Skip to main content
Frontiers in Plant Science logoLink to Frontiers in Plant Science
. 2020 Nov 25;11:556312. doi: 10.3389/fpls.2020.556312

A Comprehensive and Comparative Analysis of the Fucoidan Compositional Data Across the Phaeophyceae

Nora M A Ponce 1,*, Carlos A Stortz 1,*
PMCID: PMC7723892  PMID: 33324429

Abstract

In the current review, compositional data on fucoidans extracted from more than hundred different species were surveyed through the available literature. The analysis of crude extracts, purified extracts or carefully isolated fractions is included in tabular form, discriminating the seaweed source by its taxonomical order (and sometimes the family). This survey was able to encounter some similarities between the different species, as well as some differences. Fractions which were obtained through anion-exchange chromatography or cationic detergent precipitation showed the best separation patterns: the fractions with low charge correspond mostly to highly heterogeneous fucoidans, containing (besides fucose) other monosaccharides like xylose, galactose, mannose, rhamnose, and glucuronic acid, and contain low-sulfate/high uronic acid proportions, whereas those with higher total charge usually contain mainly fucose, accompanied with variable proportions of galactose, are highly sulfated and show almost no uronic acids. The latter fractions are usually the most biologically active. Fractions containing intermediate proportions of both polysaccharides appear at middle ionic strengths. This pattern is common for all the orders of brown seaweeds, and most differences appear from the seaweed source (habitat, season), and from the diverse extraction, purification, and analytitcal methods. The Dictyotales appear to be the most atypical order, as usually large proportions of mannose and uronic acids appear, and thus they obscure the differences between the fractions with different charge. Within the family Alariaceae (order Laminariales), the presence of sulfated galactofucans with high galactose content (almost equal to that of fucose) is especially noteworthy.

Keywords: fucoidans, brown seaweeds, phaeophyceae, taxonomy, phylogeny

Introduction: Aim of the Review

Fucoidans are sulfated polysaccharides present in the cell walls of the Phaeophyceae (brown seaweeds) composed usually by fucose (Fuc) as the main monosaccharide, but accompanied by very variable amounts of other monosaccharides like galactose (Gal), xylose (Xyl), mannose (Man), rhamnose (Rha), and/or glucuronic acid (GlcA). The scientific literature on different aspects of fucoidans is steadily growing, mostly due to the diverse biological activities found for samples from many different species of seaweeds. This bioactivity (antiviral, anticoagulant, antitumoral, antioxidant, among others) has been reviewed extensively (Cosenza et al., 2017; Senthilkumar et al., 2017; Wang et al., 2019). Many studies attempted to explore the structural details of fucoidans, but it was very difficult to find a common trait in the different fucoidans so far analyzed (Bilan and Usov, 2008; Kopplin et al., 2018). This marks a big difference with red seaweed sulfated galactans, showing an unchallenged disaccharidic repeating structure modified by the position of sulfation, the series of the α-galactose units and its possible presence as a 3,6-anhydro ether (Usov, 2011). For these galactans, it has been found that the taxonomic order (or sometimes the family) to which the seaweed yielding the galactan belongs has a strong influence on the characteristics of these galactans, i.e., chemotaxonomy appears to be in effect (Miller, 1997; Stortz and Cerezo, 2000). For instance, within the brown seaweeds, it has been postulated that the fucoidans from the Laminariales tend to have just α-3-linked Fuc units, whereas those of the Fucales show more proportions of a α-(1,3)-α-(1,4) alternating structure (Deniaud-Bouët et al., 2014), as a chemotaxonomical trait related to structure. A previous review by Ale et al. (2011) has tried to establish some relationship with taxonomy, with the focus set on extraction methods, qualitative compositional data, and structural features. In this review, compositional data on fucoidans originated in different taxonomic groups of the Phaeophyceae will be presented. Two hypotheses are put into consideration: (a) that there is a relationship between some of these compositional features and the taxonomic classification, and (b) that various other factors produce the differences in composition.

Taxonomy of the Phaeophyceae

The taxonomy of brown algae (Heterokonta, Ochrophyta, Phaeophyceae) had many controversies throughout the history (Silberfeld et al., 2014). Order delineation in the Phaeophyceae has traditionally been based on the type of life cycle, reproductive aspects, mode of growth, and filamentous vs. parenchymatous construction of the thallus (Rousseau and de Reviers, 1999a, b). However, with the advent of molecular systematics, new insights were brought, thoroughly reshaping the evolutionary concepts of brown algae. Rousseau and de Reviers (1999b) and de Reviers et al. (2007) have provided a detailed evolution of classificatory concepts within the Phaeophyceae. Several changes in the classification at the ordinal level have been set between the Oltmanns (1922), comprising 8 orders to the present times classification, encompassing 18 orders (Silberfeld et al., 2014; Figure 1). Major changes were produced after the DNA sequencing of brown seaweeds started in 1993 (Draisma et al., 2003; de Reviers et al., 2007). Different molecular markers can be used, but phylogenetic studies of Phaeophyceae have mostly utilized the rDNA sequences, which include four subunits (18S, 5.8S, 26S, and 5S), containing regions which are highly conserved as well as others highly variable. Most information arose from studies on the 18S subunit of rDNA, although those studies had limited results for more recent Phaeophycean lineages (Tan and Druehl, 1996). In this way, Rousseau et al. (2001) utilized the 26S sequence, which altogether with a larger taxonomic sampling, solved some of the earlier divergences. Thus, a phylogenetic tree was constructed (Draisma et al., 2001, 2003). It has been concluded that morphological characters, many times useful to understand the ecology of brown seaweeds, have no value at all for phylogeny. Different degrees of organization, diffuse or apical growth, or life stages have appeared and disappeared repeatedly in the history of the different taxonomic groups.

FIGURE 1.

FIGURE 1

Phylogenetic tree for the different orders of the Phaeophyceae (adapted from Silberfeld et al., 2014; reproduced with kind permission from the authors). One diverging branch from the order Scytothamnales containing the family Bachelotiaceae has been removed from the figure for the sake of simplicity.

Silberfeld et al. (2014) have introduced a thorough phylogenetic analysis based on a dataset generated previously (Silberfeld et al., 2011), including seven markers, for a total of 6804 nucleotides, determined for 91 Phaeophycean taxa, including minor orders for which there were very few studies. In this way, the shape of phylogenetic trees changed sharply the previous knowledge (Silberfeld et al., 2011; Charrier et al., 2012). Figure 1 depicts the outcome of the tree for the 18 orders determined by Silberfeld et al. (2014), grouped in four subclasses (Discosporangiophycidae and Ishigeophycidae, including one order each, Dictyotophycidae, including four orders, and Fucophycidae, including the remaining 12 orders).

Polysaccharides From the Phaeophyceae: The Fucoidans

Most macroalgae exhibit polysaccharides as their most abundant constituents. Taking into account their function, they can be classified into two main groups: storage and structural polysaccharides. The formers are polymers such as starch/glycogen or laminaran considered as food reserve materials, whereas the latters are structural elements of the cell walls, intercellular tissues and mucilaginous matrix. Sulfated polysaccharides are a group of anionic structural polysaccharides, useful for the seaweed in the marine environment to avoid desiccation. Their gross composition is characteristic of each algal group (galactans in red seaweeds, fucoidans in brown seaweeds, rhamnoglucuronans, and arabinogalactans in green seaweeds, van den Hoek et al., 1996), whereas more or less subtle differences appear often depending on the order, family, genus and species, as well as sometimes on the season, geographic location, or reproductive stage (Mackie and Preston, 1974). Other roles of the polysaccharides might include participations in cell-cell communication (Deniaud-Bouët et al., 2014), and in cell division processes (Skriptsova, 2015).

In macroalgae, the cell walls comprise a fibrillar skeleton immersed in an amorphous matrix. In the case of the Phaeophyceae, the fibrillar skeleton is mainly made up of cellulose [a linear β-(1→4)-glucan], and the surrounding matrix is composed predominantly by alginic acid or its salts, together with a system of sulfated polysaccharides (the fucoidans; Mackie and Preston, 1974). In this way, the cell wall is composed of two different layers: the inner layer consisting of a skeleton of microfibrils providing rigidity to the cell wall, and the outermost layer, which is usually observed as a poorly crystalline matrix in which the set of microfibrils is embedded. There is also evidence that the matrix does not penetrate the fibers, but remains attached to this layer through hydrogen bonds (Davis et al., 2003). It has been suggested that fucoidans might play a key role in cell wall architecture, cross-linking cellulose and alginates (Kloareg et al., 1986). Besides this function, as occurs with other sulfated polysaccharides, the fucoidans help to protect the plant from desiccation. When the fronds are in contact with sea water the sulfate hemiester groups are strongly associated with magnesium ions, which are highly hydrated and thus retain water in the fronds (Percival, 1979). In a more modern model for the Fucales (Deniaud-Bouët et al., 2014, 2017; Torode et al., 2016), it has been proposed that two networks are assembled in the cell wall; the first one contains the fucoidans interlocking a cellulose (or other β-glucans) network, and the second one contains alginate crosslinked by polyphenols. The rigidity is controlled by the alginate structure and its calcium cross-linking capabilities, whereas the fucoidans participate mostly in adaptation to the osmotic stress.

More than one century ago, Kylin has isolated for the first time (from different seaweed species of the genera Fucus, Laminaria, and Ascophyllum) a group of sulfated polysaccharides with a high Fuc content and called them “fucoidin” (Kylin, 1913). Originally the name fucoidin (later changed to the more systematic fucoidan) was coined for the polysaccharides from those species, but this term was rapidly extended to any fucose-rich polysaccharides, including not only those becoming from brown seaweeds, but also to those present in echinoderms (Olatunji, 2020). As noted above, fucoidans are sulfated polysaccharides present mainly in the intercellular tissue of mucilaginous matrix of the cell walls of brown algae (Deniaud-Bouët et al., 2017).

Fucoidans comprise a family of diverse molecules containing, in addition to Fuc, varying proportions of Gal, Man, Xyl and GlcA (Figure 2). Acetate esters have also been found, especially in modern studies (see below). In the early studies extensive purification was carried out in an effort to isolate a “fucan” containing only Fuc residues, assuming that the remaining monosaccharides were originated in other, contaminating polysaccharides. Nevertheless, even in the allegedly pure samples, small proportions of Gal, Xyl, and/or uronic acid persisted (Percival, 1979). Later, only in a few species a pure fucan was isolated after purification (see below). Thus, most of the samples so far isolated are heterofucans (Deniaud-Bouët et al., 2014).

FIGURE 2.

FIGURE 2

Main structural monosaccharidic units of fucoidans. These monosaccharides can appear as terminal non-reducing units or linked through any of the free hydroxyl groups. Usually Fuc and GlcA appear linked through O-3 or O-4, Xyl through O-4, Gal through O-3 or O-6 and Man through O-2 (Sakai et al., 2003; Bilan et al., 2010, 2017, 2018). The structural features of Rha are unknown. For representative structures of fucoidans (see Deniaud-Bouët et al., 2017).

Fucoidans From Different Species of Phaeophyceae

In this section, the main chemical characteristics of fucoidans extracted from different species of brown seaweeds reported so far to the best of our knowledge (with compositional data provided) will be described in tabular form. They will be shown separately for each of the different orders (Figure 1). When numerous species of an order were studied, separations in families or genera are also displayed. It is worth noting that depending on the way that the analyses were expressed in the original papers, the uronic acids in the following tables were indicated as a percentage of the total sample (in most cases) or as part of the molar ratio of all the monosaccharides. Thus, these molar ratios might or might not include the uronic acid components. The main monosaccharidic units appearing in fucoidans are shown in Figure 2. When the authors have isolated a large number of fractions, only those more abundant or representative are listed in the tables. The reported presence of acetyl groups is indicated qualitatively with the “Ac” acronym. It should be noted that the geographic location and season of harvest of the seaweed can also have significant effects on the composition of the extracted fucoidans (e.g., Zvyagintseva et al., 2003). The extraction and fractionation procedures are schematically displayed, neglecting defatting and depigmenting steps, as well as usual procedures like dialysis or single alcohol precipitations. The methods used for monosaccharide and sulfate quantitation are also shown.

Fucales

As expected, samples of fucoidans from this is order were the most studied. Samples from five different families of the Fucales have been studied. Two species from the Fucaceae, i.e., Fucus vesiculosus and Ascophyllum nodosum appear in the earlier studies by Kylin (1913). The polysaccharides from these species were studied extensively by different research groups (see below). However, the family with more species studied was the Sargassaceae. Considering only the genus Sargassum, studies on the fucoidans from 26 different species were found in the current survey.

The extraction of fucoidans from Fucus vesiculosus was originated in the early Kylin studies, when Fuc was characterized after hydrolysis as phenyl-L-fucosazone; pentoses in the hydrolyzate were also reported (Kylin, 1913). Different products from this species were extensively studied (Table 1). Originally, the presence of Xyl was ascribed to a contaminating xylan that accompanied the fucoidan (Percival and McDowell, 1967). As a matter of fact, they reported the isolation of a xylan, although uronic acid residues were found in the xylan fraction and, furthermore, the authors were not able to separate any fraction composed just by Fuc residues. The studies by Nishino et al. (1994a) on a commercial sample from this seaweed were highly comprehensive: they were able to separate 13 different fractions and analyze them thoroughly, showing structures ranging from typical fucans (containing mainly Fuc and sulfate, and free of uronic acids) to heteropolysaccharides with low sulfate content and high content of uronic acids. In a minor fraction, they were able to find an appreciable amount of glucosamine (11.5%). In an interesting study using microwave extraction of this seaweed, Rodríguez-Jasso et al. (2011) showed that depending on the pressure and extraction time, fucoidans with different ratios Fuc/Gal were obtained (ranging from 100% Fuc to a 1:1 ratio), plus variable proportions of Xyl and sulfation degrees. Another species from the same genus that has been studied is Fucus evanescens. Zvyagintseva et al. (1999) separated the polysaccharides using a chromatography system on a hydrophobic resin. It is interesting to note that in a subsequent work Zvyagintseva et al. (2003) analyzed specimens of three different seaweeds (F. evanescens, Laminaria cichorioides, and Saccharina japonica) collected at different places, at various stages of development and at different seasons, and found some notable differences, particularly for the F. evanescens equivalent fractions obtained in different geographic locations (ratio Fuc/sulfate between 1 and 2.1; Fuc proportion from 56 to 80%; molecular masses from 14–40 to 150–500 kDa).

TABLE 1.

Reported compositions of the fucoidans from the family Fucaceae (Fucales).

