14:1319–1337. doi: 10.1021/acsnano.9b09163. [DOI] [PubMed] [Google Scholar]
  • 291.Schueder F, Lara-Gutiérrez J, Beliveau BJ, Saka SK, Sasaki HM, Woehrstein JB, Strauss MT, Grabmayr H, Yin P, Jungmann R. Nat Commun. 2017;8:2090. doi: 10.1038/s41467-017-02028-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 292.Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R. Nat Protoc. 2017;12:1198–1228. doi: 10.1038/nprot.2017.024. [DOI] [PubMed] [Google Scholar]
  • 293.Rinker S, Ke Y, Liu Y, Chhabra R, Yan H. Nat Nanotech. 2008;3:418–422. doi: 10.1038/nnano.2008.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 294.Kwon PS, Ren S, Kwon SJ, Kizer ME, Kuo L, Xie M, Zhu D, Zhou F, Zhang F, Kim D, Fraser K, Kramer LD, Seeman NC, Dordick JS, Linhardt RJ, Chao J, Wang X. Nat Chem. 2020;12:26–35. doi: 10.1038/s41557-019-0369-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 295.Yang Y, Zhang R, Fan C. Trends Chem. 2020;2:137–147. [Google Scholar]
  • 296.Douglas SM, Bachelet I, Church GM. Science. 2012;335:831–834. doi: 10.1126/science.1214081. [DOI] [PubMed] [Google Scholar]
  • 297.Funke JJ, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H. Sci Adv. 2016;2:e1600974. doi: 10.1126/sciadv.1600974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.Bhatia D, Arumugam S, Nasilowski M, Joshi H, Wunder C, Chambon V, Prakash V, Grazon C, Nadal B, Maiti PK, Johannes L, Dubertret B, Krishnan Y. Nat Nanotech. 2016;11:1112–1119. doi: 10.1038/nnano.2016.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299.Sun L, Gao Y, Wang Y, Wei Q, Shi J, Chen N, Li D, Fan C. Chem Sci. 2018;9:5967–5975. doi: 10.1039/c8sc00367j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 300.Wang P, Rahman MA, Zhao Z, Weiss K, Zhang C, Chen Z, Hurwitz SJ, Chen ZG, Shin DM, Ke Y. J Am Chem Soc. 2018;140:2478–2484. doi: 10.1021/jacs.7b09024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z, Wang H, Tan W. J Am Chem Soc. 2008;130:11268–11269. doi: 10.1021/ja804119s. [DOI] [PubMed] [Google Scholar]
  • 302.Wilson BD, Hariri AA, Thompson IAP, Eisenstein M, Soh HT. Nat Commun. 2019;10:5079. doi: 10.1038/s41467-019-13137-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 303.Xiong Y, Zhang J, Yang Z, Mou Q, Ma Y, Xiong Y, Lu Y. J Am Chem Soc. 2020;142:207–213. doi: 10.1021/jacs.9b09211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 304.Yang L, Meng L, Song J, Xiao Y, Wang R, Kang H, Han D. Chem Sci. 2019;10:7466–7471. doi: 10.1039/c9sc02693b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.Wu R, Karunanayake Mudiyanselage APKK, Shafiei F, Zhao B, Bagheri Y, Yu Q, McAuliffe K, Ren K, You M. Angew Chem Int Ed. 2019;58:18271–18275. doi: 10.1002/anie.201911799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 306.Cha TG, Baker BA, Sauffer MD, Salgado J, Jaroch D, Rickus JL, Porterfield DM, Choi JH. ACS Nano. 2011;5:4236–4244. doi: 10.1021/nn201323h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 307.Wang W, Yang Q, Du Y, Zhou X, Du X, Wu Q, Lin L, Song Y, Li F, Yang C, Tan W. Angew Chem Int Ed. 2020;59:2628–2633. doi: 10.1002/anie.201910555. [DOI] [PubMed] [Google Scholar]
  • 308.Samanta D, Ebrahimi SB, Mirkin CA. Adv Mater. 2020;32:1901743. doi: 10.1002/adma.201901743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 309.Zhu Z, Wu C, Liu H, Zou Y, Zhang X, Kang H, Yang C, Tan W. Angew Chem Int Ed. 2010;49:1052–1056. doi: 10.1002/anie.200905570. [DOI] [PubMed] [Google Scholar]
  • 310.Zeng Y, Ren J, Shen A, Hu J. ACS Appl Mater Interfaces. 2016;8:27772–27778. doi: 10.1021/acsami.6b09722. [DOI] [PubMed] [Google Scholar]
  • 311.Li Y, Fang Q, Miao X, Zhang X, Zhao Y, Yan J, Zhang Y, Wu R, Nie B, Hirtz M, Liu J. ACS Sens. 2019;4:2605–2614. doi: 10.1021/acssensors.9b00604. [DOI] [PubMed] [Google Scholar]
  • 312.Fu Q, Zhu R, Song J, Yang H, Chen X. Adv Mater. 2018;31:1805875. doi: 10.1002/adma.201805875. [DOI] [PubMed] [Google Scholar]
  • 313.Bamrungsap S, Chen T, Shukoor MI, Chen Z, Sefah K, Chen Y, Tan W. ACS Nano. 2012;6:3974–3981. doi: 10.1021/nn3002328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 314.Ma W, Xu L, Wang L, Kuang H, Xu C. Biosens Bioelectron. 2016;79:220–236. doi: 10.1016/j.bios.2015.12.021. [DOI] [PubMed] [Google Scholar]
  • 315.Tang L, Li S, Han F, Liu L, Xu L, Ma W, Kuang H, Li A, Wang L, Xu C. Biosens Bioelectron. 2015;71:7–12. doi: 10.1016/j.bios.2015.04.013. [DOI] [PubMed] [Google Scholar]
  • 316.Xu Z, Xu L, Liz-Marzán LM, Ma W, Kotov NA, Wang L, Kuang H, Xu C. Adv Opt Mater. 2013;1:626–630. [Google Scholar]
  • 317.Fu P, Sun M, Xu L, Wu X, Liu L, Kuang H, Song S, Xu C. Nanoscale. 2016;8:15008–15015. doi: 10.1039/c6nr04086a. [DOI] [PubMed] [Google Scholar]
  • 318.Tang L, Li S, Xu L, Ma W, Kuang H, Wang L, Xu C. ACS Appl Mater Interfaces. 2015;7:12708–12712. doi: 10.1021/acsami.5b01259. [DOI] [PubMed] [Google Scholar]
  • 319.Gao R, Xu L, Hao C, Xu C, Kuang H. Angew Chem Int Ed. 2019;58:3913–3917. doi: 10.1002/anie.201814282. [DOI] [PubMed] [Google Scholar]
  • 320.Zhao Y, Xu L, Ma W, Wang L, Kuang H, Xu C, Kotov NA. Nano Lett. 2014;14:3908–3913. doi: 10.1021/nl501166m. [DOI] [PubMed] [Google Scholar]
  • 321.Li S, Xu L, Ma W, Wu X, Sun M, Kuang H, Wang L, Kotov NA, Xu C. J Am Chem Soc. 2016;138:306–312. doi: 10.1021/jacs.5b10309. [DOI] [PubMed] [Google Scholar]
  • 322.Wu X, Xu L, Ma W, Liu L, Kuang H, Kotov NA, Xu C. Adv Mater. 2016;28:5907–5915. doi: 10.1002/adma.201601261. [DOI] [PubMed] [Google Scholar]
  • 323.Ma W, Fu P, Sun M, Xu L, Kuang H, Xu C. J Am Chem Soc. 2017;139:11752–11759. doi: 10.1021/jacs.7b03617. [DOI] [PubMed] [Google Scholar]
  • 324.Dewar JM, Walter JC. Nat Rev Mol Cell Biol. 2017;18:507–516. doi: 10.1038/nrm.2017.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 325.Pilié PG, Tang C, Mills GB, Yap TA. Nat Rev Clin Oncol. 2019;16:81–104. doi: 10.1038/s41571-018-0114-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 326.Nong J, Gong Y, Guan Y, Yi X, Yi Y, Chang L, Yang L, Lv J, Guo Z, Jia H, Chu Y, Liu T, Chen M, Byers L, Roarty E, Lam VK, Papadimitrakopoulou VA, Wistuba I, Heymach JV, Glisson B, Liao Z, Lee JJ, Futreal PA, Zhang S, Xia X, Zhang J, Wang J. Nat Commun. 2018;9:3114. doi: 10.1038/s41467-018-05327-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 327.Park BH, Oh SJ, Jung JH, Choi G, Seo JH, Kim DH, Lee EY, Seo TS. Biosens Bioelectron. 2017;91:334–340. doi: 10.1016/j.bios.2016.11.063. [DOI] [PubMed] [Google Scholar]
  • 328.Liu S, Jiang Q, Wang Y, Ding B. Adv Healthcare Mater. 2019;8:1801658. doi: 10.1002/adhm.201801658. [DOI] [PubMed] [Google Scholar]
  • 329.Li M, Tian J, Al-Tamimi M, Shen W. Angew Chem Int Ed. 2012;51:5497–5501. doi: 10.1002/anie.201201822. [DOI] [PubMed] [Google Scholar]
  • 330.Ansari MIH, Hassan S, Qurashi A, Khanday FA. Biosens Bioelectron. 2016;85:247–260. doi: 10.1016/j.bios.2016.05.009. [DOI] [PubMed] [Google Scholar]
  • 331.Ahrberg CD, Manz A, Chung BG. Lab Chip. 2016;16:3866–3884. doi: 10.1039/c6lc00984k. [DOI] [PubMed] [Google Scholar]
  • 332.Csordas A, Gerdon A, Adams J, Qian J, Oh S, Xiao Y, Soh H. Angew Chem Int Ed. 2010;49:355–358. doi: 10.1002/anie.200904846. [DOI] [PubMed] [Google Scholar]
  • 333.Li N, Ma J, Guarnera MA, Fang HB, Cai L, Jiang F. J Cancer Res Clin Oncol. 2014;140:145–150. doi: 10.1007/s00432-013-1555-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 334.Yin J, Hu J, Sun J, Wang B, Mu Y. Analyst. 2019;144:7032–7040. doi: 10.1039/c9an01067j. [DOI] [PubMed] [Google Scholar]
  • 335.Nikam C, Kazi M, Nair C, Jaggannath M, M M Ž, R V, Shetty A, Rodrigues C. Int J Mycobacteriology. 2014;3:205–210. doi: 10.1016/j.ijmyco.2014.04.003. [DOI] [PubMed] [Google Scholar]