Species Extraction Purification/ Acronym Monosaccharide composition (moles %)
Sulfate
UA (%) References
Fractionationa Methodb Fuc Xyl Gal Man Glc Rha GlcA Others Methodc %
Fucus vesiculosus HCl pH 2 Ethanol ppt F1 GC 50 15 4 17 14 Pb 4 22 Medcalf and Larsen (1977a)
HCl pH 2 Ethanol ppt F2 GC 70 7 8 4 11 Pb 25 6
HCl 0.01M+CaCl2 1% GC 79 10 6 3 2 Tit 31 14 Mabeau and Kloareg (1987)
pH 7.5+CaCl2 1% EtOH+TCA 10% FF GC 84 2 13 1 Tit 26 4 Mabeau et al. (1990)
Triton 0.5%, pH 7.5+CaCl2 1% EtOH+TCA 10% TF GC 60 10 14 10 6 Tit 14 9
HCl 0.01M+CaCl2 1% HT GC 87 4 5 2 2 Tit 39 17
Na2CO3 3% HCl 0.01M ppt OHF GC 78 11 5 3 3 Tit 30 9
SigmaTM GC 92 4 3 2 DP 23 8 Nishino et al. (1994a)
SigmaTM SEC+AEC I1.8 GC 90 3 5 2 DP 32 3
SigmaTM SEC+AEC II1.35 GC 94 1 5 tr. DP 33
SigmaTM SEC+AEC II2 GC 94 1 5 DP 36
SigmaTM SEC+AEC III11.5 GC 93 2 5 DP 34
H2O, r.t. F1 GC 55 11 9 25 DP 6 39 Rupérez et al. (2002)
HCl 0.1M F3 GC 89 6 5 DP 11 9
CaCl2 2% hot PQA GC 67 6 13 8 6 DP 24 10 Cumashi et al. (2007)
CaCl2 2% hot GC 59 13 10 3 14 EA 18 7 Bittkau et al. (2020)
CaCl2 2% hot PQA HPLC 83 6 7 3 1 DP 25 1 Zhang et al. (2015)
Fucus ceranoides HCl 0.01M+CaCl2 1% GC 80 10 7 4 Tit 31 12 Mabeau and Kloareg (1987)
Fucus distichus CaCl2 2% hot PQA + AEC F1 GC 84 10 3 2 1 DP 24 Bilan et al. (2004)
CaCl2 2% hot PQA + AEC F3 GC 83 9 4 2 1 DP 24
CaCl2 2% hot PQA + AEC F4 GC 96 2 2 Ac DP 35
Fucus evanescens HCl 0.4% r.t. HC F-1 HPLC 90 3 1 6 DP ∼12 ND Zvyagintseva et al. (1999)
HCl 0.4% r.t +H2O hot HC F-2 HPLC 91 7 1 DP ∼25 ND
CaCl2 2% hot PQA + AEC F3 GC 67 16 9 7 DP 29 11 Bilan et al. (2002)
CaCl2 2% hot PQA + AEC F4 GC 94 3 3 Ac DP 46
HCl pH 2-2.3 hot AEC FeF HPLC 87 2 2 4 1 DP 28 ND Anastyuk et al. (2012b)
HCl 0.2M hot Sterile HPLC 69 7 9 8 6 1 ND ND Skriptsova et al. (2012)
HCl 0.2M hot Reprod. HPLC 77 5 5 3 10 ND ND
HCl pH2-2.3 FeF HPLC 78 8 10 4 Ac DP 23 ND Prokofjeva et al. (2013)
CaCl2 2% hot GC 96 4 EA 27 4 Bittkau et al. (2020)
d Enz.pH6 + CaCl2 2% AEC FeF2 PAD 75 3 15 2 1 1 HexA 3 DP 35 e Nguyen et al. (2020)
d Enz.pH6 + CaCl2 2% AEC FeF3 PAD 88 2 9 HexA 1 DP 39 e
Fucus serratus HCl 0.01M+CaCl2 1% GC 76 18 5 1 Tit 22 15 Mabeau and Kloareg (1987)
CaCl2 2% hot AEC F3 GC 86 6 4 2 1 Ac DP 22 Bilan et al. (2006)
CaCl2 2% hot AEC F4 GC 94 3 3 Ac DP 32
CaCl2 2% hot PQA + AEC GC 69 7 13 6 5 DP 29 8 Cumashi et al. (2007)
CaCl2 2% hot GC 41 10 4 2 43 EA 12 6 Bittkau et al. (2020)
Fucus spiralis HCl 0.01M+CaCl2 1% GC 90 7 3 tr. Tit 36 10 Mabeau and Kloareg (1987)
CaCl2 2% hot PQA GC 80 7 7 3 3 DP 26 8 Cumashi et al. (2007)
Ascophyllum nodosum HCl 0.2M AP/R Ascoph. CC 49 51 BC 12 19 Larsen et al. (1966)
HCl 0.2M +AP/R CaCl2 0.04M+CE F2 CC 86 14 BC 30 3
H2O + OA pH 2.8f CaCl2 2% GC 70 14 16 JL 21 11 Percival (1968)
HCl pH 2 Ethanol ppt F1 GC 37 29 3 21 11 M 13 26 Medcalf and Larsen (1977a)
HCl pH 2 Ethanol ppt F2 GC 73 11 2 10 5 M 21 16
HCl pH 2 Ethanol ppt F3 GC 81 9 2 4 4 M 25 6
HCl pH 2 Ethanol ppt F4 GC 34 14 27 15 10 M 15 7
HCl pH 2 Ethanol ppt F5 GC 71 7 14 4 4 M 8 7
HCl pH 2 CaCl2 1M+AP/R GC 44 4 40 4 HexA 8 M 15 8 Medcalf et al. (1978)
CaCl2 2% hot PQA GC 67 11 12 7 3 DP 24 9 Cumashi et al. (2007)
H2O + HCl 0.2M AP/R HPLC 47 40 2 10 1 DP 10 21 Nakayasu et al. (2009)
H2O + HCl 0.2M AP/R HPLC 82 8 7 2 1 DP 24 2 Zhang et al. (2015)
HCl 0.1M, MWg CaCl2 2% PAD 40 14 6 11 24 DP 27 e Yuan and Macquarrie (2015)
Ascophyllum mackaii H2O hot CaCl2 1%+AP/R AMF HPLC 57 4 16 9 2 2 11 DP 22 e Qu et al. (2014)
Pelvetia canaliculata pH 7.5+CaCl2 1% EtOH+TCA 10% FF GC 82 4 10 2 2 Tit 29 4 Mabeau et al. (1990)
Triton 0.5%, pH 7.5+CaCl2 1% EtOH+TCA 10% TF GC 65 13 11 6 5 Tit 20 6
HCl 0.01M+CaCl2 1% HT GC 81 9 7 2 1 Tit 40 2
Na2CO3 3% HCl 0.01M ppt OHT GC 90 4 4 1 1 Tit 33 4
Silvetia babingtonii HCl pH 2-2.3 hot AEC SbF HPLC 77 5 12 6 DP 25 ND Anastyuk et al. (2012b)
HCl 0.2M hot Sterile HPLC 71 7 6 5 10 ND ND Skriptsova et al. (2012)
HCl 0.2M hot Reprod. HPLC 80 6 6 4 4 ND ND

aKey: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; CE, cation exchange; PQA, precipitation with quaternary ammonium salts; AP/R alcohol precipitation and redissolution.

bKey for the less common abbreviations: PAD, HPAEC with pulse amperometric detector; GC, gas chromatography; CC, column chromatography on carbon-Celite.

cKey: DP, method of Dodgson and Price (1962) or equivalent; Pb, titration with lead nitrate (Medcalf et al., 1972); EA, elemental analysis; Tit, titration with cetylpyridinium chloride, pH 1.5 (Scott, 1960); BC, method of barium chloranilate (Lloyd, 1959).

dAnalyzed as Fucus distichus subsp. evanescens.

eThe information for the uronic acid is included in the molar ratio of monosaccharides.

fOxalic acid/ammonium oxalate extraction of the residue.

gMicrowave-aided extraction.

It should be mentioned that the high proportions of Glc found in some unpurified extracts are probably becoming from laminaran. This has occurred, for instance, in the sample of Fucus serratus isolated by Bittkau et al. (2020), as lower proportions of this monosaccharide have been found in other studies (Table 1). The studies of Bilan et al. (2002, 2004, 2006) on different Fucus species, carried out with careful separations involving anion exchange chromatography have shown in all cases that at high ionic strengths, they were able to isolate, with good yields, a fucan sulfate almost devoid of other monosaccharides (Fuc ≥ 94%, Table 1, fraction F4).

Ascophyllum nodosum is the other characteristic species from the family Fucaceae which has been thoroughly studied since the early studies of Kylin (1913), followed by further reports indicating the presence of a sulfated polysaccharide with a Fuc/Gal ratio of 8:1 (Percival and McDowell, 1967). The name ascophyllan was coined (to distinguish from the fucoidan characteristic of Fucus vesiculosus) for the isolated polysaccharide, composed of Fuc, Xyl, and sulfate groups, along with uronic acids. Medcalf and Larsen (1977a, b) determined a complex mixture of polysaccharides in this seaweed, and concluded that the fucan constituted the backbone of the molecule, whereas the ascophyllan-like components were attached as branches. Besides, they also determined that the uronic acid present was not glucuronic acid, as indicated in previous reports, but mannuronic and guluronic acid, i.e., the components of alginic acid, suggesting that contamination with this polysaccharide was difficult to avoid. For the fucoidans of this seaweed, an attempt was made to compare the results of the various researchers (Table 1), taking into account that most extractions were carried out in acid medium. However, the original Fuc/Xyl ratio close to 1 found by Larsen et al. (1966) was only reproduced by Nakayasu et al. (2009). Medcalf and Larsen (1977a) found a series of highly heterogeneous fractions, whereas 1 year later, using the same seaweed sample, Medcalf et al. (1978) found a polysaccharide with a Fuc/Gal ratio close to 1. The proportion of uronic acids in purified samples varied between 2 and 21%, whereas the content of sulfate varied between 8 and 24%. In summary, no common pattern between the determinations carried out by different researchers was observed.

Within the Fucaceae, it is clear that polysaccharides from the genus Fucus tend to be fucose-rich (more than 70% of the monosaccharides), although reports diverge, and important proportions of other monosaccharides appear in some cases (Table 1). On the other hand, in the genus Ascophyllum, important proportions of Xyl and uronic acid-containing fractions appear, although some purification steps allowed to obtained fucans equivalent to those of Fucus, suggesting that mixtures of different kinds of polymers appear in all the samples that have been surveyed in this study, and they might change their proportions in the different species, and using different extraction and purification methods.

The family Sargassaceae comprises much more species than the Fucaceae (512 against 18, Guiry and Guiry, 2020). This family has the largest number of species studied from the point of view of its polysaccharides. The fucoidans from at least 26 different species of the genus Sargassum alone were analyzed. Table 2 shows the results for the different fucoidans isolated from this genus. For S. horneri, Ermakova et al. (2011) postulated the presence of Rha in substantial amounts within the polysaccharides (Table 2). However, their NMR spectra did not show the presence of this sugar, and in a further work by the same group (Silchenko et al., 2017) the fucoidans were purified without any trace of Rha. In S. latifolium, Asker et al. (2007) isolated three fractions where Glc and GlcA are the major components and Fuc is a minor one, not responding to the classical fucoidan composition. Other atypical polysaccharides were reported in S. pallidum (Liu et al., 2016) carrying high-mannose fucoidans, rich in uronic acids and scarcely sulfated, and in S. thunbergii (Luo et al., 2019), where a fucoidan completely devoid of sulfate groups was reported (Table 2).

TABLE 2.

Reported compositions of the fucoidans from the genus Sargassum (Sargassaceae, Fucales).

Species Extraction Purification/ Acronym Monosaccharide composition (moles %)
Sulfate
UA (%) References
Fractionationa Methodb Fuc Xyl Gal Man Glc Rha GlcA Others Methodc %
Sargassum aquifolium H2O + HCl pH 1 AEC 0.5M GC 14 15 37 13 21 DP 6 28 Bilan et al. (2017)
H2O + HCl pH 1 AEC 1M GC 41 15 29 9 6 DP 22 14
H2O + HCl pH 1 AEC 1.5M GC 36 9 48 4 3 DP 29 5
Sargassum binderi CaCl2 2% hot PQA Fsar GC 60 5 19 7 7 Ac EA 8 d Lim et al. (2016)
Sargassum cinereum H2O+CaCl2 1% HPLC 66 7 24 3 DP 4 ND Somasundaram et al. (2016)
Sargassum crassifolium CaCl2 2% hot PQA Fsc GC 56 2 41 1 DP 28 8 Yuguchi et al. (2016)
H2O, PTe AP/R SC3 PAD 37 5 37 11 11 IC 22 24 Yang et al. (2017)
Sargassum duplicatum HCl 0.1M hot AEC+HC SdF1 GC 40 57 3 Ac DP 32 ND Shevchenko et al. (2017)
HCl 0.1M hot AEC+HC SdF2 GC 59 2 39 Ac DP 38 ND
HCl 0.1M hot AEC, NH3 SdF GC 51 49 Ac DP 32 ND Usoltseva et al. (2017a)
Sargassum feldmanii HCl 0.1M hot AEC+HC SfF2 GC 72 28 DP 25 ND Shevchenko et al. (2017)
Sargassum filipendula Enz.pH 8 Acetone ppt SF-0.7 HPLC 22 16 27 16 16 DP 11 d Costa et al. (2011)
Enz.pH 8 Acetone ppt SF-2.0 HPLC 22 4 49 13 11 DP 18
Sargassum fulvellum HCl pH 2 hot PQA Fr 0.5 GC 38 23 26 6 7 DP 13 23 Koo et al. (2001)
HCl pH 2 hot PQA Fr 3 GC 44 6 43 3 4 DP 55 4
Sargassum fusiforme H2O, hot AEC+SEC SFPS GC 53 9 20 21 DP 11 6 Chen et al. (2012)
Enzymes AP/R+SEC 65A GC 42 15 21 6 2 14 DP 17 d Hu et al. (2016)
H2O+CaCl2 2% AEC+SEC FP08S2 GC 37 18 19 7 19 EA 21 d Cong et al. (2016)
HCl 0.01M+CaCl2 4M AEC+SEC SFF42 HPLC 31 6 19 29 3 12 DP 17 12 Wu et al. (2019)
HCl 0.01M+CaCl2 4M AEC+SEC SFF5 HPLC 50 3 31 10 3 3 DP 24 10
Sargassum hemiphyllum H2O, PTe CaCl2 2%+AP/R SH3 PAD 54 1 19 15 3 8 Ac IC 24 6 Huang et al. (2017)
Sargassum henslowianum H2O, AP/R AEC+SEC SHAP-1 HPLC 76 24 EA 32 0 Sun et al. (2020)
H2O, AP/R AEC+SEC SHAP-2 HPLC 75 25 EA 32 0
Sargassum horneri HCl 0.1M hot AEC Sh-F1 HPLC 81 3 8 7 DP 15 ND Ermakova et al. (2011)
HCl 0.1M hot AEC Sh-F2 HPLC 90 10 DP 0 ND
HCl 0.1M hot AEC Sh-F3 HPLC 69 31 DP 17 ND
CaCl2 2% hot AEC GC 90 10 DP 23 ND Silchenko et al. (2017)
Sargassum latifolium H2O, hot AEC+SEC SP-I HPLC 14 14 42 23 16 d Asker et al. (2007)
H2O, hot AEC+SEC SP-II HPLC 10 13 41 29 19 d
H2O, hot AEC+SEC SP-III HPLC 16 12 32 35 22 d
Sargassum mcclurei HCl pH 2.5 hot HC+AEC SmF1 HPLC 27 6 20 34 13 DP 17 ND Thinh et al. (2013)
HCl pH 2.5 hot HC+AEC SmF2 HPLC 45 5 34 5 10 DP 26 ND
HCl pH 2.5 hot HC+AEC SmF3 HPLC 59 41 DP 35 ND
Sargassum muticum pH 7.5+CaCl2 1% EtOH+TCA 10% FF GC 44 5 46 3 3 Tit 12 9 Mabeau et al. (1990)
Triton 0.5%, pH 7.5+CaCl2 1% EtOH+TCA 10% TF GC 84 2 14 Tit 8 11
HCl 0.01M+CaCl2 1% HF GC 46 21 11 17 5 Tit 9 25
HCl 0.1M hot AEC 1SmF1 GC 52 33 15 DP 26 ND Usoltseva et al. (2017b)
HCl 0.1M hot AEC 1SmF3 GC 67 33 Ac DP 48 ND
Sargassum oligocystum HCl 0.1M hot AEC 1SoF1 HPLC 43 4 8 35 8 DP 17 ND Men’shova et al. (2013)
HCl 0.1M hot AEC 1SoF2 HPLC 53 5 21 10 10 DP 24 ND
HCl 0.1M hot AEC 1SoF3 HPLC 77 23 DP 32 ND
Sargassum pallidum HCl 0.2M hot Sterile HPLC 46 8 10 10 14 13 ND ND Skriptsova et al. (2012)
HCl 0.2M hot Reprod. HPLC 52 6 16 9 3 14 ND ND
H2O, r.t. Ethanol ppt SPC60 GC 41 5 17 27 10 DP 4 33 Liu et al. (2016)
H2O, hot Ethanol ppt SPH60 GC 32 4 14 23 25 DP 4 29
H2O, hot Ethanol ppt SPH70 GC 37 4 24 22 10 DP 7 20
Sargassum polycystum HCl pH 2-3 hot HC+AEC F1 GC 29 22 19 19 11 DP 7 23 Bilan et al. (2013)
HCl pH 2-3 hot HC+AEC F2 GC 44 13 28 9 5 DP 20 11
HCl pH 2-3 hot HC+AEC F3 GC 69 4 25 tr. tr. DP 33 2
HCl pH 2-3 hot HC+AEC F4 GC 63 3 34 DP 34 2
Enzymes pH 4.5 CaCl2 5M SPF PAD 63 6 8 NIf 22 DP 28 Fernando et al. (2018)
Sargassum ringgoldianum HCl 0.05M Ca(AcO)2+AEC Fr-B GC 44 17 18 17 5 DP 16 10 Mori and Nisizawa (1982)
HCl 0.05M Ca(AcO)2+AEC Fr-C GC 58 6 28 7 1 DP 24 7
Sargassum stenophyllum H2O+CaCl2 4M PQA F2 GC 60 9 21 10 DP 19 11 Duarte et al. (2001)
H2O+CaCl2 4M PQA F3 GC 52 7 23 17 DP 21 10
H2O+CaCl2 4M PQA F5 GC 60 5 31 2 2 DP 28 2
Sargassum swartzii HCl 0.1M +CaCl2 2% PQA+AEC F2 PAD 50 3 29 5 3 Ara 7 DP 15 13 Ly et al. (2005)
HCl 0.1M +CaCl2 2% PQA+AEC F3 PAD 56 2 29 3 3 Ara 5 DP 18 5
HCl 0.1M +CaCl2 2% PQA+AEC F4 PAD 56 2 28 4 3 Ara 4 DP 28 8
HCl 0.05 M+CaCl2 4% AEC FF1 HPLC 58 6 22 14 DP 19 18 Dinesh et al. (2016)
HCl 0.05 M+CaCl2 4% AEC FF2 HPLC 63 4 18 15 DP 24 13
Sargassum tenerrimum HCl 0.1M +K2CO3 2% CaCl2 2%+ HCl 0.1M C GC 73 15 9 3 DP/IR 2 9 Sinha et al. (2010)
Sargassum trichophyllum H2O, hot AEC+SEC ST-F GC 80 20 Rho 23 1 Lee et al. (2011)
Sargassum thunbergii H2O+NaOH 0.5M AEC STSP-I GC 55 45 DP 0 ND Luo et al. (2019)
Sargassum vachellianum H2O CaCl2 SPS HPLC 65 5 12 15 3 DP 12 1 Jesumani et al. (2020)
Sargassum vulgare Enz. pH 8 AEC Flo 1.5 Col. 50g 25 HexA 25 TB ∼ 15 d Dietrich et al. (1995)
Enz. pH 8 AEC Flo 2.5 Col. 77g 8 HexA 15 TB ∼ 41 d

aKey: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; PQA, precipitation with quaternary ammonium salts; AP/R alcohol precipitation and redissolution.

bKey for the less common abbreviations: PAD, HPAEC with pulse amperometric detector; GC, gas chromatography; Col., colorimetric methods.

cKey: DP, method of Dodgson and Price (1962) or equivalent; IC, ion chromatography; EA, elemental analysis; IR, estimation by area of IR bands; TB, toluidine blue; Rho, rhodizonate; Tit, titration with cetylpyridinium chloride, pH 1.5 (Scott, 1960).

dThe information for the uronic acid is included in the molar ratio of monosaccharides. ePT = high pressure and temperature.

fNI = sugar not identified.

gFuc, Xyl and uronic acid were the only monosaccharides which could be determined.

Dietrich et al. (1995) studied the polysaccharides from Sargassum vulgare, differentiating whole plants and floaters. The fucoidan fractions corresponded to sulfated xylofucans containing important proportions of uronic acids. The proportion of sulfate is clearly higher in floaters. The ratio Fuc/Xyl/HexA varied between 1:0.5:0.5 and 1:0.1:0.2. However, only Fuc, Xyl and uronic acid have been determined in this investigation, missing other sugars possibly present.