  • 336.Dobnik D, Štebih D, Blejec A, Morisset D, Žel J. Sci Rep. 2016;6:35451. doi: 10.1038/srep35451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 337.Fermér C, Nilsson P, Larhed M. Eur J Pharmaceutical Sci. 2003;18:129–132. doi: 10.1016/s0928-0987(02)00252-x. [DOI] [PubMed] [Google Scholar]
  • 338.Hurth C, Yang J, Barrett M, Brooks C, Nordquist A, Smith S, Zenhausern F. Biomed Microdevices. 2014;16:905–914. doi: 10.1007/s10544-014-9895-8. [DOI] [PubMed] [Google Scholar]
  • 339.Sposito A, Hoang V, DeVoe DL. Lab Chip. 2016;16:3524–3531. doi: 10.1039/c6lc00711b. [DOI] [PubMed] [Google Scholar]
  • 340.Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, Kop JA, Owens MR, Rodgers R, Banada P, Safi H, Blakemore R, Lan NTN, Jones-López EC, Levi M, Burday M, Ayakaka I, Mugerwa RD, McMillan B, Winn-Deen E, Christel L, Dailey P, Perkins MD, Persing DH, Alland D. J Clin Microbiol. 2010;48:229–237. doi: 10.1128/JCM.01463-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 341.Hatch AC, Ray T, Lintecum K, Youngbull C. Lab Chip. 2014;14:562–568. doi: 10.1039/c3lc51236c. [DOI] [PubMed] [Google Scholar]
  • 342.Li TJ, Chang CM, Chang PY, Chuang YC, Huang CC, Su WC, Shieh DB. NPG Asia Mater. 2016;8:e277. [Google Scholar]
  • 343.Adams NM, Gabella WE, Hardcastle AN, Haselton FR. Anal Chem. 2017;89:728–735. doi: 10.1021/acs.analchem.6b03291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 344.Hudecova I. Clin Biochem. 2015;48:948–956. doi: 10.1016/j.clinbiochem.2015.03.015. [DOI] [PubMed] [Google Scholar]
  • 345.Huggett JF, Whale A. Clin Chem. 2013;59:1691–1693. doi: 10.1373/clinchem.2013.214742. [DOI] [PubMed] [Google Scholar]
  • 346.Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W, Yu R, Xiao B, Guo J. J Mol Med. 2018;96:85–96. doi: 10.1007/s00109-017-1600-y. [DOI] [PubMed] [Google Scholar]
  • 347.Gou T, Hu J, Wu W, Ding X, Zhou S, Fang W, Mu Y. Biosens Bioelectron. 2018;120:144–152. doi: 10.1016/j.bios.2018.08.030. [DOI] [PubMed] [Google Scholar]
  • 348.Zhou S, Gou T, Hu J, Wu W, Ding X, Fang W, Hu Z, Mu Y. Biosens Bioelectron. 2019;128:151–158. doi: 10.1016/j.bios.2018.12.055. [DOI] [PubMed] [Google Scholar]
  • 349.Zhang L, Ding B, Chen Q, Feng Q, Lin L, Sun J. TrAC Trends Anal Chem. 2017;94:106–116. [Google Scholar]
  • 350.Yin J, Suo Y, Zou Z, Sun J, Zhang S, Wang B, Xu Y, Darland D, Zhao JX, Mu Y. Lab Chip. 2019;19:2769–2785. doi: 10.1039/c9lc00389d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 351.Sayad A, Ibrahim F, Mukim Uddin S, Cho J, Madou M, Thong KL. Biosens Bioelectron. 2018;100:96–104. doi: 10.1016/j.bios.2017.08.060. [DOI] [PubMed] [Google Scholar]
  • 352.He X, Wang S, Liu Y, Wang X. Sci China Chem. 2019;62:1064–1071. [Google Scholar]
  • 353.Song J, Mauk MG, Hackett BA, Cherry S, Bau HH, Liu C. Anal Chem. 2016;88:7289–7294. doi: 10.1021/acs.analchem.6b01632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 354.Yeh EC, Fu CC, Hu L, Thakur R, Feng J, Lee LP. Sci Adv. 2017;3:e1501645. doi: 10.1126/sciadv.1501645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 355.Zhang L, Tian F, Liu C, Feng Q, Ma T, Zhao Z, Li T, Jiang X, Sun J. Lab Chip. 2018;18:610–619. doi: 10.1039/c7lc01234a. [DOI] [PubMed] [Google Scholar]
  • 356.Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C, Urban GA. Adv Mater. 2019;31:1905311. doi: 10.1002/adma.201905311. [DOI] [PubMed] [Google Scholar]
  • 357.Stumpf F, Schwemmer F, Hutzenlaub T, Baumann D, Strohmeier O, Dingemanns G, Simons G, Sager C, Plobner L, von Stetten F, Zengerle R, Mark D. Lab Chip. 2016;16:199–207. doi: 10.1039/c5lc00871a. [DOI] [PubMed] [Google Scholar]
  • 358.Liu D, Wang J, Wu L, Huang Y, Zhang Y, Zhu M, Wang Y, Zhu Z, Yang C. TrAC Trends Anal Chem. 2020;122:115701. [Google Scholar]
  • 359.Xiang Y, Lu Y. Nat Chem. 2011;3:697–703. doi: 10.1038/nchem.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 360.Yan L, Zhu Z, Zou Y, Huang Y, Liu D, Jia S, Xu D, Wu M, Zhou Y, Zhou S, Yang CJ. J Am Chem Soc. 2013;135:3748–3751. doi: 10.1021/ja3114714. [DOI] [PubMed] [Google Scholar]