For Sargassum fusiforme, the presence of galacturonic acid was detected (Hu et al., 2014). However, it has been shown later that this monosaccharide was part of a contaminating polysaccharide which could be separated by careful fractionation (Cong et al., 2016; Hu et al., 2016).

For the remaining members of the Fucales, the data is shown in Table 3. Mian and Percival (1973) carried out studies on Bifurcaria bifurcata and Himanthalia lorea. The data is shown only partially in Table 3, as Gal could not be quantified. Fractionation by ion exchange chromatography showed fractions with high uronic acid/low sulfate content using lower ionic strengths, and high sulfate, high Fuc, low uronic acid content in the later elutions. This behavior was observed for many further studies, regardless of the taxonomy of the seaweed. In some cases, like for Nizamuddinia zanardinii, the authors have devoted a lot of work in order to search for different extraction methods (Alboofetileh et al., 2019a,b,c). In Table 3 we have included the analysis of one extraction method, as the characteristics of the polysaccharides appear to be quite similar.

TABLE 3.

Reported compositions of the fucoidans from the order Fucales not belonging to the family Fucaceae or to the genus Sargassum (Sargassaceae).

Species Extraction Purification/ Acronym Monosaccharide composition (moles %)
Sulfate
UA (%) References
Fractionationa Methodb Fuc Xyl Gal Man Glc Rha GlcA Others Methodc %
Family Sargassaceae
Bifurcaria bifurcata CaCl2 2% +HCl pH2 AEC 0.3M GC+PC XX X tre JL 5 20 Mian and Percival (1973)
CaCl2 2% +HCl pH2 AEC 1M GC+PC XX tr. Xe JL 30 3
HCl 0.01M+CaCl2 1% GC 73 10 10 4 3 Tit 20 16 Mabeau and Kloareg (1987)
Coccophora langsdorfii HCl 0.1M r.t. AEC Cf2 HPLC 86 3 7 HexA 4,Ac DP 25 d Imbs et al. (2016)
Cystoseira barbata HCl 0.1M hot CBSP GC 45 4 34 3 8 6 Ac EA 23 7 Sellimi et al. (2014)
Cystoseira compressa HCl 0.1M hot CCF GC 62 4 24 8 DP 15 9 Hentati et al. (2018)
Cystoseira indica H2O, r.t. CiWE GC 75 14 11 DP/IR 8 4 Mandal et al. (2007)
H2O, r.t. AEC CiF3 GC 84 7 5 4 DP/IR 9 2
Hizikia fusiforme H2O+CaCl2 3M AEC F2 GC 38 8 18 30 4 1 DP 12 29 Li et al. (2006)
H2O+CaCl2 3M AEC+SEC F33 GC 38 5 22 27 5 2 DP 3 32
H2O+CaCl2 3M AEC YF5 HPLC 44 21 18 16 DP 20 d Wang et al. (2012)
Hormophysa cuneiformis H2O+HCl pH 1 FHC GC 39 5 47 5 4 DP 23 5 Bilan et al. (2018)
H2O+HCl pH 1 AEC F2 GC 33 11 50 4 2 DP 18 7
H2O+HCl pH 1 AEC F3 GC 79 2 19 DP 35 2
Nizamuddinia zanardinii H2O CaCl2 1% HWE-F GC 31 6 28 32 5 DP 18 1 Alboofetileh et al. (2019a)
Turbinaria conoides HCl 0.1M AEC AF3 GC 54 18 28 + DP/IR 4 ND Chattopadhyay et al. (2010)
Turbinaria ornata HCl 0.1M hot AEC ToF2 HPLC 83 17 DP 32 ND Ermakova et al. (2016)
Enzymes pH 4.5 CaCl2+AEC F2 PAD 46 22 NIf 32 DP 10 ND Jayawardena et al. (2019)
Enzymes pH 4.5 CaCl2+AEC F7 PAD 63 5 6 NI 25 DP 30 ND
Turbinaria turbinata Enzymes pH 5 AEC TtF3 GC 61 2 19 4 13 Ara 1,Ac ND ND Monsur et al. (2017)
Family Durvillaeaceae
Durvillaea antarctica H2O, MWg DAP GC 3 3 9 78 Sorbose 8 ND ND He et al. (2016)
Durvillaea potatorum HCl pH 1 hot Acetone ppt AFS HPLC 32 4 64 DP 13 Lorbeer et al. (2017)
Family Himanthaliaceae
Himanthalia elongata H2O+HCl 0.1M F-HCl GC 17 1 29 3 50 DP 6 3 Mateos-Aparicio et al. (2018)
Himanthalia lorea CaCl2 2% +HCl pH2 AEC 0.3M GC+PC XX X tr.e JL 2 19 Mian and Percival (1973)
CaCl2 2% +HCl pH2 AEC 1M GC+PC XX tr. Xe JL 29 4
Family Seirococcaceae
Marginariella boryana H2SO4 1% r.t. Reprod. GC 72 2 17 1 7 ND 3 Wozniak et al. (2015)
H2SO4 1% r.t. Vegetat. GC 45 21 12 13 7 2 ND 13
Seirococcus axillaris HCl pH 1 hot Acetone ppt AFS HPLC 61 16 14 3 2 4 DP 20 d Lorbeer et al. (2017)

aKey: AEC, anion exchange chromatography; SEC, size-exclusion chromatography.

bKey for the less common abbreviations: PC, paper chromatography; GC, gas chromatography; PAD, HPAEC with pulse amperometric detector.

cKey DP, method of Dodgson and Price (1962) or equivalent; JL, method of Jones and Letham (1954); IR, estimation by area of IR bands; EA, elemental analysis by different methods; Tit, titration with cetylpyridinium chloride, pH 1.5 (Scott, 1960).

dThe information for the uronic acid is included in the molar ratio of monosaccharides.

eAs galactose could not be quantified, the data is semiquantitative.

fNI = sugar not identified.

gMicrowave-aided extraction.

For Marginariella boryana, Wozniak et al. (2015) analyzed the polysaccharides extracted from vegetative structures (blades and vesicles) and receptacles (reproductive structures) separately. The proportions of Xyl, Man, and uronic acid increase significantly in the vegetative structures (Table 3). Within the family Durvillaeaceae two species were studies. Both in Durvillaea antarctica (He et al., 2016) and D. potatorum (Lorbeer et al., 2017), the proportion of Glc was so large that it obscured the analysis of the fucoidan constituents, even when purification procedures (successful with other seaweeds) to avoid contamination with laminaran were carried out (Lorbeer et al., 2017).

Most of the fucoidans analyzed from the Fucales were galactofucans, usually with small proportions of Xyl, with the exception of those of Ascophyllum nodosum (Table 1). Man and GlcA appeared in variable amounts.

Dictyotales

The data on the fucoidans from different species of the order Dictyotales is shown in Table 4. It should be mentioned that for Dictyota mertensii, the information is incomplete, as only Fuc, Xyl and uronic acid have been determined (Dietrich et al., 1995).

TABLE 4.

Reported compositions of the fucoidans from the order Dictyotales.

Species Extraction Purification/ Acronym Monosaccharide composition (moles %)
Sulfate
UA (%) References
Fractionationa Methodb Fuc Xyl Gal Man Glc Rha GlcA Others Methodc %
Canistrocarpus cervicornis Enz.pH 8 Acetone ppt CC-0.7 HPLC 33 17 50 DP 19 d Camara et al. (2011)
Enz.pH 8 Acetone ppt CC-2.0 HPLC 20 10 40 10 20 DP 20 d
Dictyopteris plagiogramma CaCl2 2% +HCl pH2 C GC 42 10 16 8 3 21 JL 4 d Percival et al. (1981)
Dictyopteris polypodioides HCl 0.1M hot HC+AEC Dp-F2 HPLC 48 19 5 14 5 9 DP 13 ND Sokolova et al. (2011)
HCl 0.1M hot HC+AEC Dp-F4 HPLC 38 8 31 4 8 12 DP 13 ND
Dictyota dichotoma HCl pH 1 hot Ethanol ppt R PC 25 16 25 10 24 BC 16 d Abdel-Fattah et al. (1978)
HCl pH 2 r.t. PQA EAR-0.5 GC 40 30 6 16 4 DP 13 40 Rabanal et al. (2014)
HCl pH 2 r.t. PQA EAR-2 GC 43 16 28 10 2 DP 33 14
HCl pH 2 hot PQA EAH1-1.5 GC 41 26 5 25 1 2 DP 19 30
HCl pH 2 hot PQA EAH2-0.5 GC 26 36 4 33 1 DP 10 42
HCl pH 2 hot PQA EAH4-0.5 GC 10 30 5 51 3 DP 5 48
HCl 0.1M hot AEC+HC DdF GC 52 12 10 9 17 Ac DP 2 ND Shevchenko et al. (2017)
HCl 0.1M hot AEC (x 2) DdF HPLC 58 20 12 9 Ac DP 29 ND Usoltseva et al. (2018b)
Dictyota divaricata HCl 0.1M hot AEC+HC DdiF1 GC 61 31 4 4 Ac DP 11 ND Shevchenko et al. (2017)
HCl 0.1M hot AEC+HC DdiF2 GC 43 5 44 4 4 DP 18 ND
Dictyota menstrualis Enz. pH 8 Acetone ppt F1.0v PC+GC 30 24 24 HexA 21 ∼ 5 d Albuquerque et al. (2004)
Enz. pH 8 Acetone ppt F1.5v PC+GC 31 9 47 HexA 13 ∼ 16 d
Dictyota mertensii Enz. pH 8 AEC 1M Col. 26e 32 HexA 42 TB ∼ 20 d Dietrich et al. (1995)
Enz. pH 8 AEC 2.5+3M Col. 56e 11 HexA 33 TB ∼ 37 d
Enz. pH 8 Acetone ppt ADm GC 33 20 47 DP ∼ 22 d Queiroz et al. (2008)
Lobophora variegata Enz. pH 8 Acet + SEC Lv GC 25 75 Ac DP ∼ 3 Medeiros et al. (2008)
Padina australis CaCl2 2% hot PQA Fpa GC 60 8 29 3 DP 22 21 Yuguchi et al. (2016)
Padina boryana HCl 0.1M hot AEC+HC PbF GC 61 31 4 3 Ac DP 18 ND Shevchenko et al. (2017)
HCl 0.1M hot AEC (x 2) PbF GC 40 37 17 6 Ac DP 19 ND Usoltseva et al. (2018a)
Padina gymnospora Enz. pH 8 Acet + SEC PF1 PC+GC 36 11 7 46 DP 6 d Silva et al. (2005)
Enz. pH 8 Acet + SEC PF2 PC+GC 39 8 6 47 DP 3 d
Padina pavonica CaCl2 2% +HCl pH2 AEC 0.3M PC+GC XX X tr.f JL 3 20 Mian and Percival (1973)
CaCl2 2% +HCl pH2 AEC 1M PC+GC XX tr. Xf JL 17 5
HCl pH 2.5 hot AEC Purified PC 16 16 11 13 13 30 BC 19 d Hussein et al. (1980)
HCl 0.1M hot AEC 4PpF1 HPLC 43 13 9 17 17 DP 4 ND Men’shova et al. (2012)
HCl 0.1M hot AEC 4PpF2 HPLC 53 16 16 10 5 DP 14 ND
HCl 0.1M hot AEC 4PpF3 HPLC 59 6 18 18 DP 18 ND
Padina tetrastomatica H2O CaCl2 2% ppt PtWE1 GC 59 23 10 3 5 ND 9 Karmakar et al. (2009)
H2O AEC+SEC F3 GC 72 25 3 DP/IR ∼ 8 4
HCl 0.1M r.t. Ext. A GC 68 16 9 5 2 DP/IR ∼ 3 5 Karmakar et al. (2010)
HCl 0.1M +K2CO3 2% CaCl2 2% ppt Ext. C GC 73 16 11 DP/IR ∼ 6 5
Spatoglossum asperum H2O+CaCl2 1% AP/R HPLC 61 6 25 4 3 DP 21 ND Palanisamy et al. (2017)
Spatoglossum schroederi Enz. pH 8 Acetone ppt Fuc. A GC 53 18 29 DP ∼ 28 d Queiroz et al. (2008)
Enz. pH 8 Acetone ppt Fuc. B GC 27 14 55 4 DP ∼ 37 d
Enz. pH 8 Acet.+AEC Fuc. B GC 28 14 56 2 TB 19 d Menezes et al. (2018)
Stoechospermum marginatum H2O AEC (x 2) F3 GC 96 2 2 DP/IR 13 Adhikari et al. (2006)

aKey: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; PQA, precipitation with quaternary ammonium salts; Acet, fractional precipitation with acetone; AP/R alcohol precipitation and redissolution.

bKey for the less common abbreviations: PC, paper chromatography; GC, gas chromatography; Col., colorimetric methods.

cKey DP, method of Dodgson and Price (1962) or equivalent; JL, method of Jones and Letham (1954); BC, method of barium chloranilate (Lloyd, 1959); TB, method of toluidine blue; IR, estimation by area of IR bands.

dThe information for the uronic acid is included in the molar ratio of monosaccharides.

eFuc, Xyl and uronic acid were the only monosaccharides which could be determined.

fAs galactose could not be quantified, the data is semiquantitative.

Padina pavonica was studied by Mian and Percival (1973), named then as P. pavonia. As occurred with the other seaweeds studied in that paper, the data on the table are incomplete, as Gal could not be quantified. Fraction 0.3M was rich in Fuc and Xyl, whereas fraction 1M was richer in Fuc, together with Gal. For this seaweed, Men’shova et al. (2012) carried out a seasonal study which showed that the proportion of Gal of the fucoidans increased markedly in all fractions when stepping down from spring to summer.

The fucoidans from the Dictyotales appear to be more heterogeneous than most of those of the Fucales. High proportions of Man and Rha appeared often (Table 4). However, an almost pure fucan sulfate was reported to be present in Stoechospermum marginatum (Adhikari et al., 2006) after careful purification.

Laminariales

Two species of Laminariales have been included in the early studies of Kylin (1913). They are Laminaria digitata and Saccharina lattisima (as Laminaria saccharina).

Many different species from the Laminariales have been studied thereafter, including species from four families (Agaraceae, Alariaceae, Laminariaceae, and Lessoniaceae). In order to keep up with the Silberfeld et al. (2014) taxonomy, we have included also a species from the Chorda genus (family Chordaceae) which has been recently proposed to be included in a new order, the Chordales (Starko et al., 2019). The data for the family Laminariaceae are shown in Table 5, whereas those of the remaining families appear in Table 6. It is worth noting that the species studied as Laminaria cichorioides and L. japonica are included in Table 5 as Saccharina cichorioides and S. japonica, respectively, in order to keep up with the newer taxonomy (Guiry and Guiry, 2020).

TABLE 5.

Reported compositions of the fucoidans from the family Laminariaceae (order Laminariales).