  • 361.Xu J, Jiang B, Xie J, Xiang Y, Yuan R, Chai Y. Chem Commun. 2012;48:10733–10735. doi: 10.1039/c2cc35941c. [DOI] [PubMed] [Google Scholar]
  • 362.Si Y, Li L, Wang N, Zheng J, Yang R, Li J. ACS Appl Mater Interfaces. 2019;11:7792–7799. doi: 10.1021/acsami.8b21727. [DOI] [PubMed] [Google Scholar]
  • 363.Zhu Z, Guan Z, Liu D, Jia S, Li J, Lei Z, Lin S, Ji T, Tian Z, Yang CJ. Angew Chem Int Ed. 2015;54:10448–10453. doi: 10.1002/anie.201503963. [DOI] [PubMed] [Google Scholar]
  • 364.Shi L, Lei J, Zhang B, Li B, Yang CJ, Jin Y. ACS Appl Mater Interfaces. 2018;10:12526–12533. doi: 10.1021/acsami.8b02551. [DOI] [PubMed] [Google Scholar]
  • 365.Toumazou C, Shepherd LM, Reed SC, Chen GI, Patel A, Garner DM, Wang CJA, Ou CP, Amin-Desai K, Athanasiou P, Bai H, Brizido IMQ, Caldwell B, Coomber-Alford D, Georgiou P, Jordan KS, Joyce JC, La Mura M, Morley D, Sathyavruthan S, Temelso S, Thomas RE, Zhang L. Nat Methods. 2013;10:641–646. doi: 10.1038/nmeth.2520. [DOI] [PubMed] [Google Scholar]
  • 366.Xie S, Yuan Y, Song Y, Zhuo Y, Li T, Chai Y, Yuan R. Chem Commun. 2014;50:15932–15935. doi: 10.1039/c4cc06449f. [DOI] [PubMed] [Google Scholar]
  • 367.Zhou W, Hu K, Kwee S, Tang L, Wang Z, Xia J, Li XJ. Anal Chem. 2020;92:2739–2747. doi: 10.1021/acs.analchem.9b04996. [DOI] [PubMed] [Google Scholar]
  • 368.Wang A, Ma X, Ye Y, Luo F, Guo L, Qiu B, Lin Z, Chen G. Anal Chem. 2018;90:1087–1091. doi: 10.1021/acs.analchem.7b03823. [DOI] [PubMed] [Google Scholar]
  • 369.Yu Z, Tang Y, Cai G, Ren R, Tang D. Anal Chem. 2019;91:1222–1226. doi: 10.1021/acs.analchem.8b04635. [DOI] [PubMed] [Google Scholar]
  • 370.Wang Q, Liu F, Yang X, Wang K, Liu P, Liu J, Huang J, Wang H. Sens Actuat B-Chem. 2013;186:515–520. [Google Scholar]
  • 371.Wang S, Ge L, Song X, Yan M, Ge S, Yu J, Zeng F. Analyst. 2012;137:3821–3827. doi: 10.1039/c2an35266d. [DOI] [PubMed] [Google Scholar]
  • 372.West PW. Ind Eng Chem Anal Ed. 1945;17:740–741. [Google Scholar]
  • 373.Consden R, Gordon AH, Martin AJP. Biochem J. 1944;38:224–232. doi: 10.1042/bj0380224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 374.Martinez AW, Phillips ST, Whitesides GM. Proc Natl Acad Sci USA. 2008;105:19606–19611. doi: 10.1073/pnas.0810903105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 375.Martinez A, Phillips S, Butte M, Whitesides G. Angew Chem Int Ed. 2007;46:1318–1320. doi: 10.1002/anie.200603817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 376.Yager P, Domingo GJ, Gerdes J. Annu Rev Biomed Eng. 2008;10:107–144. doi: 10.1146/annurev.bioeng.10.061807.160524. [DOI] [PubMed] [Google Scholar]
  • 377.Pelton R. TrAC Trends Anal Chem. 2009;28:925–942. doi: 10.1016/j.trac.2009.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 378.Sun X, Wang H, Jian Y, Lan F, Zhang L, Liu H, Ge S, Yu J. Biosens Bioelectron. 2018;105:218–225. doi: 10.1016/j.bios.2018.01.025. [DOI] [PubMed] [Google Scholar]
  • 379.Cunningham JC, Brenes NJ, Crooks RM. Anal Chem. 2014;86:6166–6170. doi: 10.1021/ac501438y. [DOI] [PubMed] [Google Scholar]
  • 380.Su S, Ali MM, Filipe CDM, Li Y, Pelton R. Biomacromolecules. 2008;9:935–941. doi: 10.1021/bm7013608. [DOI] [PubMed] [Google Scholar]
  • 381.Carrilho E, Martinez AW, Whitesides GM. Anal Chem. 2009;81:7091–7095. doi: 10.1021/ac901071p. [DOI] [PubMed] [Google Scholar]
  • 382.Savolainen A, Zhang Y, Rochefort D, Holopainen U, Erho T, Virtanen J, Smolander M. Biomacromolecules. 2011;12:2008–2015. doi: 10.1021/bm2003434. [DOI] [PubMed] [Google Scholar]
  • 383.Callahan FE, Norman HA, Srinath T, St. John JB, Dhar R, Mattoo AK. Anal Biochem. 1989;183:220–224. doi: 10.1016/0003-2697(89)90471-5. [DOI] [PubMed] [Google Scholar]
  • 384.Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Anal Chem. 2010;82:3–10. doi: 10.1021/ac9013989. [DOI] [PubMed] [Google Scholar]
  • 385.Li X, Ballerini DR, Shen W. Biomicrofluidics. 2012;6:011301. doi: 10.1063/1.3687398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 386.Yetisen AK, Akram MS, Lowe CR. Lab Chip. 2013;13:2210–2251. doi: 10.1039/c3lc50169h. [DOI] [PubMed] [Google Scholar]
  • 387.Sun J, Xianyu Y, Jiang X. Chem Soc Rev. 2014;43:6239–6253. doi: 10.1039/c4cs00125g. [DOI] [PubMed] [Google Scholar]
  • 388.Delaney JL, Hogan CF, Tian J, Shen W. Anal Chem. 2011;83:1300–1306. doi: 10.1021/ac102392t. [DOI] [PubMed] [Google Scholar]
  • 389.Teengam P, Siangproh W, Tuantranont A, Henry CS, Vilaivan T, Chailapakul O. Anal Chim Acta. 2017;952:32–40. doi: 10.1016/j.aca.2016.11.071. [DOI] [PubMed] [Google Scholar]
  • 390.Chen F, Wang X, Cao X, Zhao Y. Anal Chem. 2017;89:10468–10473. doi: 10.1021/acs.analchem.7b02572. [DOI] [PubMed] [Google Scholar]
  • 391.Sun X, Jian Y, Wang H, Ge S, Yan M, Yu J. ACS Appl Mater Interfaces. 2019;11:16198–16206. doi: 10.1021/acsami.9b02005. [DOI] [PubMed] [Google Scholar]
  • 392.Dungchai W, Chailapakul O, Henry CS. Anal Chem. 2009;81:5821–5826. doi: 10.1021/ac9007573. [DOI] [PubMed] [Google Scholar]
  • 393.Wang H, Jian Y, Kong Q, Liu H, Lan F, Liang L, Ge S, Yu J. Sens Actuat B-Chem. 2018;257:561–569. [Google Scholar]
  • 394.Fu LM, Wang YN. TrAC Trends Anal Chem. 2018;107:196–211. [Google Scholar]
  • 395.Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS. Anal Chem. 2017;89:5428–5435. doi: 10.1021/acs.analchem.7b00255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 396.Liu M, Hui CY, Zhang Q, Gu J, Kannan B, Jahanshahi-Anbuhi S, Filipe CDM, Brennan JD, Li Y. Angew Chem Int Ed. 2016;55:2709–2713. doi: 10.1002/anie.201509389. [DOI] [PubMed] [Google Scholar]
  • 397.Fakhri N, Abarghoei S, Dadmehr M, Hosseini M, Sabahi H, Ganjali MR. SpectroChim Acta Part A-Mol Biomol Spectr. 2020;227:117529. doi: 10.1016/j.saa.2019.117529. [DOI] [PubMed] [Google Scholar]
  • 398.Bender AT, Borysiak MD, Levenson AM, Lillis L, Boyle DS, Posner JD. Anal Chem. 2018;90:7221–7229. doi: 10.1021/acs.analchem.8b00185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 399.Sun Y, Chang Y, Zhang Q, Liu M. Micromachines. 2019;10:531. doi: 10.3390/mi10080531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 400.Huang JY, Lin HT, Chen TH, Chen CA, Chang HT, Chen CF. ACS Sens. 2018;3:174–182. doi: 10.1021/acssensors.7b00823. [DOI] [PubMed] [Google Scholar]
  • 401.Zhou M, Yang M, Zhou F. Biosens Bioelectron. 2014;55:39–43. doi: 10.1016/j.bios.2013.11.065. [DOI] [PubMed] [Google Scholar]
  • 402.Koesdjojo MT, Pengpumkiat S, Wu Y, Boonloed A, Huynh D, Remcho TP, Remcho VT. J Chem Educ. 2015;92:737–741. [Google Scholar]
  • 403.Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM. Anal Chem. 2008;80:3699–3707. doi: 10.1021/ac800112r. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 404.Faraday M. Philos Trans R Soc London. 1857;147:145–181. [Google Scholar]
  • 405.Murdock RC, Shen L, Griffin DK, Kelley-Loughnane N, Papautsky I, Hagen JA. Anal Chem. 2013;85:11634–11642. doi: 10.1021/ac403040a. [DOI] [PubMed] [Google Scholar]
  • 406.Tsai TT, Shen SW, Cheng CM, Chen CF. Sci Tech Adv Mater. 2013;14:044404. doi: 10.1088/1468-6996/14/4/044404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 407.Yu J, Ge L, Huang J, Wang S, Ge S. Lab Chip. 2011;11:1286–1291. doi: 10.1039/c0lc00524j. [DOI] [PubMed] [Google Scholar]
  • 408.Ali MM, Brown CL, Jahanshahi-Anbuhi S, Kannan B, Li Y, Filipe CDM, Brennan JD. Sci Rep. 2017;7:12335. doi: 10.1038/s41598-017-12549-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 409.Chen X, Lan J, Liu Y, Li L, Yan L, Xia Y, Wu F, Li C, Li S, Chen J. Biosens Bioelectron. 2018;102:582–588. doi: 10.1016/j.bios.2017.12.012. [DOI] [PubMed] [Google Scholar]
  • 410.Hui CY, Liu M, Li Y, Brennan JD. Angew Chem Int Ed. 2018;57:4549–4553. doi: 10.1002/anie.201712903. [DOI] [PubMed] [Google Scholar]