Species Extraction Purification/ Acronym Monosaccharide composition (moles %)
Sulfate
UA (%) References
Fractionationa Methodb Fuc Xyl Gal Man Glc Rha GlcA Others Meth.c %
Kjelmaniella crassifolia pH 6.5 hot HCl pH 2 ppt HPLC 84 5 10 ND 7 Sakai et al. (2002)
Enz. pH 4.5 AEC F1 HPLC 30 3 49 6 4 9 Ac DP 23 d Song et al. (2018)
Enz. pH 4.5 AEC F2 HPLC 47 8 15 12 1 16 Ac DP 16 d
Enz. pH 4.5 AEC F3 HPLC 67 2 23 3 1 4 DP 32 d
Laminaria angustata H2O PQA+AEC F4 GC 90 10 EA ∼22 1 Kitamura et al. (1991)
HCl pH 2 +PQA AEC+SEC LA-5 GC 2 98 DP 38 3 Nishino et al. (1994b)
HCl 0.1M PQA+AEC LA-2 PAD 95 5 DP 56 2 Tako et al. (2010)
Laminaria bongardiana CaCl2 2% hot PQA+AEC F-2 GC 53 8 20 15 3 Ac DP 20 12 Bilan et al. (2016)
CaCl2 2% hot PQA+AEC F-3 GC 39 4 54 2 1 Ac DP 26 3
Laminaria cichorioides See Saccharina cichorioides
Laminaria digitata HCl 0.01M+CaCl2 1% GC 62 21 9 4 4 Tit 9 15 Mabeau and Kloareg (1987)
pH 7.5+CaCl2 1% EtOH+TCA 10% FF GC 65 4 24 3 4 Tit 18 7 Mabeau et al. (1990)
Triton 0.5%, pH 7.5+CaCl2 1% EtOH+TCA 10% TF GC 47 15 20 11 7 Tit 11 12
CaCl2 2% hot PQA GC 73 5 15 4 3 DP 27 7 Cumashi et al. (2007)
CaCl2 2% hot GC 67 14 14 5 EA 20 10 Bittkau et al. (2020)
Laminaria hyperborea Exudation UF pFuc GC 98 2 tr. EA 54 Kopplin et al. (2018)
Laminaria japonica See Saccharina japonica
Laminaria longipes HCl 0.1M r.t. AEC LlF GC 100 DP 32 ND Usoltseva et al. (2019)
Laminaria religiosa HCl pH 2 hot PQA Fr 0.5 GC 34 12 14 21 19 DP 9 35 Koo et al. (2001)
HCl pH 2 hot PQA Fr. 3 GC 61 1 28 7 3 DP 39 18
Macrocystis pyrifera Exudation AP/R PC+CC 92 2 6 tr. 19 Schweiger (1962)
SigmaTM HPLC 79 3 12 3 3 DP 27 5 Zhang et al. (2015)
HCl pH 1 hot Acetone ppt AFS HPLC 80 17 3 DP 24 Lorbeer et al. (2017)
Saccharina cichorioides HCl 0.4%+H2O HC L.c.F-2 HPLC 81 2 4 2 3 8 DP ∼35 ND Zvyagintseva et al. (1999)
HCl 0.4% r.t. HC Lc2-F1 HPLC 72 7 8 8 5 DP ∼30 ND Zvyagintseva et al. (2003)
HCl 0.4% +H2O HC Lc2-F2 HPLC 100 DP ∼36 ND
HCl pH 2-2.3 hot AEC Lc-F2 HPLC 98 2 DP 30 ND Anastyuk et al. (2010)
HCl 0.1M r.t. AEC Sc-F1 HPLC 95 5 DP 21 ND Vishchuk et al. (2013)
HCl 0.1M r.t. AEC Sc-F2 HPLC 100 DP 39 ND
HCl pH 2-2.3 AEC ScF HPLC 89 2 6 3 DP 26 ND Prokofjeva et al. (2013)
HCl 0.1M r.t. AEC ScF GC 98 2 DP 36 ND Usoltseva et al. (2019)
Saccharina gurjanovae HCl pH 2-2.3 AEC SgGF HPLC 64 21 15 Ac DP 28 ND Prokofjeva et al. (2013)
CaCl2 2% hot AEC (x 2) SgF GC 76 24 Ac DP 25 ND Shevchenko et al. (2015)
Saccharina japonica HCl 0.4% +H2O HC L.j.-F-2 HPLC 94 2 3 1 ND ND Zvyagintseva et al. (1999)
HCl 0.4% r.t. HC Lj1-F1 HPLC 55 7 26 6 3 3 ND ND Zvyagintseva et al. (2003)
HCl 0.4% +H2O HC Lj1-F2 HPLC 84 1 12 1 2 DP ∼25 ND
HCl pH 3 r.t. AEC L HPLC 61 5 14 16 4 DP 21 18 Ozawa et al. (2006)
HCl pH 3 r.t. AEC GA HPLC 90 10 DP 38 1
HCl 0.1M hot AEC Sj-F1 HPLC 53 1 29 15 2 DP 10 ND Vishchuk et al. (2011)
HCl 0.1M hot AEC Sj-F2 HPLC 61 2 33 1 3 Ac DP 23 ND
HCl 0.2M hot Sterile HPLC 41 8 14 12 14 11 ND ND Skriptsova et al. (2012)
HCl 0.2M hot Reprod. HPLC 25 3 13 4 48 7 ND ND
HCl 0.1M hot AEC Sj-sF2 HPLC 62 6 21 9 2 DP 21 ND Vishchuk et al. (2012)
HCl 0.1M hot AEC Sj-fF2 HPLC 58 37 5 DP 23 ND
HCl pH 2-2.3 AEC SjGF HPLC 50 1 44 5 Ac DP 23 ND Prokofjeva et al. (2013)
HCl pH 2.5 hot B CZE 54 3 29 3 1 10 ND d Guo et al. (2013)
H2O hot CaCl2 1%+AP/R LJF HPLC 34 2 37 23 1 3 DP 14 3 Qu et al. (2014)
HCO2H 0.1%, PTe CaCl2 1% HPLC 57 17 21 5 DP 24 10 Saravana et al. (2016)
Saccharina latissima CaCl2 2% hot PQA GC 80 3 10 2 5 DP 30 5 Cumashi et al. (2007)
CaCl2 2% hot PQA+AEC F-1.0 GC 46 5 32 14 3 DP 16 23 Bilan et al. (2010)
CaCl2 2% hot PQA+AEC F-1.25 GC 78 2 18 2 DP 37 2
CaCl2 2% hot AEC B06-F2 GC 56 14 14 13 3 EA 6 Ehrig and Alban (2015)
CaCl2 2% hot AEC B06-F3 GC 76 3 20 1 EA 16
CaCl2 2% hot GC 84 7 7 2 EA 29 6 Bittkau et al. (2020)
Enz.pH6 + CaCl2 2% AEC SlF3 PAD 63 3 27 2 HexA 4 DP 46 d Nguyen et al. (2020)
Saccharina longicruris CaCl2 2% +HCl 0.01M B ND EA 14 8 Rioux et al. (2007)

aKey: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; PQA, precipitation with quaternary ammonium salts; AP/R alcohol precipitation and redissolution; UF, ultrafiltration.

bKey for the less common abbreviations: PAD, HPAEC with pulse amperometric detector; PC, paper chromatography; GC, gas chromatography; CC, column chromatography on cellulose; CZE, capillary zone electrophoresis.

cKey DP, method of Dodgson and Price (1962) or equivalent; EA, elemental analysis by different methods; Tit, titration with cetylpyridinium chloride, pH 1.5 (Scott, 1960).

dThe information for the uronic acid is included in the molar ratio of monosaccharides.

eHigh pressure and temperature have been applied.

TABLE 6.

Reported compositions of the fucoidans from the order Laminariales (families other than the Laminariaceae).

Species Extraction Purification/ Acronym Monosaccharide composition (moles %)
Sulfate
UA (%) References
Fractionationa Methodb Fuc Xyl Gal Man Glc Rha GlcA Others Methodc %
Family Agaraceae
Costaria costata HCl pH 2-2.3 hot FLM7 HPLC 62 4 18 5 7 4 DP 12 ND Imbs et al. (2009)
HCl 0.1M hot AEC CcF HPLC 51 3 43 tr. 3 Ac DP 19 ND Ermakova et al. (2011)
HCl pH 2-2.3 r.t. HC F1.5 HPLC 70 20 7 3 DP 24 d Imbs et al. (2011)
HCl pH 2-2.3 hot AEC 5F2 GC 30 16 8 15 15 DP 15 d Anastyuk et al. (2012a)
HCl pH 2-2.3 hot AEC 5F3 GC 40 12 21 12 6 7 DP 15 d
HCl pH 2-2.3 CcGF HPLC 63 30 3 2 Ac DP 23 ND Prokofjeva et al. (2013)
Enz. pH 4.5 AP/R+AEC F2 GC 17 7 8 61 8 Grav 1 ND Wang et al. (2014)
Enz. pH 4.5 AP/R+AEC F4 GC 47 17 17 12 8 Grav 23 ND
Enz. pH 4.5 AEC 6F1 GC 21 11 20 30 7 10 DP 9 4 Liu et al. (2018)
Enz. pH 4.5 AEC 6F2 GC 31 15 9 26 11 8 DP 10 6
Family Alariaceae
Alaria angusta HCl 0.1M hot HC+AEC AaF2 HPLC 75 7 18 DP 14 ND Menshova et al. (2015)
HCl 0.1M hot HC+AEC AaF3 HPLC 53 47 Ac DP 24 ND
Alaria marginata HCl 0.1M hot HC+AEC AmF2 HPLC 81 9 11 DP 21 ND Usoltseva et al. (2016)
HCl 0.1M hot HC+AEC AmF3 HPLC 48 5 47 Ac DP 28 ND
Alaria ochotensis HCl 0.2M hot Sterile HPLC 18 4 10 4 59 6 ND ND Skriptsova et al. (2012)
HCl 0.2M hot Reprod. HPLC 25 3 23 5 40 4 ND ND
HCl pH 2-2.3 AEC AoGF HPLC 54 38 8 DP 24 ND Prokofjeva et al. (2013)
Undaria pinnatifida HCl 0.15M AEC+SEC CF-4B GC 48 52 EA 32 2 Lee et al. (2004)
H2SO4 1% r.t. AEC F2M GC 54 45 1 EA ∼ 28 1 Hemmingson et al. (2006)
HCl 0.2M hot UF F > 30K HPLC 64 32 4 DP 32 ND You et al. (2010)
HCl 0.1M r.t. AP/R+AEC GC 51 4 45 Ac EA 30 ND Synytsya et al. (2010)
HCl 0.1M hot AEC Up-F1 HPLC 59 2 30 8 1 DP 14 ND Vishchuk et al. (2011)
HCl 0.1M hot AEC Up-F2 HPLC 51 48 1 Ac DP 29 ND
CaCl2 2% hot PQA+AEC F1 GC 49 4 38 7 3 DP 7 4 Mak et al. (2013)
CaCl2 2% hot PQA+AEC F3 GC 60 2 29 7 3 DP 25 1
HCl 0.2M r.t. GC 53 42 2 3 ND 2 Wozniak et al. (2015)
SigmaTM PAD 55 45 DP 26 2 Lu et al. (2018)
H2O+CaCl2 2% SEC F300 HPLC 56 7 35 2 DP 20 5 Koh et al. (2019)
Family Chordaceaee
Chorda filum CaCl2 2% hot AEC A-2 GC 95 1 1 1 2 Ac DP 26 Chizhov et al. (1999)
Na2CO3 3% AEC C-1 GC 83 3 1 8 4 DP 13 5
Na2CO3 3% AEC C-2 GC 72 11 5 7 4 DP 13 3
Family Lessoniaceae
Ecklonia cava HCl 0.1M hot AEC Ec-F1 HPLC 70 15 4 11 DP 19 ND Ermakova et al. (2011)
HCl 0.1M hot AEC Ec-F2 HPLC 57 16 23 4 DP 22 ND
Enz.+CaCl2 4M PQA+AEC F1 PAD 53 8 33 2 4 DP 20 16 Lee et al. (2012)
Enz.+CaCl2 4M PQA+AEC F2 PAD 60 4 31 1 4 DP 16 14
Enz.+CaCl2 4M PQA+AEC F3 PAD 78 8 10 2 2 DP 39 9
Ecklonia kurome H2O+PQA AEC+SEC B-I GC 34 34 13 18 DP 19 30 Nishino et al. (1989)
H2O+PQA AEC+SEC C-I GC 97 3 DP 47 2
H2O+PQA AEC+SEC C-II GC 83 17 DP 43 4
Ecklonia maxima H2O hot CaCl2 1% +AP/R EMF HPLC 63 2 12 17 3 3 DP 21 tr. Qu et al. (2014)
Ecklonia radiata HCl pH 2 hot CaCl2 0.5% 6 min HPLC 57 6 37 DP 22 2 Lorbeer et al. (2015)
HCl pH 1 hot Acetone ppt AFS HPLC 84 3 8 3 3 DP 28 1 Lorbeer et al. (2017)
Eisenia bicyclis HCl 0.1M hot AEC EbF HPLC 67 7 20 7 DP 14 ND Ermakova et al. (2013)
Lessonia nigrescens HCl pH 2 hot B-Stipes PC+GC 63 14 13 10 JL 6 29 Percival et al. (1983)
HCl pH 2 hot B-Frond PC+GC 82 12 6 JL 7 17
HCl pH 2+ Na2CO3 3% AEC DF PC+GC 57 13 21 9 JL ND ND
H2O hot CaCl2 1% +AP/R LNF HPLC 65 11 14 4 6 DP 17 Qu et al. (2014)
Lessonia trabeculata H2O hot CaCl2 1% +AP/R LTF HPLC 53 3 25 11 4 4 DP 16 tr. Qu et al. (2014)
Lessonia vadosa CaCl2 2%+HCl 0.25M GC ∼100 tr. tr. DP 38 Chandía and Matsuhiro (2008)
Lessonia sp. CaCl2 2% hot AEC B’-F1 GC (~100 tr. tr. DP 37 4 Leal et al. (2018)

aKey: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; PQA, precipitation with quaternary ammonium salts; AP/R alcohol precipitation and redissolution; UF, ultrafiltration.

bKey for the less common abbreviations: PAD, HPAEC with pulse amperometric detector; GC, gas chromatography.

cKey: JL, method of Jones and Letham (1954); DP, method of Dodgson and Price (1962) or equivalent; IC, ion chromatography; EA, elemental analysis; Grav, gravimetric method.

dThe information for the uronic acid is included in the molar ratio of monosaccharides.

eThis family has been included recently in a separate order, the Chordales (Starko et al., 2019).

Many galactofucans have been found within the Laminariaceae family, usually with low proportions of Xyl or Man. However, several fractions containing almost pure fucans have been found in Laminaria angustata, L. hyperborea, Macrocystis pyrifera, Saccharina cichorioides, and S. japonica (Table 5). For L. angustata, Nishino et al. (1994b) have isolated a homogalactan sulfate, probably in the only case that an almost fucose-free product is found within the “fucoidan” fractions of brown seaweeds. The trend showing mixtures of polysaccharides separable by charge also occurs for the products from the Laminariales: usually heterogeneous polymers, containing high proportions of uronic acids, and low sulfation appear in the early-eluting fractions of anion exchange chromatography, whereas highly sulfated fucans or galactofucans appear in the late-eluting fractions.

Seasonal differences were also observed: for Costaria costata, Imbs et al. (2009) determined that the proportion of Fuc, Gal, Glc, and sulfate increased from spring to summer, whereas those of Man, Rha, and Xyl decreased. This trend is similar to that observed by Men’shova et al. (2012) for Padina pavonica (see above). In another study, carried out for Saccharina cichorioides (as Laminaria cichorioides), it has been shown that after the summer, and through fall, the proportion of Fuc decreases again, whereas that of Man increases clearly (Anastyuk et al., 2010).

On the basis of chemical degradations and NMR spectroscopy, Bilan et al. (2010) arrived to many structural features of the fucoidans from Saccharina lattisima. Ehrig and Alban (2015) have shown the large effect of the marine habitat and season on the characteristics of the isolated fucoidans of this seaweed. Samples picked up in the Baltic Sea showed more laminaran contamination and lower fucoidan yields, fucose, and sulfate content than those collected around the Faroe Islands (regardless of the season), although the uronic acid content was similar. Regarding the season effects, the proportion of sulfate was higher in fucoidans from seaweeds collected in September than in May. Anion-exchange chromatography separation showed that only from the September-collected seaweed it was possible to obtain high yields of a high-fucose fraction with the highest biological activity. However, in a further work from the same group (Bittkau et al., 2020), the authors have isolated such a fraction with high fucose and sulfate content from the same North Atlantic location, in July without the need of any purification, suggesting that the year of collection has a major effect on the composition of the isolated fucoidans.

A study carried out with an unidentified species of Alaria (Alaria sp., Vishchuk et al., 2012) was later ascertained as being A. ochotensis (Prokofjeva et al., 2013). In the Alaria species studied so far, it is noteworthy to mention the presence of fucogalactans with approximately equal proportions of Fuc and Gal (Table 6).

For Costaria costata, high proportions of Man have been encountered in the polymers, especially in the less charged fractions isolated in some studies (Wang et al., 2014). In any case, Man appears conspicuously in most of the studies carried out on fucoidans of any origin.

The polysaccharides from Undaria pinnatifida were studied by many research groups, probably due to the fact that this seaweed, native from northeastern Asia, is very invasive and now is widespread all around the world (Casas et al., 2004; Thornber et al., 2004). It is worth noting that most of the studies have shown the presence of a galactofucan with high proportions of Gal, sometimes leveling out with Fuc. The proportion of other sugars (Man, Xyl and uronic acids) is usually low, whereas the proportion of sulfate is considerable, but lower than those of other species (Table 6).

Other Orders

The analysis of the fucoidans of different species of the order Ectocarpales appears in Table 7. In this survey, only reports for ten different species (belonging to three families) of the order have been found. Highly sulfated galactofucans or homofucans coexist with polysaccharides containing significant proportions of Man, GlcA and/or Xyl.

TABLE 7.

Reported compositions of the fucoidans from the orders Ascoseirales, Desmarestiales, Ectocarpales, Ralfsiales, and Scytothamnales.