  • 411.Forouzandeh M. Front Biosci. 2019;11:122–135. doi: 10.2741/S530. [DOI] [PubMed] [Google Scholar]
  • 412.Wang Y, Wang S, Ge S, Wang S, Yan M, Zang D, Yu J. Anal Methods. 2013;5:1328–1336. [Google Scholar]
  • 413.Liang L, Su M, Li L, Lan F, Yang G, Ge S, Yu J, Song X. Sens Actuat B-Chem. 2016;229:347–354. [Google Scholar]
  • 414.Seok Y, Joung HA, Byun JY, Jeon HS, Shin SJ, Kim S, Shin YB, Han HS, Kim MG. Theranostics. 2017;7:2220–2230. doi: 10.7150/thno.18675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 415.Park S, Zhang Y, Lin S, Wang TH, Yang S. Biotech Adv. 2011;29:830–839. doi: 10.1016/j.biotechadv.2011.06.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 416.Magro L, Jacquelin B, Escadafal C, Garneret P, Kwasiborski A, Manuguerra JC, Monti F, Sakuntabhai A, Vanhomwegen J, Lafaye P, Tabeling P. Sci Rep. 2017;7:1347. doi: 10.1038/s41598-017-00758-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 417.Zhao W, Ali M, Brook M, Li Y. Angew Chem. 2008;120:6428–6436. doi: 10.1002/anie.200705982. [DOI] [PubMed] [Google Scholar]
  • 418.Li J, Macdonald J. Lab Chip. 2016;16:242–245. doi: 10.1039/c5lc01323b. [DOI] [PubMed] [Google Scholar]
  • 419.Toley BJ, Covelli I, Belousov Y, Ramachandran S, Kline E, Scarr N, Vermeulen N, Mahoney W, Lutz BR, Yager P. Analyst. 2015;140:7540–7549. doi: 10.1039/c5an01632k. [DOI] [PubMed] [Google Scholar]
  • 420.Jauset-Rubio M, Svobodová M, Mairal T, McNeil C, Keegan N, Saeed A, Abbas MN, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O’Sullivan CK. Sci Rep. 2016;6:37732. doi: 10.1038/srep37732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 421.Liu H, Xiang Y, Lu Y, Crooks RM. Angew Chem Int Ed. 2012;51:6925–6928. doi: 10.1002/anie.201202929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 422.Parolo C, Merkoçi A. Chem Soc Rev. 2013;42:450–457. doi: 10.1039/c2cs35255a. [DOI] [PubMed] [Google Scholar]
  • 423.Poste G. Expert Rev Mol Diagnostics. 2001;1:1–5. doi: 10.1586/14737159.1.1.1. [DOI] [PubMed] [Google Scholar]
  • 424.Marchant J, Mange A, Larrieux M, Costes V, Solassol J. BMC Cancer. 2014;14:519. doi: 10.1186/1471-2407-14-519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 425.Zhao J, Wu R, Au A, Marquez A, Yu Y, Shi Z. Mod Pathol. 2002;15:657–665. doi: 10.1038/modpathol.3880582. [DOI] [PubMed] [Google Scholar]
  • 426.Parkinson DR, McCormack RT, Keating SM, Gutman SI, Hamilton SR, Mansfield EA, Piper MA, DeVerka P, Frueh FW, Jessup JM, McShane LM, Tunis SR, Sigman CC, Kelloff GJ. Clin Cancer Res. 2014;20:1428–1444. doi: 10.1158/1078-0432.CCR-13-2961. [DOI] [PubMed] [Google Scholar]
  • 427.Suzuki H, Maruyama R, Yamamoto E, Kai M. Mol Oncology. 2012;6:567–578. doi: 10.1016/j.molonc.2012.07.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 428.Caine A, Maltby AE, Parkin CA, Waters JJ, Crolla JA. Lancet. 2005;366:123–128. doi: 10.1016/S0140-6736(05)66790-6. [DOI] [PubMed] [Google Scholar]
  • 429.Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, Schellen P, Verschueren H, Post E, Koster J, Ylstra B, Ameziane N, Dorsman J, Smit EF, Verheul HM, Noske DP, Reijneveld JC, Nilsson RJA, Tannous BA, Wesseling P, Wurdinger T. Cancer Cell. 2015;28:666–676. doi: 10.1016/j.ccell.2015.09.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 430.Lewis JM, Heineck DP, Heller MJ. Expert Rev Mol Diagnostics. 2015;15:1187–1200. doi: 10.1586/14737159.2015.1069709. [DOI] [PubMed] [Google Scholar]
  • 431.Cho WC. Expert Rev Mol Diagnostics. 2011;11:9–12. doi: 10.1586/erm.10.111. [DOI] [PubMed] [Google Scholar]
  • 432.Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P. Clin Chem. 2013;59:1722–1731. doi: 10.1373/clinchem.2013.206359. [DOI] [PubMed] [Google Scholar]
  • 433.Norton ME. Proc Natl Acad Sci USA. 2016;113:14173–14175. doi: 10.1073/pnas.1617112113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 434.Lv SW, Liu Y, Xie M, Wang J, Yan XW, Li Z, Dong WG, Huang WH. ACS Nano. 2016;10:6201–6210. doi: 10.1021/acsnano.6b02208. [DOI] [PubMed] [Google Scholar]
  • 435.Zhang H, Yang Y, Li X, Shi Y, Hu B, An Y, Zhu Z, Hong G, Yang CJ. Lab Chip. 2018;18:2749–2756. doi: 10.1039/c8lc00650d. [DOI] [PubMed] [Google Scholar]
  • 436.Versalovic J, Lupski JR. Trends MicroBiol. 2002;10:s15–s21. doi: 10.1016/s0966-842x(02)02438-1. [DOI] [PubMed] [Google Scholar]
  • 437.Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, O’Connor DH, Gehrke L, Collins JJ. Cell. 2016;165:1255–1266. doi: 10.1016/j.cell.2016.04.059. [DOI] [PubMed] [Google Scholar]
  • 438.Hu J, Wen CY, Zhang ZL, Xie M, Hu J, Wu M, Pang DW. Anal Chem. 2013;85:11929–11935. doi: 10.1021/ac4027753. [DOI] [PubMed] [Google Scholar]
  • 439.Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL. Proc Natl Acad Sci USA. 2002;99:15687–15692. doi: 10.1073/pnas.242579699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 440.Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Nat Rev Genet. 2012;13:601–612. doi: 10.1038/nrg3226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 441.Neher RA, Bedford T. J Clin Microbiol. 2018;56:e00480–18. doi: 10.1128/JCM.00480-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 442.Liu J, Liu H, Kang H, Donovan M, Zhu Z, Tan W. Anal Bioanal Chem. 2012;402:187–194. doi: 10.1007/s00216-011-5414-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 443.Zhang H, Zhou L, Zhu Z, Yang C. Chem Eur J. 2016;22:9886–9900. doi: 10.1002/chem.201503543. [DOI] [PubMed] [Google Scholar]
  • 444.Qi L, Liu S, Jiang Y, Lin JM, Yu L, Hu Q. Anal Chem. 2020;92:3867–3873. doi: 10.1021/acs.analchem.9b05317. [DOI] [PubMed] [Google Scholar]
  • 445.Traykovska M, Miedema S, Penchovsky R. Int J BioMed Clin Eng. 2018;7:46–60. [Google Scholar]
  • 446.Song Y, Song J, Wei X, Huang M, Sun M, Zhu L, Lin B, Shen H, Zhu Z, Yang C. Anal Chem. 2020;92:9895–9900. doi: 10.1021/acs.analchem.0c01394. [DOI] [PubMed] [Google Scholar]
  • 447.Zhang L, Fang X, Liu X, Ou H, Zhang H, Wang J, Li Q, Cheng H, Zhang W, Luo Z. Chem Commun. 2020;56:10235–10238. doi: 10.1039/d0cc03993d. [DOI] [PubMed] [Google Scholar]
  • 448.Rangan R, Watkins AM, Kladwang W, Das R. bioRxiv, 2020, doi: 10.1101/2020.03.27.012906
  • 449.Thomsen PF, Willerslev E. Biol Conservation. 2015;183:4–18. [Google Scholar]
  • 450.Breakwell K, Tetu SG, Elbourne LDH. Methods Mol Biol. 2014;1096:101–110. doi: 10.1007/978-1-62703-712-9_8. [DOI] [PubMed] [Google Scholar]
  • 451.Gilbert JA, Dupont CL. Annu Rev Mar Sci. 2011;3:347–371. doi: 10.1146/annurev-marine-120709-142811. [DOI] [PubMed] [Google Scholar]
  • 452.Ju F, Zhang T. Appl Microbiol Biotechnol. 2015;99:4119–4129. doi: 10.1007/s00253-015-6536-y. [DOI] [PubMed] [Google Scholar]
  • 453.Sayler GS, Layton AC. Annu Rev Microbiol. 1990;44:625–648. doi: 10.1146/annurev.mi.44.100190.003205. [DOI] [PubMed] [Google Scholar]
  • 454.Palchetti I, Mascini M. Analyst. 2008;133:846–854. doi: 10.1039/b802920m. [DOI] [PubMed] [Google Scholar]
  • 455.Hayat A, Marty JL. Front Chem. 2014;2:41. doi: 10.3389/fchem.2014.00041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 456.Nguyen VT, Kwon YS, Gu MB. Curr Opin Biotech. 2017;45:15–23. doi: 10.1016/j.copbio.2016.11.020. [DOI] [PubMed] [Google Scholar]
  • 457.Hlavata L, Benikova K, Vyskocil V, Labuda J. Electrochim Acta. 2012;71:134–139. [Google Scholar]
  • 458.Ercolini D. Appl Environ Microbiol. 2013;79:3148–3155. doi: 10.1128/AEM.00256-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 459.Wang X, Xiong E, Tian T, Cheng M, Lin W, Wang H, Zhang G, Sun J, Zhou X. ACS Nano. 2020;14:2497–2508. doi: 10.1021/acsnano.0c00022. [DOI] [PubMed] [Google Scholar]
  • 460.Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W. Microchim Acta. 2014;181:479–491. doi: 10.1007/s00604-013-1156-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 461.Xu H, Zhu X, Wang J, Lin Z, Chen G. Luminescence. 2019;34:308–315. doi: 10.1002/bio.3596. [DOI] [PubMed] [Google Scholar]