Species Extraction Purification/ Acronym Monosaccharide composition (moles %)
Sulfate
UA (%) References
Fractionationa Methodb Fuc Xyl Gal Man Glc Rha GlcA Others Methodc %
Ascoseirales
Ascoseira mirabilis CaCl2 2% hot AEC+SEC 1AF PC+GC 29 9 19 9 10 25 JL 12 d,e Finch et al. (1986)
Na2CO3 3% hot AEC+SEC 3AF PC+GC 17 9 31 14 9 17 JL 8 d,e
Desmarestiales
Desmarestia aculeata Na2CO3 3% hot GC+PC 21 3 41 35 JL Low d Percival and Young (1974)
Desmarestia firma H2O AEC F0.3M GC+PC X X X ∼50f X ManA X JL 1 17 Carlberg et al. (1978)
Desmarestia ligulata H2O AEC F0.2M GC 52 3 5 1 38 JL 3 d
H2O AEC F0.5M GC 66 7 18 9 JL 20 4
Desmarestia viridis HCl 0.1M hot AEC+HC DvF GC 63 13 17 7 Ac DP 12 ND Shevchenko et al. (2017)
Ectocarpales
Family Adenocystaceae
Adenocystis utricularis HCl pH 2 r.t. PQA EA1-5 GC 47 4 9 26 6 8 DP 5 42 Ponce et al. (2003)
HCl pH 2 r.t. PQA EA1-20 GC 83 15 1 DP 23 4
HCl pH 2 hot PQA EA2-5 GC 58 3 6 29 1 3 DP 6 31
HCl pH 2 hot PQA EA2-20 GC 75 1 21 1 1 1 DP 21 6
Family Chordariaceae
Cladosiphon okamuranus HCl pH3 CaCl2 3.5%+AEC GC 86 14 Ac DP ∼ 12 d Nagaoka et al. (1999)
ND GC 91 2 7 DP 15 23 Cumashi et al. (2007)
HCl 0.05M r.t. CaCl2 0.1M CAF PAD 99 1 Ac DP ∼ 16 12 Teruya et al. (2009)
ND CE GC 95 3 1 DP 15 9 Lim et al. (2019)
Chordaria flagelliformis CaCl2 2% hot AEC F2 GC 80 5 12 2 Ac DP 18 16 Bilan et al. (2008)
CaCl2 2% hot AEC F3 GC 96 4 Ac DP 27 13
CaCl2 2% hot AEC F4 GC 100 Ac DP 27 10
Dictyosiphon foeniculaceus CaCl2 2% hot GC 39 32 16 6 5 EA 9 10 Bittkau et al. (2020)
Leathesia difformis HCl pH 2 r.t. Ea GC 90 6 4 DP 6 3 Feldman et al. (1999)
Nemacystus decipiens H2O, Pressure HN0 PAD 66 10 3 3 9 Fru 9,GalN 2 IC 20 36 Li et al. (2017)
H2O CaCl2 3M+AEC NP1 HPLC 74 3 5 2 15 DP 4 d Cui et al. (2018)
H2O+CaCl2 AEC+SEC NP2 HPLC 76 2 2 20 Ac DP 19 d
Papenfussiella lutea H2SO4 1% r.t. GC 55 4 9 1 31 ND 5 Wozniak et al. (2015)
Punctaria plantaginea CaCl2 2% hot PQA GC 69 27 4 DP 19 2 Bilan et al. (2014)
Family Scytosiphonaceae
Chnoospora minima Enzymes pH 4.5 and 8 CaCl2+AEC F2,1 PAD 19 38 7 NIg 31, Ara 3 DP 5 ND Fernando et al. (2017)
Enzymes pH 4.5 and 8 CaCl2+AEC F2,4 PAD 79 3 NI 18 DP 34 ND
Enzymes pH 4.5 CaCl2 5M CMF PAD 65 6 9 1 NI 19 DP 24 ND Fernando et al. (2018)
Scytosiphon lomentaria HCl pH 2 r.t. PQA A5 GC 38 15 15 24 3 5 DP 6 20 Ponce et al. (2019)
HCl pH 2 r.t. PQA A30 GC 88 12 DP 29 2
Ralfsiales
Analipus japonicus CaCl2 2% hot PQA+AEC F1 GC 74 12 12 2 Ac DP 13 12 Bilan et al. (2007)
CaCl2 2% hot PQA+AEC F2 GC 84 4 11 Ac DP 23 6
Scytothamnales
Scytothamnus australis H2SO4 1% r.t. GC 92 3 2 1 2 ND 2 Wozniak et al. (2015)
Splachnidium rugosum CaCl2 2% hot GC 86 7 3 2 2 ND 2

aKey: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; PQA, precipitation with quaternary ammonium salts; CE cation exchange.

bKey for the less common abbreviations: PAD, HPAEC with pulse amperometric detector; GC, gas chromatography.

cKey: JL, method of Jones and Letham (1954); DP, method of Dodgson and Price (1962) or equivalent; IC, ion chromatography; EA, elemental analysis.

dThe information for the uronic acid is included in the molar ratio of monosaccharides.

eEven after purification, these samples contain 10–12% of alginic acid.

fOnly the proportion of Glc is indicated. The remaining monosaccharides were not quantified.

gNI = sugar not identified.

The analysis of the fucoidans from four species from the Desmarestiales is also shown in Table 7. It should be taken into account that these seaweeds contain free sulfuric acid in their vacuoles (Carlberg et al., 1978), making them very labile when taken out from the marine environment. This requires special techniques in order to obtain neutral extracts unaffected by the strong acid.

To the best of our knowledge, the fucoidans from only one species from the Ascoseirales and Ralfsiales, and two of the Scytothamnales have been studied (Table 7). The fucoidans from the three samples from the Ralfsiales and Scytothamnales appear to be particularly rich in Fuc and poor in uronic acids, whereas the Ascoseira sample was quite heterogeneous (Finch et al., 1986, Table 7).

Concluding Remarks

The current review has surveyed most of the compositional data on fucoidans extracted from different species, in many cases after purification; more than 100 species were screened through the literature. Besides the obvious purpose of providing a reliable source of compositional data gathered in a set of tables, this review attempted to foresee if there is any correlation of these compositional data with their taxonomy, or if other factors are more important than the taxonomic origin.

These general considerations can be deduced from the analysis of the compositional data:

  • 1.

    Separation by charge is the most efficient method to obtain “pure” fucoidan fractions. Either using anion-exchange chromatography with increasing concentrations of salt as eluant, or by precipitating with cationic detergents and redissolving at increasing ionic strengths, two main type of polymers can be separated: (a) those appearing at low ionic strengths, usually highly heterogeneous in their monosaccharidic composition (containing Fuc, Xyl, Gal, Man, Rha, GlcA), with low-sulfate content, and high uronic acid content, and b) those appearing at high ionic strengths, containing mainly Fuc, accompanied with variable proportions of Gal, highly sulfated and containing little (or none) uronic acids. Fractions containing intermediate proportions of both polysaccharides appear at medium ionic strengths. Figure 3 depicts the composition of fractions belonging to each of the first groups from selected seaweeds, showing clearly the marked differences between both groups. This behavior is observed for samples from the orders Fucales, Laminariales, Ascoseirales, Desmarestiales, Ectocarpales, and Ralfsiales (Mian and Percival, 1973; Carlberg et al., 1978; Bilan et al., 2002, 2013, 2016, 2018; Ponce et al., 2003, 2019; Ozawa et al., 2006; Mak et al., 2013); however, for the Dictyotales, the trend is obscured due to the abundance of Man and/or uronic acids in the products separated at each ionic strength (Table 4). It has been postulated that the biological activity is concentrated on the galactofucan components (Ponce et al., 2003, 2019; Croci et al., 2011).

  • 2.

    Acetate esters of the fucoidans are very common. As a matter of fact, this constituent has been found in almost every sample where it was searched. Determinations of acetyl groups are not very common, as they are only encountered through NMR spectra or specific colorimetric techniques. They are labile enough in mild alkaline or acid media as to get undetected when using some extraction procedures (Bernhard and Hammett, 1953; Wuts and Greene, 2006). Anyway, almost all of the seven tables report acetyl groups on some species. It is highly probable that searching in other species would have resulted in many more positive results.

  • 3.

    In some cases, Man and Rha appear together, usually in fractions with lower sulfate contents. For Man, structural explanations have already been reported in terms of fucomannoglucuronans (Bilan et al., 2010), but for Rha no structural function has been found so far. Rha seems to appear in higher proportions within the order Dictyotales and the family Sargassaceae (Fucales).

  • 4.

    The Dictyotales appear to be the most “atypical” order, as usually large proportions of Man and uronic acids appear. In one species which was highly fractionated, Man becomes the most important monosaccharide in the low-charged fractions, and it is still important in the fractions with more sulfate groups (Table 4; Rabanal et al., 2014). However, fractions with high proportions of monosaccharides different than Fuc were found in most of the taxa studied so far (see Tables).

  • 5.

    The uronic acid content should be considered with due care. Sometimes it corresponds to GlcA actually comprising the fucoidan structure, but sometimes it corresponds to contamination with alginic acid (e.g., Finch et al., 1986; Lorbeer et al., 2017), a polysaccharide present in all of the brown seaweeds studied so far. By the same token, the Glc present in the samples should almost certainly correspond to contaminating laminarans (Lorbeer et al., 2017; Mateos-Aparicio et al., 2018). Only in a few cases, Glc has been shown to be part of the fucoidan structure (e.g., Duarte et al., 2001).

  • 6.

    There are several factors to consider when comparing the compositional data of fucoidans from different seaweeds and research groups. The taxon is just one of them. Others like geographical location, year and season of harvest of the seaweed, extraction and purification methods, analytical methods, different parts or reproductive stages of the seaweeds are also of paramount importance in defining the final characteristics.

  • 7.

    The geographic site of harvesting appears to be very important: Zvyagintseva et al. (2003) found marked differences between the fucoidans of Fucus evanescens collected in different spots of the southern Okhotsk Sea. Ehrig and Alban (2015) also found a significant difference between the composition and yields of fucoidans of Saccharina lattisima samples collected in the North Atlantic and in the Baltic Sea. This factor, together with the year of collection might explain the large differences in composition found for species studied by different groups (or at different times) even with similar extraction and purification procedures.

  • 8.

    The season of harvesting has also influence over the composition of the fucoidans: a trend with increasing yields, and proportions of sulfate, Fuc, Gal and Glc (together with a decrease in the Man and Rha content) is observed as the collection month progressed from March to October, in the Northern Hemisphere (Imbs et al., 2009; Anastyuk et al., 2010; Men’shova et al., 2012; Ehrig and Alban, 2015).

  • 9.

    The effect of the extraction conditions is more controversial: Ponce et al. (2003) and Wozniak et al. (2015) found very little differences when switching the extraction solvent from water to CaCl2 to diluted HCl. Alboofetileh et al. (2019b) found differences in yield and in sulfate content but a very similar monosaccharide composition using enzymes, ultrasound, or both combined. Rodríguez-Jasso et al. (2011) found a significant difference in composition and yields when changing the time and the pressure of a microwave-assisted water extraction. Nguyen et al. (2020) have shown a sharply different composition of the chemically and enzymatically-extracted crude products, being the latters richer in alginic acid and sulfate/Fuc ratios. After purification, the compositions might level off. However, the enzyme-aided extraction, also used by other groups (Dietrich et al., 1995; Albuquerque et al., 2004; Silva et al., 2005; Medeiros et al., 2008; Queiroz et al., 2008; Costa et al., 2011; Camara et al., 2011; Lee et al., 2012; Wang et al., 2014; Hu et al., 2016; Monsur et al., 2017; Fernando et al., 2017, 2018; Liu et al., 2018; Menezes et al., 2018; Song et al., 2018; Jayawardena et al., 2019; Alboofetileh et al., 2019a,b) appears to be an interesting prospect, considering cleaner chemical issues and the possibility of finding enhanced biological activities in comparison with chemically extracted products (Nguyen et al., 2020).

FIGURE 3.

FIGURE 3

Difference in selected reported compositions of fucoidans submitted to charge-based separation methods. Fractions on the left side were eluted or redissolved at low ionic strengths, whereas those on the right side were eluted or redissolved at higher ionic strengths. Upper panel, neutral monosaccharide composition (mol/100 mols); lower panel, sulfate and uronic acid content. The data were reported by Koo et al. (2001), Bilan et al. (2002, 2008, 2010, 2013, 2018), and Ponce et al. (2003, 2019).

Some differences were found between the fucoidans isolated from reproductive and sterile tissue of five different seaweeds (Skriptsova et al., 2012, see Tables 1, 2, 5, 6). Usually the reproductive tissue is less heterogeneous, and carries more Fuc and less Glc than the sterile tissue. Regarding the extraction of fucoidans from different parts of the seaweeds, Percival et al. (1983) extracted separately the polysaccharides from fronds and stipes from Lessonia nigrescens, whereas Wozniak et al. (2015) compared the fucoidans isolated from reproductive structures and from vegetative structures in Marginariella boryana. The fucoidans from stipes and the vegetative structures, respectively, appear to be more heterogeneous (less Fuc and more uronic acids).

In order to obtain fucoidan samples devoid of contaminants, the best results were obtained by carrying out the extractions with dilute HCl or CaCl2, or using these agents after the extraction (for instance enzymatic) in order to precipitate the alginate in the first place, followed by a careful separation by charge (anion exchange chromatography eluting with increasing ionic strength, or precipitation with quaternary ammonium salts followed by redissolution with increasing ionic strengths). Further purification of each fraction by size-exclusion chromatography usually yield fucoidans devoid of alginic acid or laminaran contaminants.

The conclusion is that with so many variables determining the composition of the fucoidans, the subtle differences that might appear among the different higher taxa (order, family) surveyed in this review are overridden. Probably, comparisons carried out in the same labs with the same methods might help, or more profound structural studies might throw light on chemotaxonomical issues in the future.

Author Contributions

NP was involved in the conceptualization, formal analysis, investigation, writing, and visualization of this work. CS was involved in the conceptualization, formal analysis, writing, visualization, and funding of this work. Both authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We are indebted to Dr. María C. Rodríguez for her help on botanical/psychological issues, and to Dr. Marina Ciancia for her kind invitation to participate in this issue.

Footnotes

Funding. This work was supported by grants from the University of Buenos Aires (20020170100255BA), National Research Council of Argentina-CONICET (PIP 298/14 and P-UE 22920160100068CO), and ANPCyT-Argentina (PICT 2017-1675).

References

  1. Abdel-Fattah A. F., Hussein M. M.-D., Fouad S. T. (1978). Carbohydrates of the brown seaweed Dictyota dichotoma. Phytochemistry 17 741–743. 10.1016/S0031-9422(00)94218-3 [DOI] [Google Scholar]
  2. Adhikari U., Mateu C. G., Chattopadhyay K., Pujol C. A., Damonte E. B., Ray B. (2006). Structure and antiviral activity o sulfated fucans from Stoechospermum marginatum. Phytochemistry 67 2474–2482. 10.1016/j.phytochem.2006.05.024 [DOI] [PubMed] [Google Scholar]
  3. Alboofetileh M., Rezaei M., Tabarsa M., Rittá M., Donalisio M., Mariatti F., et al. (2019a). Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 124 131–137. 10.1016/j.ijbiomac.2018.11.201 [DOI] [PubMed] [Google Scholar]
  4. Alboofetileh M., Rezaei M., Tabarsa M., You S. (2019b). Bioactivities of Nizamuddinia zanardinii sulfated polysaccharides extracted by enzyme, ultrasound and enzyme-ultrasound methods. J. Food Sci. Technol. 56 1212–1220. 10.1007/s13197-019-03584-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alboofetileh M., Rezaei M., Tabarsa M., You S., Mariatti F., Cravotto G. (2019c). Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 128 244–253. 10.1016/j.ijbiomac.2019.01.119 [DOI] [PubMed] [Google Scholar]
  6. Albuquerque I. R. L., Queiroz K. C. S., Alves L. G., Santos E. A., Leite E. L., Rocha H. A. O. (2004). Heterofucans from Dictyota menstrualis have anticoagulant activity. Braz. J. Med. Biol. Res. 37 167–171. 10.1590/S0100-879X2004000200002 [DOI] [PubMed] [Google Scholar]
  7. Ale M. T., Mikkelsen J. D., Meyer A. S. (2011). Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 9 2106–2130. 10.3390/md9102106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Anastyuk S. D., Imbs T. I., Semenova M. L., Dmitrenok P. S., Zvyagintseva T. N. (2012a). ESIMS analysis of fucoidan preparations from Costaria costata, extracted from alga at different life-stages. Carbohydr. Polym. 90 993–1002. 10.1016/j.carbpol.2012.06.033 [DOI] [PubMed] [Google Scholar]
  9. Anastyuk S. D., Shevchenko N. M., Dmitrenok P. S., Zvyagintseva T. N. (2012b). Structural similarities of fucoidans from brown algae Silvetia babingtonii and Fucus evanescens, determined by tandem MALDI-TOF mass spectrometry. Carbohydr. Res. 358 78–81. 10.1016/j.carres.2012.06.015 [DOI] [PubMed] [Google Scholar]
  10. Anastyuk S. D., Shevchenko N. M., Nazarenko E. L., Imbs T. I., Gorbach V. I., Dmitrenok P. S., et al. (2010). Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry. Carbohydr. Res. 345 2206–2212. 10.1016/j.carres.2010.07.043 [DOI] [PubMed] [Google Scholar]
  11. Asker M. M. S., Mohamed S. F., Ali F. M., El-Sayed O. H. (2007). Chemical structure and antiviral activity of water-soluble sulfated polysaccharides from Surgassum latifolium. J. Appl. Sci. Res. 3 1178–1185. [Google Scholar]
  12. Bernhard S. A., Hammett L. P. (1953). Specific effects in acid catalysis by ion-exchange resins. II. Hydrolysis of esters in water solution. J. Amer. Chem. Soc. 75 5834–5835. 10.1021/ja01119a017 [DOI] [Google Scholar]
  13. Bilan M. I., Grachev A. A., Shashkov A. S., Kelly M., Sanderson C. J., Nifantiev N. E., et al. (2010). Further studies on the composition ans structure of a fucoidan preparation from the brown alga Saccharisima latissima. Carbohydr. Res. 345 2038–2047. 10.1016/j.carres.2010.07.009 [DOI] [PubMed] [Google Scholar]
  14. Bilan M. I., Grachev A. A., Shashkov A. S., Nifantiev N. E., Usov A. I. (2006). Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr. Res. 341 238–245. 10.1016/j.carres.2005.11.009 [DOI] [PubMed] [Google Scholar]
  15. Bilan M. I., Grachev A. A., Shashkov A. S., Thuy T. T. T., Van T. T. T., Ly B. M., et al. (2013). Preliminary investigation of a highly sulfated galactofucan fraction isolated from the brown alga Sargassum polycystum. Carbohydr. Res. 377 48–57. 10.1016/j.carres.2013.05.016 [DOI] [PubMed] [Google Scholar]
  16. Bilan M. I., Grachev A. A., Ustuzhanina N. E., Shashkov A. S., Nifantiev N. E., Usov A. I. (2002). Structure of a fucoidan from the brown seawed Fucus evanescens C.Ag. Carbohydr. Res. 337 719–730. 10.1016/S0008-6215(02)00053-8 [DOI] [PubMed] [Google Scholar]
  17. Bilan M. I., Grachev A. A., Ustuzhanina N. E., Shashkov A. S., Nifantiev N. E., Usov A. I. (2004). A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L. Carbohydr. Res. 339 511–517. 10.1016/j.carres.2003.10.028 [DOI] [PubMed] [Google Scholar]
  18. Bilan M. I., Klochkova N. G., Ustyuzhanina N. E., Chizhov A. O., Shashkov A. S., Nifantiev N. E., et al. (2016). Polysaccharides of algae 68. Sulfated polysaccharides from the Kamchatka brown alga Laminaria bongardiana. Russ. Chem. Bull. Int. Ed. 65 2729–2736. 10.1007/s11172-016-1643-1 [DOI] [Google Scholar]
  19. Bilan M. I., Shashkov A. S., Usov A. I. (2014). Structure of a sulfated xylofucan from the brown alga Punctaria plantaginea. Carbohydr. Res. 393 1–8. 10.1016/j.carres.2014.04.022 [DOI] [PubMed] [Google Scholar]
  20. Bilan M. I., Usov A. I. (2008). Structural analysis of fucoidans. Nat. Prod. Comm. 3 1639–1648. 10.1177/1934578X0800301011 [DOI] [Google Scholar]
  21. Bilan M. I., Ustyuzhanina N. E., Shashkov A. S., Thanh T. T. T., Bui M. L., Tran T. T. V., et al. (2017). Sulfated polysaccharides of the Vietnamese brown alga Sargassum aquifolium (Fucales, Sargassaceae). Carbohydr. Res. 449 23–31. 10.1016/j.carres.2017.06.016 [DOI] [PubMed] [Google Scholar]
  22. Bilan M. I., Ustyuzhanina N. E., Shashkov A. S., Thanh T. T. T., Bui M. L., Tran T. T. V., et al. (2018). A sulfated galactofucan from the brown alga Hormophysa cuneiformis (Fucales, Sargassaceae). Carbohydr. Res. 469 48–54. 10.1016/j.carres.2018.09.001 [DOI] [PubMed] [Google Scholar]
  23. Bilan M. I., Vinogradova E. V., Tsvetkova E. A., Grachev A. A., Shashkov A. S., Nifantiev N. E., et al. (2008). A sulfated glucuronofucan containing both fucofuranose and fucopyranose residues from the brown alga Chordaria flagelliformis. Carbohydr. Res. 343 2605–2612. 10.1016/j.carres.2008.06.001 [DOI] [PubMed] [Google Scholar]
  24. Bilan M. I., Zakharova A. N., Grachev A. A., Shashkov A. S., Nifantiev N. E., Usov A. I. (2007). Polysaccharides of alga: 60. Fucoidan from the Pacific brown alga Analipus japonicus (Harv.) Winne (Ectocarpales, Scytosiphonaceae). Russ. J. Bioorg. Chem. 33 38–46. 10.1134/S1068162007010049 [DOI] [PubMed] [Google Scholar]
  25. Bittkau K. S., Neupane S., Alban S. (2020). Initial evaluation of six different brown algae species as source for crude bioactive fucoidans. Algal Res. 45:101759 10.1016/j.algal2019.101759 [DOI] [Google Scholar]
  26. Camara R. B. G., Costa L. S., Fidelis G. P., Nobre L. D. T. B., Dantas-Santos N., Cordeiro L. S., et al. (2011). Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar. Drugs 9 124–138. 10.3390/md9010124 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Carlberg G. E., Percival E., Rahman M. A. (1978). Carbohydrates of the seaweeds, Desmarestia ligulata and D. firma. Phytochemistry 17 1289–1292. 10.1016/S0031-9422(00)94576-X [DOI] [Google Scholar]
  28. Casas G., Scrosati R., Piriz M. L. (2004). The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol. Invasion. 6 411–416. 10.1023/B:BINV.0000041555.29305.41 [DOI] [Google Scholar]
  29. Chandía N. P., Matsuhiro B. (2008). Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. Int. J. Biol. Macromol. 42 235–240. 10.1016/j.ijbiomac.2007.10.023 [DOI] [PubMed] [Google Scholar]
  30. Charrier B., Le Bail A., de Reviers B. (2012). Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. Trends Plant Sci. 17 468–477. 10.1016/j.tplants.2012.03.003 [DOI] [PubMed] [Google Scholar]
  31. Chattopadhyay N., Ghosh T., Sinha S., Chattopadhyay K., Karmakar P., Ray B. (2010). Polysaccharides from Turbinaria conoides: structural features and antioxidant capacity. Food Chem. 118 823–829. 10.1016/j.foodchem.2009.05.069 [DOI] [Google Scholar]
  32. Chen X., Nie W., Fan S., Zhang J., Wang Y., Lu J., et al. (2012). A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophophosphamide-treated mice. Carbohydr. Polym. 90 1114–1119. 10.1016/j.carbpol.2012.06.052 [DOI] [PubMed] [Google Scholar]
  33. Chizhov A. O., Dell A., Morris H. R., Haslam S. M., McDowell R. A., Shashkov A. S., et al. (1999). A study of fucoidan from the brown seaweed Chorda filum. Carbohydr. Res. 320 108–119. 10.1016/S0008-6215(99)00148-2 [DOI] [PubMed] [Google Scholar]
  34. Cong Q., Chen H., Liao W., Xiao F., Wang P., Qin Y., et al. (2016). Structural characterization and effect on anti-angiogenic activity of a fucoidan from Sargassum fusiforme. Carbohydr. Polym. 136 899–907. 10.1016/j.carbpol.2015.09.087 [DOI] [PubMed] [Google Scholar]
  35. Cosenza V. A., Navarro D. A., Ponce N. M. A., Stortz C. A. (2017). “Seaweed polysaccharides: structure and applications,” in Industrial Applications of Renewable Biomass Products. Past, Present, and Future, eds Goyanes S. N., D’Accorso N. B. (Cham: Springer Int.), 75–116. 10.1007/978-3-319-61288-1_3 [DOI] [Google Scholar]
  36. Costa L. S., Fidelis G. P., Telles C. B. S., Dantas-Santos N., Camara R. B. G., Cordeiro S. L., et al. (2011). Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar. Drugs 9 952–966. 10.3390/md9060952 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Croci D. O., Cumashi A., Ushakova N. A., Preobrazhenskaya M. E., Piccoli A., Totani L., et al. (2011). Fucans, but not fucomannoglucuronans, determine the biological activities of sulfated polysaccharides from Laminaria saccharina brown seaweed. PLoS One 6:e17283. 10.1371/journal.pone.0017283 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Cui K., Tai W., Shan X., Hao J., Li G., Yu G. (2018). Structural characterization and anti-thrombotic properties of fucoidan from Nemacystus decipiens. Int. J. Biol. Macromol. 120 1817–1822. 10.1016/j.ijbiomac.2018.09.079 [DOI] [PubMed] [Google Scholar]
  39. Cumashi A., Ushakova N. A., Preobrazhenskaya M. E., D’Incecco A., Piccoli A., Totani L., et al. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17 541–552. 10.1093/glycob/cwm014 [DOI] [PubMed] [Google Scholar]
  40. Davis T. A., Volesky B., Mucci A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37 4311–4330. 10.1016/S0043-1354(03)00293-8 [DOI] [PubMed] [Google Scholar]
  41. de Reviers B., Rousseau F., Draisma S. G. A. (2007). “Classification of the Phaeophyceae from past to present and current challenges,” in Unraveling the Algae: the Past, Present and Future of Algal Systematic, eds Brodie J., Lewis J. (Boca Raton, FL: CRC Press; ), 267–284. 10.1201/9780849379901 [DOI] [Google Scholar]
  42. Deniaud-Bouët E., Hardouin K., Potin P., Kloareg B., Hervé C. (2017). A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties, and key research challenges. Carbohydr. Polym. 175 395–408. 10.1016/j.carbpol.2017.07.082 [DOI] [PubMed] [Google Scholar]
  43. Deniaud-Bouët E., Kervarec N., Michel G., Tonon T., Kloareg B., Hervé C. (2014). Chemical and enzymatic fractionation of cell walls from fucales: insights into the structure of the extracellular matrix of brown algae. Ann. Bot. 114 1203–1216. 10.1093/aob/mcu096 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Dietrich C. P., Farias G. G. M., de Abreu L. R. D., Leite E. L., da Silva L. F., Nader H. B. (1995). A new approach for the characterization of polysaccharides from algae: presence of four main acidic polysaccharides in three species of the class Phaeophyceae. Plant Sci. 108 143–153. 10.1016/0168-9452(95)04142-H [DOI] [Google Scholar]
  45. Dinesh S., Menon T., Hanna L. E., Suresh V., Sathuvan M., Manikannan M. (2016). In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int. J. Biol. Macromol. 82 83–88. 10.1016/j.ijbiomac.2015.09.078 [DOI] [PubMed] [Google Scholar]
  46. Dodgson K. S., Price R. C. (1962). A note on the determination of ester sulfate content of sulfated polysaccharides. Biochem. J. 84 106–110. 10.1042/bj0840106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Draisma S. G. A., Peters A. F., Fletcher R. L. (2003). “Evolution and taxonomy in the Phaeophyceae: effects of the molecular age on brown algal systematic,” in Out of the Past. Collected Reviews to Celebrate the Jubilee of the British Phycological Society, ed. Norton T. A. (Belfast: British Phycological Society; ), 87–102. [Google Scholar]
  48. Draisma S. G. A., Prud‘homme van Reine W. F., Stam W. T., Olsen J. L. (2001). A reassessment of phylogenetic relationships within the Phaeophyceae based on RUBISCO large subunit and ribosomal DNA sequences. J. Phycol. 37 586–603. 10.1046/j.1529-8817.2001.037004586.x [DOI] [Google Scholar]
  49. Duarte M. E. R., Cardoso M. A., Noseda M. D., Cerezo A. S. (2001). Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr. Res. 333 281–293. 10.1016/S0008-6215(01)00149-5 [DOI] [PubMed] [Google Scholar]
  50. Ehrig K., Alban S. (2015). Sulfated galactofucan from the brown alga Saccharina latissima – Variability of yield, structural composition, and bioactivity. Mar. Drugs 13 76–101. 10.3390/md13010076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ermakova S., Men´shova R., Vishchuk O., Kim S.-M., Um B.-H., Isakov V., et al. (2013). Water-soluble polysaccharides from the brown alga Eisenia bicyclis: structural characteristics and antitumor activity. Algal Res. 2 51–58. 10.1016/j.algal.2012.10.002 [DOI] [Google Scholar]
  52. Ermakova S., Sokolova R., Kim S.-M., Um B.-H., Isakov V., Zvyagintseva T. (2011). Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: structural characteristics and anticancer activity. Appl. Biochem. Biotechnol. 164 841–850. 10.1007/s12010-011-9178-2 [DOI] [PubMed] [Google Scholar]
  53. Ermakova S. P., Menshova R. V., Anastyuk S. D., Malyarenko (Vishchuk) O. S., Zakharenko A. M., (Thinh) P. D., et al. (2016). Structure, chemical and enzymatic modification, and anticancer activity of polysaccharides from the brown alga Turbinaria ornata. J. Appl. Phycol. 28 2495–2505. 10.1007/s10811-015-0742-y [DOI] [Google Scholar]
  54. Feldman S. C., Reynaldi S., Stortz C. A., Cerezo A. S., Damonte E. B. (1999). Antiviral properties of fucoidans fractions from Leathesia difformis. Phytomedicine 6 335–340. 10.1016/S0944-7113(99)80055-5 [DOI] [PubMed] [Google Scholar]
  55. Fernando I. P. S., Sanjeewa K. K. A., Samarakoon K. W., Kim H.-S., Gunasekara U. K. D. S. S., Park Y.-J., et al. (2018). The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. J. Appl. Phycol. 30 3223–3232. 10.1007/s10811-018-1415-4 [DOI] [Google Scholar]
  56. Fernando I. P. S., Sanjeewa K. K. A., Samarakoon K. W., Lee W. W., Kim H.-S., Kang N., et al. (2017). A fucoidan fraction purified from Chnoospora minima; a potential inhibitor of LPS-induced inflammatory responses. Int. J. Biol. Macromol. 104 1185–1193. 10.1016/j.ijbiomac.2017.07.031 [DOI] [PubMed] [Google Scholar]
  57. Finch P., Percival E., Slaiding I. R., Weigel H. (1986). Carbohydrates of the antartic brown seaweed Ascoseira mirabilis. Phytochemistry 25 443–448. 10.1016/S0031-9422(00)85498-9 [DOI] [Google Scholar]
  58. Guiry M. D., Guiry G. M. (2020). AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online at: http://www.algaebase.org (accessed April 18, 2020). [Google Scholar]
  59. Guo H., Liu F., Jia G., Zhang W., Wu F. (2013). Extraction optimization and analysis of monosaccharide composition of fucoidan from Saccharina japonica by capillary zone electrophoresis. J. Appl. Phycol. 25 1903–1908. 10.1007/s10811-013-0024-5 [DOI] [Google Scholar]
  60. He J., Xu Y., Chen H., Sun P. (2016). Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. Int. J. Mol. Sci. 17:1988. 10.3390/ijms17121988 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hemmingson J. A., Falshaw R., Furneaux R. H., Thompson K. (2006). Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J. Appl. Phycol. 18 185–193. 10.1007/s10811-006-9096-9 [DOI] [Google Scholar]
  62. Hentati F., Delattre C., Ursu A. V., Desbrières J., Le Cerf D., Gardarin C., et al. (2018). Structural characterization and antioxidant activity of water-soluble polysaccharides from the tunisian brown seaweed Cystoseira compressa. Carbohydr. Polym. 198 589–600. 10.1016/j.carbpol.2018.06.098 [DOI] [PubMed] [Google Scholar]
  63. Hu P., Li Z., Chen M., Sun Z., Ling Y., Jiang J., et al. (2016). Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice. Carbohydr. Polym. 139 150–158. 10.1016/j.carbpol.2015.12.019 [DOI] [PubMed] [Google Scholar]
  64. Hu P., Xue R., Li Z., Chen M., Sun Z., Jiang J., et al. (2014). Structural investigation and immunological activity of a heteropolysaccharide from Sargassum fusiforme. Carbohydr. Res. 390 28–32. 10.1016/j.carres.2014.02.027 [DOI] [PubMed] [Google Scholar]
  65. Huang C.-Y., Kuo C.-H., Chen P.-W. (2017). Compressional-puffing pretreatment enhances neuroprotective effects of fucoidans from the brown seaweed Sargassum hemiphyllum on 6-hydroxydopamine-induced apoptosis in SH-SY5Y cells. Molecules 23:E78. 10.3390/molecules23010078 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hussein M. M., Abdel-Aziz A., Salem H. M. (1980). Sulphated heteropolysaccharides from Padina pavonia. Phytochemistry 19 2131–2132. 10.1016/S0031-9422(00)8220 [DOI] [Google Scholar]