  • 462.Lan L, Yao Y, Ping J, Ying Y. ACS Appl Mater Interfaces. 2017;9:23287–23301. doi: 10.1021/acsami.7b03937. [DOI] [PubMed] [Google Scholar]
  • 463.Shen J, Zhou X, Shan Y, Yue H, Huang R, Hu J, Xing D. Nat Commun. 2020;11:267. doi: 10.1038/s41467-019-14135-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 464.Goud KY, Reddy KK, Satyanarayana M, Kummari S, Gobi KV. Microchim Acta. 2020;187:29. doi: 10.1007/s00604-019-4034-0. [DOI] [PubMed] [Google Scholar]
  • 465.Ma Y, Mao Y, Huang D, He Z, Yan J, Tian T, Shi Y, Song Y, Li X, Zhu Z, Zhou L, Yang CJ. Lab Chip. 2016;16:3097–3104. doi: 10.1039/c6lc00474a. [DOI] [PubMed] [Google Scholar]
  • 466.Khedri M, Ramezani M, Rafatpanah H, Abnous K. TrAC Trends Anal Chem. 2018;103:126–136. [Google Scholar]
  • 467.Jiang M, Chen C, He J, Zhang H, Xu Z. Food Chem. 2020;307:125534. doi: 10.1016/j.foodchem.2019.125534. [DOI] [PubMed] [Google Scholar]
  • 468.Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Biosens Bioelectron. 2018;116:130–147. doi: 10.1016/j.bios.2018.05.051. [DOI] [PubMed] [Google Scholar]
  • 469.Feng X, Gan N, Zhang H, Yan Q, Li T, Cao Y, Hu F, Yu H, Jiang Q. Biosens Bioelectron. 2015;74:587–593. doi: 10.1016/j.bios.2015.06.048. [DOI] [PubMed] [Google Scholar]
  • 470.Novroski NMM, Woerner AE, Budowle B. Forensic Sci Int-Genets. 2018;37:162–171. doi: 10.1016/j.fsigen.2018.08.011. [DOI] [PubMed] [Google Scholar]
  • 471.Diegoli TM. Forensic Sci Int-Genets. 2015;18:140–151. doi: 10.1016/j.fsigen.2015.03.013. [DOI] [PubMed] [Google Scholar]
  • 472.Juusola J, Ballantyne J. Forensic Sci Int. 2005;152:1–12. doi: 10.1016/j.forsciint.2005.02.020. [DOI] [PubMed] [Google Scholar]
  • 473.Courts C, Madea B. Forensic Sci Int. 2010;203:106–111. doi: 10.1016/j.forsciint.2010.07.002. [DOI] [PubMed] [Google Scholar]
  • 474.Dumache CR, Ciocan CV, Muresan CC, Rogobete CA, Enache CA. Clin Lab. 2015;61:1129. doi: 10.7754/clin.lab.2015.150207. [DOI] [PubMed] [Google Scholar]
  • 475.Oliveira M, Amorim A. Appl Microbiol Biotechnol. 2018;102:10377–10391. doi: 10.1007/s00253-018-9414-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 476.Bruijns B, van Asten A, Tiggelaar R, Gardeniers H. Biosensors. 2016;6:41. doi: 10.3390/bios6030041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 477.Cui G, Li C, Li H, Li X. DNA Computing and Its Application to Information Security Field. IEEE. Tianjin, China, 2009. 148–152
  • 478.Ratna Kishore D, Suneetha D, Praddep GGS. Enhancement in Data Security Using DNA Cryptography. Springer Singapore. London, England, 2020. 63–70
  • 479.Singh S, Sharma Y. IEEE. India: SCAD Institute of Technology; 2019. A Review on DNA based Cryptography for Data hiding; pp. 282–285. [Google Scholar]
  • 480.Clelland CT, Risca V, Bancroft C. Nature. 1999;399:533–534. doi: 10.1038/21092. [DOI] [PubMed] [Google Scholar]
  • 481.Tanaka K, Okamoto A, Saito I. Biosystems. 2005;81:25–29. doi: 10.1016/j.biosystems.2005.01.004. [DOI] [PubMed] [Google Scholar]
  • 482.Cui G, Qin L, Wang Y, Zhang X. An encryption scheme using DNA technology. In: Kearney D, Nguyen V, Gioiosa G, Hendtlass T, Eds. 3rd International Conference on Bio-Inspired Computing. Adelaide, Australia, 2008. 37–42
  • 483.Zhang XC, Zhou Z, Jiao YY, Niu Y, Wang YF. Int J Performability Eng. 2018;14:334–340. [Google Scholar]
  • 484.Zhang Y, Wang F, Chao J, Xie M, Liu H, Pan M, Kopperger E, Liu X, Li Q, Shi J, Wang L, Hu J, Wang L, Simmel FC, Fan C. Nat Commun. 2019;10:5469. doi: 10.1038/s41467-019-13517-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 485.Zicheng W, Xiaohang Z, Hong W, Guangzhao C. Information hiding based on DNA steganography. IEEE. Beijing, China, 2013. 946–949

Articles from Science China. Chemistry are provided here courtesy of Nature Publishing Group

RESOURCES