  67. Imbs I., Ermakova S. P., Malyarenko (Vishchuk) O. S., Isakov V. V., Zvyagintseva (N.) (2016). Structural elucidation of polysaccharide fractions from the brown alga Coccophora langsdorfii and in vitro investigation of their anticancer activity. Carbohydr. Polym. 135 162–168. 10.1016/j.carbpol.2015.08.062 [DOI] [PubMed] [Google Scholar]
  68. Imbs T. I., Shevchenko N. M., Semenova T. L., Sukhoverkhov S. V., Zvyagintseva T. N. (2011). Compositional heterogeneity of sulfated polysaccharides synthesized by the brown alga Costaria costata. Chem. Nat. Compd. 47 96–97. 10.1007/s10600-011-9839-y [DOI] [Google Scholar]
  69. Imbs T. I., Shevchenko N. M., Sukhoverkhov S. V., Semenova T. L., Skriptsova A. V., Zvyagintseva T. N. (2009). Seasonal variations of the composition and structural characteristics of polysaccharides from the brown alga Costaria costata. Chem. Nat. Compd. 45 786–791. 10.1007/s10600-010-9507-7 [DOI] [Google Scholar]
  70. Jayawardena T. U., Fernando I. P. S., Lee W. W., Sanjeewa K. K. A., Kim H.-S., Lee D.-S., et al. (2019). Isolation and purification of fucoidan fraction in Turbinaria ornata from the Maldives; inflamation inhibitory potential under LPS stimulated conditions in in-vitro and in-vivo models. Int. J. Biol. Macromol. 131 614–623. 10.1016/j.ijbiomac.2019.03.105 [DOI] [PubMed] [Google Scholar]
  71. Jesumani V., Du H., Pei P., Aslam M., Huang N. (2020). Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum. PLoS One 15:e0227308. 10.1371/journal.pone.0227308 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Jones A. S., Letham D. S. (1954). A submicro method for the estimation of sulphur. Chem. Ind. 662–663. [Google Scholar]
  73. Karmakar P., Ghosh T., Sinha S., Saha S., Mandal P., Ghosal P. K., et al. (2009). Polysaccharides from the brown seaweed Padina tetrastromatica: characterization of a sulfated fucan. Carbohydr. Polym. 78 416–421. 10.1016/j.carbpol.2009.04.039 [DOI] [Google Scholar]
  74. Karmakar P., Pujol C. A., Damonte E. B., Ghosh T., Ray B. (2010). Polysaccharides fom Padina tetrastromatica: features, chemical modification and antiviral activity. Carbohydr. Polym. 80 513–520. 10.1016/j.carbpol.2009.12.014 [DOI] [Google Scholar]
  75. Kitamura K., Matsuo M., Yasui T. (1991). Fucoidan from brown seaweed Laminaria angustata var. Longissima. Agric. Biol. Chem. 55 615–616. 10.1271/bbb1961.55.615 [DOI] [Google Scholar]
  76. Kloareg B., Demarty M., Mabeau S. (1986). Polyanionic characteristics of purified sulphated homofucans from brown algae. Int. J. Biol. Macromol. 8 380–386. 10.1016/0141-8130(86)90060-7 [DOI] [Google Scholar]
  77. Koh H. S. A., Lu J., Zhou W. (2019). Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydr. Polym. 212 178–185. 10.1016/j.carbpol.2019.02.040 [DOI] [PubMed] [Google Scholar]
  78. Koo J.-G., Choi Y.-S., Kwak J.-K. (2001). Blood-anticoagulant activity of fucoidans from sporophylls of Undaria pinnatifida, Laminaria religiosa, Hizikia fusiforme and Sargassum fulvellum in Korea. J. Korean Fish. Soc. 34 515–520. [Google Scholar]
  79. Kopplin G., Rokstad A. M., Mélida H., Bulone V., Skjåk-Bræk G., Aachmann F. L. (2018). Structural characterization of fucoidan from Laminaria hyperborea: assessment of coagulation and inflammatory properties and their structure-function relationship. ACS Appl. Bio Mater. 1 1880–1892. 10.1021/acsabm.8b00436 [DOI] [PubMed] [Google Scholar]
  80. Kylin H. (1913). Zur biochemie der Meersalgen. Z. Physiol. Chem. 83 171–197. [Google Scholar]
  81. Larsen B., Haug A., Painter T. J. (1966). Sulphated polysaccharides in brown algae-I. Isolation and preliminary characterization of three sulphated polysaccharides from Ascophyllum nodosum (L.) Le Jol. Acta Chem. Scand. 20 219–230. 10.3891/acta.chem.scand.20-0219 [DOI] [PubMed] [Google Scholar]
  82. Leal D., Mansilla A., Matsuhiro B., Moncada-Basualto M., Lapier M., Maya J. D., et al. (2018). Chemical structure and biological properties of sulfated fucan from the sequential extraction of subAntartic Lessonia sp. (Phaeophyceae). Carbohydr. Polym. 199 304–313. 10.1016/j.carbpol.2018.07.012 [DOI] [PubMed] [Google Scholar]
  83. Lee J.-B., Hayashi K., Hashimoto M., Nakano T., Hayashi T. (2004). Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem. Pharm. Bull. 52 1091–1094. 10.1248/cpb.52.1091 [DOI] [PubMed] [Google Scholar]
  84. Lee J.-B., Takeshita A., Hayashi K., Hayashi T. (2011). Structures and antiviral activities of polysaccharides from Sargassum trichophyllum. Carbohydr. Polym. 86 995–999. 10.1016/j.carbpol.2011.05.059 [DOI] [Google Scholar]
  85. Lee S.-H., Ko C.-I., Ahn G., You S., Kim J.-S., Heu M. S., et al. (2012). Molecular characteristics and anti-inflammatory activity of the fucoidan extracted from Ecklonia cava. Carbohydr. Polym. 89 599–606. 10.1016/j.carbpol.2012.03.056 [DOI] [PubMed] [Google Scholar]
  86. Li B., Wei X.-J., Sun J.-L., Xu S.-Y. (2006). Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed. Hizikia fusiforme. Carbohydr. Res. 341 1135–1146. 10.1016/j.carres.2006.03.035 [DOI] [PubMed] [Google Scholar]
  87. Li G.-Y., Luo Z.-C., Yuan F., Yu X.-B. (2017). Combined process of high-pressure homogenization and hydrothermal extraction for the extraction of fucoidan with good antioxidant properties from Nemacystus decipients. Food Bioprod. Process. 106 35–42. 10.1016/j.fbp.2017.08.002 [DOI] [Google Scholar]
  88. Lim S. J., Aida W. M. W., Maskat M. Y., Latip J., Badri K. H., Hassan O., et al. (2016). Characterisation of fucoidan extracted from Malaysian Sargassum binderi. Food Chem. 209 267–273. 10.1016/j.foodchem.2016.04.058 [DOI] [PubMed] [Google Scholar]
  89. Lim S. J., Aida W. M. W., Schiehser S., Rosenau T., Böhmdorfer S. (2019). Structural elucidation of fucoidan from Cladosiphon okamuranus (Okinawa mozuku). Food Chem. 272 222–226. 10.1016/j.foodchem.2018.08.034 [DOI] [PubMed] [Google Scholar]
  90. Liu N., Wu X., Fu X., Duan D., Xu J., Gao X. (2018). Characterization of polysaccharides extracted from a cultivated brown alga Costaria costata during the harvest period. J. Ocean. Univ. China 17 1209–1217. 10.1007/s11802-018-3621-8 [DOI] [Google Scholar]
  91. Liu X., Liu B., Wei X.-L., Sun Z.-L., Wang C.-Y. (2016). Extraction, fractionation, and chemical characterisation of fucoidans from the brown seaweed Sargassum pallidum. Czech J. Food Sci. 34 406–413. 10.17221/322/2015-CJFS [DOI] [Google Scholar]
  92. Lloyd A. G. (1959). Studies on sulphatases. 24. The use of barium chloranilate in the determination of the enzymically liberated sulphate. Biochem. J. 72 133–136. 10.1042/bj0720133 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Lorbeer A. J., Charoensiddhi S., Lahnstein J., Lars C., Franco C. M. M., Bulone V., et al. (2017). Sequential extraction an characterization of fucoidans and alginates from Ecklonia radiata, Macrocystis pyrifera, Durvillaea potatorum, and Seirococcus axillaris. J. Appl. Phycol. 29 1515–1526. 10.1007/s10811-016-0990-5 [DOI] [Google Scholar]
  94. Lorbeer A. J., Lahnstein J., Fincher G. B., Su P., Zhang W. (2015). Kinetics of conventional and microwave-assisted fucoidan extractions from the brown alga, Ecklonia radiata. J. Appl. Phycol. 27 2079–2087. 10.1007/s10811-014-0446-8 [DOI] [Google Scholar]
  95. Lu J., Shi K. K., Chen S., Wang J., Hassouna A., et al. (2018). Fucoidan extracted from the New Zealand Undaria pinnatifida-physicochemical comparison against five other fucoidans: unique low molecular weight fraction bioactivity in breast cancer cell lines. Mar. Drugs 16:461. 10.3390/md16120461 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Luo D., Wang Z., Nie K. (2019). Structural characterization of a novel polysaccharide from Sargassum thunbergii and its antioxidant and anti-inflammation effects. PLoS One 14:e0223198. 10.1371/journal.pone.0223198 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Ly B. M., Buu N. Q., Nhut N. D., Thinh P. D., Van T. T. T. (2005). Studies on fucoidan and its production from vietnamese brown seaweeds. AJSTD 22 371–380. 10.29037/ajstd.173 [DOI] [Google Scholar]
  98. Mabeau S., Kloareg B. (1987). Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata. J. Exp. Bot. 38 1573–1580. 10.1093/jxb/38.9.1573 12432039 [DOI] [Google Scholar]
  99. Mabeau S., Kloareg B., Joseleau J.-P. (1990). Fractionation and analysis of fucans from brown algae. Phytochemistry. 29 2441–2445. 10.1016/0031-9422(90)85163-A [DOI] [Google Scholar]
  100. Mackie W., Preston R. D. (1974). “Cell wall and intercellular region polysaccharides,” in Algal Physiology and Biochemistry, ed. Stewart W. D. P. (Oxford: Blackwell Scientific Publications; ), 58–64. [Google Scholar]
  101. Mak W., Hamid N., Liu T., Lu J., White W. L. (2013). Fucoidan from New Zealand Undaria pinnatifida: monthly variations and determination of antioxidant activities. Carbohydr. Polym. 95 606–614. 10.1016/j.carbpol.2013.02.047 [DOI] [PubMed] [Google Scholar]
  102. Mandal P., Mateu C. G., Chattopadhyay K., Pujol C. A., Damonte E. B., Ray B. (2007). Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir. Chem. Chemother. 18 153–162. 10.1177/095632020701800305 [DOI] [PubMed] [Google Scholar]
  103. Mateos-Aparicio I., Martera G., Goñi I., Villanueva-Suárez M.-J., Redondo-Cuenca A. (2018). Chemical structure and molecular weight influence the in vitro fermentability of polysaccharide extracts from the edible seaweeds Himanthalia elongata and Gigartina pistillata. Food Hydrocoll. 83 348–354. 10.1016/j.foodhyd.2018.05.016 [DOI] [Google Scholar]
  104. Medcalf D. G., Larsen B. (1977a). Fucose-containing polysaccharides in the brown alga Ascophyllum nodosum and Fucus vesiculosus. Carbohydr. Res. 59 531–537. 10.1016/S0008-6215(00)83190-0 [DOI] [Google Scholar]
  105. Medcalf D. G., Larsen B. (1977b). Structural studies on ascophyllan and the fucose-containing complexes from the brown alga Ascophyllum nodosum. Carbohydr. Res. 59 539–546. 10.1016/S0008-6215(00)83191-2 [DOI] [Google Scholar]
  106. Medcalf D. G., Root C. F., Craney C. L., Mukhopadhyhay D., Miller C. J., Hopewell W. D. (1972). Chemical characterization of mucilaginous polysaccharides from Ulvaceae species native to the Puget Sound. Proc. Int. Seaweed Symp 7 541–547. [Google Scholar]
  107. Medcalf D. G., Schneider T. L., Barnett R. W. (1978). Structural features of a novel glucuronogalactofucan from Ascophyllum nodosum. Carbohydr. Res. 66 167–171. 10.1016/S0008-6215(00)83249-8 [DOI] [Google Scholar]
  108. Medeiros V. P., Queiroz K. C. S., Cardoso M. L., Monteiro G. R. G., Oliveira F. W., Chavante S. F., et al. (2008). Sulfated galactofucan from Lobophora variegata: anticoagulant and anti-inflammatory properties. Biochemistry 73 1018–1024. 10.1134/S0006297908090095 [DOI] [PubMed] [Google Scholar]
  109. Menezes M. M., Nobre L. T. D. B., Rossi G. R., Almeida-Lima J., Melo-Silveira R. F., Franco C. R. C., et al. (2018). A low-molecular-weight galactofucan from the seaweed, Spatoglossum schröederi, binds fibronectin and inhibits capillary-like tube formation in vitro. Int. J. Biol. Macromol. 111 1067–1075. 10.1016/j.ijbiomac.2018.01.119 [DOI] [PubMed] [Google Scholar]
  110. Menshova R. V., Anastyuk S. D., Ermakova S. P., Shevchenko M. N., Isakov V. I., Zvyagintseva T. N. (2015). Structure and anticancer activity in vitro of sulfated galactofucan from brown alga Alaria angusta. Carbohydr. Polym. 132 118–125. 10.1016/j.carbpol.2015.06.020 [DOI] [PubMed] [Google Scholar]
  111. Men’shova R. V., Ermakova S. P., Rachidi S. M., Al-Hajje A. H., Zvyagintseva T. N., Kanaan H. M. (2012). Seasonal variations of the composition, structural features, and antitumor properties of polysaccharides from Padina pavonica (Lebanon) as a function of composition. Chem. Nat. Compd. 47 870–875. 10.1007/s10600-012-0091-x [DOI] [Google Scholar]
  112. Men’shova R. V., Lepeshkin F. D., Ermakova S. P., Pokrovskii O. I., Zvyagintseva T. N. (2013). Effect of pretreatment conditions of brown algae by supercritical fluids on yield and structural characteristics of fucoidans. Chem. Nat. Compd. 48 923–926. 10.1007/s10600-013-0429-z [DOI] [Google Scholar]
  113. Mian A. J., Percival E. (1973). Carbohydrates of the brown seaweeds Himanthalia lorea, Bifurcaria bifurcata, and Padina pavonia. Part I. Extraction and fractionation. Carbohydr. Res. 26 133–146. 10.1016/S0008-6215(00)85030-2 [DOI] [Google Scholar]
  114. Miller I. J. (1997). The chemotaxonomic significance of the water-soluble red algal polysaccharides. Recent Res. Dev. Phytochem. 1 531–565. [Google Scholar]
  115. Monsur H. A., Jaswir I., Simsek S., Amid A., Alam Z. (2017). Chemical structure of sulfated polysaccharides from brown seaweed (Turbinaria turbinata). Int. J. Food Prop. 20 1457–1469. 10.1080/10942912.2016.1211144 [DOI] [Google Scholar]
  116. Mori H., Nisizawa K. (1982). Sugars constituents of sulfated polysaccharides from the fronds of Sargassum ringgoldianum. Bull. Jpn. Soc. Sci. Fish. 48 981–986. 10.2331/suisan.48.981 [DOI] [Google Scholar]
  117. Nagaoka M., Shibata H., Kimura-Takagi I., Hashimoto S., Kimura K., Makino T., et al. (1999). Structural study of fucoidan from Cladosiphon Okamuranus TOKIDA. Glycoconj. J. 16 19–26. 10.1023/A:1006945618657 [DOI] [PubMed] [Google Scholar]
  118. Nakayasu S., Soegima R., Yamaguchi K., Oda T. (2009). Biological activities of fucose-containing polysaccharide ascophyllan isolated from the brown alga Ascophyllum nodosum. Biosci. Biotechnol. Biochem. 73 961–964. 10.1271/bbb.80845 [DOI] [PubMed] [Google Scholar]
  119. Nguyen T. T., Mikkelsen M. D., Tran V. H. N., Trang V. T. D., Rhein-Knudsen N., Holck J., et al. (2020). Enzyme-assisted fucoidan extraction from brown macroalgae Fucus districhus subsp. evanescens and Saccharina lattisima. Mar. Drugs 18:296. 10.3390/md18060296 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Nishino T., Nishioka C., Ura H., Nagumo T. (1994a). Isolation and partial characterization of a novel aminosugar-containing fucan sulphate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res. 255 213–224. 10.1016/S0008-6215(00)90980-7 [DOI] [PubMed] [Google Scholar]
  121. Nishino T., Takabe Y., Nagumo T. (1994b). Isolation and partial characterization of a novel β-D-galactan sulfate from the brown seaweed Laminaria angustata var. longissima. Carbohydr. Polym. 23 165–173. 10.1016/0144-8617(94)90099-X [DOI] [Google Scholar]
  122. Nishino T., Yokoyama G., Dobashi K., Fujihara M., Nagumo T. (1989). Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohydr. Res. 186 119–129. 10.1016/0008-6215(89)84010-8 [DOI] [PubMed] [Google Scholar]
  123. Olatunji O. (2020). “Fucoidan,” in Aquatic Biopolymers. Springer Series on Polymer and Composite Materials, ed. Kalia S. (Cham: Springer; ), 95–115. 10.1007/978-3-030-34709-3_5 [DOI] [Google Scholar]
  124. Oltmanns F. (1922). Morphologie und Biologie der Algen. Phaeophyceae-Rhodophyceae, 2nd Edn, Vol. II Jena: Gustav Fischer. [Google Scholar]
  125. Ozawa T., Yamamoto J., Yamagishi T., Yamazaki N., Nishizawa M. (2006). Two fucoidans in the holdfast of cultivated Laminaria japonica. J. Nat. Med. 60 236–239. 10.1007/s11418-006-0046-2 [DOI] [PubMed] [Google Scholar]
  126. Palanisamy S., Vinosha M., Marudhupandi T., Rajasekar P., Prabhu N. M. (2017). In vitro antioxidant and andibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydr. Polym. 170 296–304. 10.1016/j.carbpol.2017.04.085 [DOI] [PubMed] [Google Scholar]
  127. Percival E. (1968). Glucuronoxylofucan, a cell-wall component of Ascophyllum nodosum.Part. I. Carbohydr. Res. 7 272–283. 10.1016/S0008-6215(00)81200-8 [DOI] [Google Scholar]
  128. Percival E. (1979). The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br. Phycol. J. 14 103–117. 10.1080/00071617900650121 [DOI] [Google Scholar]
  129. Percival E., McDowell R. H. (1967). Chemistry and Enzymology of Marine Algal Polysaccharides. (New York, NY: Academic Press; ), 157–174. [Google Scholar]
  130. Percival E., Rahman M. D. A., Weigel H. (1981). Chemistry of the polysaccharides of the brown seaweed Dictyopteris plagiogramma. Phytochemistry 20 1579–1582. 10.1016/S0031-9422(00)98535-2 [DOI] [Google Scholar]
  131. Percival E., Young M. (1974). Carbohydrates of the brown seaweeds: part III. Desmarestia aculeata. Carbohydr. Res. 32 195–201. 10.1016/s0008-6215(00)82097-2 [DOI] [Google Scholar]
  132. Percival E. E., Venegas Jara M. F., Weigel H. (1983). Carbohydrates of the brown seaweed Lessonia nigrescens. Phytochemistry 22 1429–1432. 10.1016/S0031-9422(00)84029-7 [DOI] [Google Scholar]
  133. Ponce N. M. A., Flores M. L., Pujol C. A., Becerra M. B., Navarro D. A., Córdoba O., et al. (2019). Fucoidans from the phaeophyta Scytosiphon lomentaria: chemical analysis and antiviral activity of the galactofucan component. Carbohydr. Res. 478 18–24. 10.1016/j.carres.2019.04.004 [DOI] [PubMed] [Google Scholar]
  134. Ponce N. M. A., Pujol C. A., Damonte E. B., Flores M. L., Stortz C. A. (2003). Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr. Res. 338 153–165. 10.1016/S0008-6215(02)00403-2 [DOI] [PubMed] [Google Scholar]
  135. Prokofjeva M. M., Imbs T. I., Shevchenko N. M., Spirin P. V., Horn S., Fehse B., et al. (2013). Fucoidans and potential inhibitors of HIV-1. Mar. Drugs 11 3000–3014. 10.3390/md11083000 [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Qu G., Liu X., Wang D., Yuan Y., Han L. (2014). Isolation and characterization of fucoidans from five brown algae and evaluation of their antioxidant activity. J. Ocean. Univ. China 13 851–856. 10.1007/s11802-014-2260-y [DOI] [Google Scholar]
  137. Queiroz K. C. S., Medeiros V. P., Queiroz L. S., Abreu L. R. D., Rocha H. A. O., Ferreira C. V., et al. (2008). Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed. Pharmacother. 62 303–307. 10.1016/j.biopha.2008.03.006 [DOI] [PubMed] [Google Scholar]
  138. Rabanal M., Ponce N. M. A., Navarro D. A., Gómez R. M., Stortz C. A. (2014). The system of fucoidans from the brown seaweed Dictyota dichotoma: chemical analysis and antiviral activity. Carbohydr. Polym. 101 804–811. 10.1016/j.carbpol.2013.10.019 [DOI] [PubMed] [Google Scholar]
  139. Rioux L.-E., Turgeon S. L., Beaulieu M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym. 69 530–537. 10.1016/j.carbpol.2007.01.009 [DOI] [Google Scholar]
  140. Rodríguez-Jasso R. M., Mussatto S. I., Pastrana L., Aguilar C. N., Teixeira J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 86 1137–1144. 10.1016/j.carbpol.2011.06.006 [DOI] [Google Scholar]
  141. Rousseau F., Burrowes R., Peters A. F., Kuhlenkamp R., de Reviers B. (2001). A comprehensive phylogeny of the Phaeophyceae based on nrDNA sequences resolves the earliest divergences. C. R. Acad. Sci. Paris 324 305–319. 10.1016/S0764-4469(01)01306-3 [DOI] [PubMed] [Google Scholar]
  142. Rousseau F., de Reviers B. (1999a). Phylogenetic relationships within the Fucales (Phaeophyceae) based on combined partial SSU + LSU rDNA sequence data. Eur. J. Phycol. 34 53–64. 10.1080/09670269910001736082 [DOI] [Google Scholar]
  143. Rousseau F., de Reviers B. (1999b). Circumscription of the order Ectocarpales (Phaeophyceae): bibliographical synthesis and molecular evidence. Cryptogamie Algol. 20 5–18. 10.1016/S0181-1568(99)80002-6 [DOI] [Google Scholar]
  144. Rupérez P., Ahrazem O., Leal J. A. (2002). Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 50 840–845. 10.1021/jf010908o [DOI] [PubMed] [Google Scholar]
  145. Sakai T., Kimura H., Kato I. (2002). A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan. Mar. Biotechnol. 4 399–405. 10.1007/s10126-002-0032-y [DOI] [PubMed] [Google Scholar]
  146. Sakai T., Kimura H., Kojima K., Shimanaka K., Ikai K., Kato I. (2003). Marine bacterial sulfated fucoglucuronomannan (SFGM) lyase digests brown algal SFGM into trisaccharides. Mar. Biotechnol. 5 70–78. 10.1007/s10126-002-0056-3 [DOI] [PubMed] [Google Scholar]
  147. Saravana P. S., Cho Y.-J., Park Y.-B., Woo H.-C., Chun B. S. (2016). Structural, antioxidante, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr. Polym. 153 518–525. 10.1016/j.carbpol.2016.08.014 [DOI] [PubMed] [Google Scholar]
  148. Schweiger R. G. (1962). Methanolysis of fucoidan. II. The presence of sugars other than L-fucose. J. Org. Chem 27 4270–4272. 10.1021/jo01059a034 [DOI] [Google Scholar]
  149. Scott J. E. (1960). Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Methods Biochem. Anal. 8 145–197. 10.1002/9780470110249.ch4 [DOI] [PubMed] [Google Scholar]
  150. Sellimi S., Kadri N., Barragan-Montero V., Laouer H., Hajji M., Nasri M. (2014). Fucans from a Tunisian brown seaweed Cystoseira barbata: structural characteristics and antioxidant activity. Int. J. Biol. Macromol. 66 281–288. 10.1016/j.ijbiomac.2014.02.041 [DOI] [PubMed] [Google Scholar]
  151. Senthilkumar K., Ramajayam G., Venkatesan J., Kim S.-K., Ahn B.-C. (2017). “Biomedical applications of fucoidans, seaweed polysaccharides,” in Seaweed Polysaccharides – Isolation, Biological, and Biomedical Applications, eds Venkatesan J., Anil S., Kim S.-K. (Amsterdam: Elsevier; ), 269–281. 10.1016/B978-0-12-809816-5.00014-1 [DOI] [Google Scholar]
  152. Shevchenko N. M., Anastyuk S. D., Menshova R. V., Vishchuk O. S., Isakov V. I., Zadorozhny P. A., et al. (2015). Further studies on structure of fucoidan from brown alga Saccharina gurjanovae. Carbohydr. Polym. 121 207–216. 10.1016/j.carbpol.2014.12.042 [DOI] [PubMed] [Google Scholar]
  153. Shevchenko N. M., Usol´tseva (Men’shova) R. V., Ishina I. A., Thinh P. D., Ly B. M., Ermakova S. P. (2017). Structural characteristic and in vitro antitumor activity of water-soluble polysaccharides from brown algae of the Russian far east and Vietnam. Chem. Nat. Compd. 53 1–5. 10.1007/s10600-017-1897-3 [DOI] [Google Scholar]
  154. Silberfeld T., Racault M.-F. L. P., Fletcher R. L., Couloux A., Rousseau F., de Reviers B. (2011). Systematics and evolutionary history of pyrenoid-bearing taxa in bown algae (Phaeophyceae). Eur. J. Phycol. 46 361–377. 10.1080/09670262.2011.628698 [DOI] [Google Scholar]
  155. Silberfeld T., Rousseau F., de Reviers B. (2014). An updated classification of brown algae (Ochrophyta, Phaeophyceae). Cryptogam. Algol. 35 117–156. 10.7872/crya.v35.iss2.2014.117 [DOI] [Google Scholar]
  156. Silchenko A. S., Rasin A. B., Kusaykin M. I., Kalinovsky A. I., Miansong Z., Changheng L., et al. (2017). Structure, enzymatic transformation, anticancer activity of fucoidan and sulphated fucooligosaccharides from Sargasum horneri. Carbohydr. Polym. 175 654–660. 10.1016/j.carbpol.2017.08.043 [DOI] [PubMed] [Google Scholar]
  157. Silva T. M. A., Alves L. G., Queiroz K. C. S., Santos M. G. L., Marques C. T., Chavante S. F., et al. (2005). Partial characterization and anticoagulant activity of a heterofucan from the brown seawed Padina gymnospora. Braz. J. Med. Biol. Res. 38 523–533. 10.1590/S0100-879X2005000400005 [DOI] [PubMed] [Google Scholar]
  158. Sinha S., Astani A., Ghosh T., Schnitzler P., Ray B. (2010). Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry 71 235–242. 10.1016/j.phytochem.2009.10.014 [DOI] [PubMed] [Google Scholar]
  159. Skriptsova A. V. (2015). Fucoidans from brown algae: biosynthesis, localization, and physiological role in the thallus. Russ. J. Mar. Biol. 41 145–156. 10.1134/S1063074015030098 [DOI] [Google Scholar]
  160. Skriptsova A. V., Shevchenko N. M., Tarbeeva D. V., Zvyagintseva T. N. (2012). Comparative study of polysaccharides from reproductive and sterile tissues of five brown seaweeds. Mar. Biotechnol. 14 304–311. 10.1007/s10126-011-9413-4 [DOI] [PubMed] [Google Scholar]
  161. Sokolova R. V., Ermakova S. P., Awada S. M., Zvyagintseva T. N., Kanaan H. M. (2011). Composition, structural characteristics and antitumor properties, of polysaccharides from the brown algae Dictyopteris polypodioides and Sargassum sp. Chem. Nat. Compd. 47 329–334. 10.1007/s10600-011-9925-1 [DOI] [Google Scholar]
  162. Somasundaram N., Shanmugam S., Subramanian B., Jaganathan R. (2016). Cytotoxic effect of fucoidan extracted from Sargassum cinereum on colon cancer cell line HCT-15 S. Int. J. Biol. Macromol. 91 1215–1223. 10.1016/j.ijbiomac.2016.06.084 [DOI] [PubMed] [Google Scholar]
  163. Song Y., Wang Q., Wang Q., He Y., Ren D., Liu S., et al. (2018). Structural characterization and antitumor effects of fucoidans from brown algae Kjellmaniella crassifolia farmed in northern China. Int. J. Biol. Macromol. 119 125–133. 10.1016/j.ijbiomac.2018.07.126 [DOI] [PubMed] [Google Scholar]
  164. Starko S., Soto Gomez M., Darby H., Demes K. W., Kawai H., Yotsukura N., et al. (2019). A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol. Phylogenet. Evol. 136 138–150. 10.1016/j.ympev.2019.04.012 [DOI] [PubMed] [Google Scholar]
  165. Stortz C. A., Cerezo A. S. (2000). Novel findings in carrageenans, agaroids and “hybrid” red seaweed galactans. Curr. Top. Phytochem. 4 121–134. [Google Scholar]
  166. Sun Q. L., Li Y., Ni L.-Q., Li Y.-X., Cui Y.-S., Jiang S.-L., et al. (2020). Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum. Carbohydr. Polym. 229:115487. 10.1016/j.carbpol.2019.115487 [DOI] [PubMed] [Google Scholar]
  167. Synytsya A., Kim W.-J., Kim S.-M., Pohl R., Synytsya A., Kvasnièka F., et al. (2010). Structure and antitumour activity of fucoidan isolated from sporophyllof Korean brown seaweed Undaria pinnatifida. Carbohydr. Polym. 81 41–48. 10.1016/j.carbpol.2010.01.052 [DOI] [Google Scholar]
  168. Tako M., Takeda S., Teruya T., Tamaki Y. (2010). Chemical characterization of fucoidans from Laminaria angustata var. longissima. Nippon Shokuhin Kagaku Kogaku Kaishi 57 495–502. (in Japanese) 10.3136/nskkk.57.495 [DOI] [Google Scholar]
  169. Tan I. H., Druehl L. D. (1996). A ribosomal DNA phylogeny supports the close evolutionary relationships among the Sporochnales, Desmarestiales, and Laminariales (Phaeophyceae). J. Phycol. 32 112–118. 10.1111/j.0022-3646.1996.00112.x [DOI] [Google Scholar]
  170. Teruya T., Tatemoto H., Konishi T., Tako M. (2009). Structural characteristics and in vitro macrophage of acetyl fucoidan from Cladosiphon okamuranus. Glycoconj. J. 26 1019–1028. 10.1007/s10719-008-9221-x [DOI] [PubMed] [Google Scholar]
  171. Thinh P. D., Menshova R. V., Ermakova S. P., Anastyuk S. D., Ly B. M., Zvyagintseva T. N. (2013). Structural characteristics and anticancer activity of fucoidan from the brown alga Sargasum mcclurei. Mar. Drugs 11 1456–1476. 10.3390/md11051456 [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Thornber C. S., Kinlan B. P., Graham M. H., Stachowicz J. J. (2004). Population ecology of the invasive kelp Undaria pinnatifida in California: environmental and biological controls on demography. Mar. Ecol. Prog. Ser. 268 69–80. 10.3354/meps268069 [DOI] [Google Scholar]
  173. Torode T. A., Siméon A., Marcus S. E., Jam M., Le-Moigne M. A., Duffieux D., et al. (2016). Dynamics of cell wall assembly during early embryogenesis in the brown alga Fucus. J. Exp. Bot. 67 6089–6100. 10.1093/jxb/erw369 [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Usoltseva (Menshova) R. V., Anastyuk S. D., Shevchenko M. N., Zvyagintseva T. N., Ermakova S. P. (2016). The comparison of structure and anticancer activity(in)vitro of polysaccharides from brown algae Alaria marginata and A. angusta. Carbohydr. Polym. 153 258–265. 10.1016/j.carbpol.2016.07.103 [DOI] [PubMed] [Google Scholar]
  175. Usoltseva R. V., Anastyuk S. D., Ishina I. A., Isakov V. V., Zvyagintseva T. N., Thinh P. D., et al. (2018a). Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydr. Polym. 184 260–268. 10.1016/j.carbpol.2017.12.071 [DOI] [PubMed] [Google Scholar]
  176. Usoltseva R. V., Anastyuk S. D., Shevchenko N. M., Surits V. V., Silchenko A. S., Isakov V. V., et al. (2017a). Polysaccharides from brown algae Sargassum duplicatum: the structure and anticancer activity in vitro. Carbohydr. Polym. 175 547–556. 10.1016/j.carbpol.2017.08044 [DOI] [PubMed] [Google Scholar]
  177. Usoltseva R. V., Shevchenko N. M., Malyarenko O. S., Anastyuk S. D., Kasprik A. E., Zvyagintseva N. V., et al. (2019). Fucoidans from brown algae Laminaria longipes and Saccharina cichorioides: structural characteristics, anticancer and radiosensitizing activity in vitro. Carbohydr. Polym. 221 157–165. 10.1016/j.carbpol.2019.05.079 [DOI] [PubMed] [Google Scholar]
  178. Usoltseva R. V., Shevchenko N. M., Malyarenko O. S., Ishina I. A., Ivannikova S. I., Ermakova S. P. (2018b). Structure and anticancer activity of native and modified polysaccharides from brown alga Dictyota dichotoma. Carbohydr. Polym. 180 21–28. 10.1016/j.carbpol.2017.10.006 [DOI] [PubMed] [Google Scholar]
  179. Usoltseva R. V., Zhao P., Kusaikin M. I., Jia A., Yuan W., Zhang M., et al. (2017b). Structural characteristics and antitumor activity of fucoidans from the brown alga Sargasum muticum. Chem. Nat. Compd. 53 219–223. 10.1007/s10600-017-1956-9 [DOI] [Google Scholar]
  180. Usov A. I. (2011). Polysaccharides of the red algae. Adv. Carbohydr. Chem. Biochem. 65 115–217. 10.1016/B978-0-12-385520-6.00004-2 [DOI] [PubMed] [Google Scholar]
  181. van den Hoek C., Mann D., Jahns H. M. (1996). Algae: An Introduction To Phycology. Cambridge: Cambridge University Press. [Google Scholar]
  182. Vishchuk O. S., Ermakova S. P., Zvyagintseva T. N. (2011). Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity. Carbohydr. Res. 346 2769–2776. 10.1016/j.carres.2011.09.034 [DOI] [PubMed] [Google Scholar]
  183. Vishchuk O. S., Ermakova S. P., Zvyagintseva T. N. (2013). The effect of sulfated (1(3)-α-L-fucan from the brown alga Saccharina cichorioides Miyabe on resveratrol-induced apoptosis in colon carcinoma cells. Mar. Drugs 11 194–212. 10.3390/md11010194 [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Vishchuk O. S., Tarbeeva D. V., Ermakova S. P., Zvyagintseva T. N. (2012). Structural characteristics and biological activity of fucoidans from the brown algae Alaria sp. and Saccharina japonica of different reproductive status. Chem. Biodiv. 9 817–828. 10.1002/cbdv.201100266 [DOI] [PubMed] [Google Scholar]
  185. Wang P., Zhao X., Lv Y., Liu Y., Lang Y., Wu J., et al. (2012). Analysis of structural heterogeneity of fucoidan from Hizikia fusiforme by ES-CID-MS/MS. Carbohydr. Polym. 90 602–607. 10.1016/j.carbpol.2012.05.084 [DOI] [PubMed] [Google Scholar]
  186. Wang Q., Song Y., He Y., Ren D., Kow F., Qiao Z., et al. (2014). Structural characterisation of algae Costaria costata fucoidan and its effects on CCl4-induced liver injury. Carbohydr. Polym. 107 247–254. 10.1016/j.carbpol.2014.02.071 [DOI] [PubMed] [Google Scholar]
  187. Wang Y., Xing M., Cao Q., Ji A., Liang H., Song S. (2019). Biological activities of fucoidan and the factors mediating Its therapeutic effects: a review of recent studies. Mar. Drugs 17:183. 10.3390/md17030183 [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Wozniak M., Bell T., Dénes A., Falshaw R., Itzhaki R. (2015). Anti-HSV-1 activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer’s disease. Int. J. Biol. Macromol. 74 530–540. 10.1016/j.ijbiomac.2015.01.003 [DOI] [PubMed] [Google Scholar]
  189. Wu S., Zhang X., Liu J., Song J., Yu P., Chen P., et al. (2019). Physicochemical characterization of Sargassum fusiforme fucoidan fractions and their antagonistic effect against P-selectin-mediated cell adhesion. Int. J. Biol. Macromol. 133 656–662. 10.1016/j.ijbiomac.2019.03.218 [DOI] [PubMed] [Google Scholar]
  190. Wuts P. G. M., Greene T. W. (2006). Greene’s Protective Groups in Organic Synthesis: Chapter 2, 4th Edn Hoboken, NJ: John Wiley, 10.1002/9780470053485.ch2 [DOI] [Google Scholar]
  191. Yang W.-N., Chen P.-W., Huang C.-Y. (2017). Compositional characteristics and in vitro evaluations of antioxidant and neuroprotective properties of crude extracts of fucoidan prepared from compressional puffing-pretreated Sargassum crassifolium. Mar. Drugs 15:183. 10.3390/md15060183 [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. You S., Yang C., Lee H., Lee B.-Y. (2010). Molecular characteristics of partially hydrolyzed fucoidans from sporophyll of Undaria pinnatifida and their in vitro anticancer activity. Food Chem. 119 554–559. 10.1016/j.foodchem.2009.06.054 [DOI] [Google Scholar]
  193. Yuan Y., Macquarrie D. J. (2015). Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars, and biochar from Ascophyllum nodosum through a biorefinery concept. Biores. Technol. 198 819–827. 10.1016/j.biortech.2015.09.090 [DOI] [PubMed] [Google Scholar]
  194. Yuguchi Y., Tran V. T. T., Bui L. M., Takebe S., Suzuki S., Nakajima N., et al. (2016). Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. Carbohydr. Polym. 147 69–78. 10.1016/j.carbpol.2016.03.101 [DOI] [PubMed] [Google Scholar]
  195. Zhang W., Oda T., Yu Q., Jin J.-O. (2015). Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three others fucoidans. Mar. Drugs 13 1084–1104. 10.3390/md13031084 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Zvyagintseva T. N., Shevchenko N. M., Chizhov A. O., Krupnova T. N., Sundukova E. V., Isakov V. V. (2003). Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J. Exp. Mar. Biol. Ecol. 294 1–13. 10.1016/S0022-0981(03)00244-2 [DOI] [Google Scholar]
  197. Zvyagintseva T. N., Shevchenko N. M., Popivnich I. B., Isakov V. V., Scobun A. S., Sundukova E. V., et al. (1999). A new procedure for the separation of water-soluble polysaccharides from brown seaweeds. Carbohydr. Res. 322 32–39. 10.1016//S0008-6215(99)00206-2 [DOI] [Google Scholar]

Articles from Frontiers in Plant Science are provided here courtesy of Frontiers Media SA

RESOURCES