Skip to main content
ACS Pharmacology & Translational Science logoLink to ACS Pharmacology & Translational Science
. 2020 Oct 28;3(6):1042–1062. doi: 10.1021/acsptsci.0c00117

Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia

Cassandra J Hatzipantelis , Monica Langiu , Teresa H Vandekolk , Tracie L Pierce , Jess Nithianantharajah , Gregory D Stewart †,*, Christopher J Langmead †,*
PMCID: PMC7737210  PMID: 33344888

Abstract

graphic file with name pt0c00117_0005.jpg

There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal–prefrontal-cortical (HPC–PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC–PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC–PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC–PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.

Keywords: schizophrenia, cognitive impairment, hippocampal−prefrontal cortical circuitry, preclinical, drug discovery, GPCRs, rodent touchscreen

1. Introduction

Schizophrenia is a complex neuropsychiatric disorder that affects around 0.3% of the population1 and remains among the leading causes of disability worldwide.2 Schizophrenia symptoms are highly heterogeneous, with positive and negative symptoms making up the core diagnostic criteria,3 but these clinical features are frequently preceded by cognitive dysfunction.4,5 Cognitive impairments associated with schizophrenia (CIAS) are highly detrimental to functional capacity,68 and the severity of CIAS is the most accurate predictor of patient outcomes.912 As such, cognitive deficits are becoming increasingly accepted as a core feature of schizophrenia and not just an epiphenomenon, with many clinical professionals advocating for their inclusion in diagnostic criteria.1316

The cognitive domains most consistently dysfunctional in schizophrenia, as highlighted by the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) and Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiatives, include working memory, attention, cognitive flexibility, and episodic memory.17,18 The extent of dysfunction in these domains is typically classified as “moderately severe” to “severe” with patients performing 1.5–2.5 standard deviations below neurotypical controls.16,19,20 Furthermore, these deficits present in around 85% of schizophrenia cases21 and persist while worsening throughout the patient’s lifetime.2224

Over the last 60 years of drug development, there has been a disproportionate prioritization of antipsychotic therapeutics targeting the positive symptoms, over the development of procognitive agents. Prior to the development of the MATRICS initiative in 2004, which defined how CIAS should be assessed and treated, the Food and Drug Administration (FDA) would only approve drugs for schizophrenia if they reduced positive symptoms.2527 To date, no antipsychotic drug meaningfully improves cognition in patients with CIAS,2835 and procognitive treatments for indications such as Alzheimer’s disease have no efficacy for CIAS.3638 Despite the MATRICS initiative, the lack of therapeutic options available to patients highlights the depth of the translational bottleneck.39,40 There is an urgent need for a cohesive, translation-focused preclinical strategy for the design and testing of putative procognitive agents for CIAS.

This review discusses how the growing understanding of circuitry underlying CIAS offers a source of innovation for the discovery of novel, procognitive agents with high translational relevance. We review the hippocampal–prefrontal cortical (HPC–PFC) circuits implicated in the cognitive processes most consistently dysfunctional in CIAS (working memory, cognitive flexibility, and episodic memory; section 2), highlighting the conservation of these mechanisms across mammalian species. We then consider how this knowledge facilitates the identification of novel, HPC–PFC circuit-enriched G protein-coupled receptor (GPCR) targets (section 3), which allow for more nuanced and selective control over specific circuits than other targets. Finally, we highlight how the validation of prospective procognitive agents can be accelerated by improved preclinical cognition tests with greater potential for successful translation into the clinic (section 4). Collectively, we suggest a cohesive, translation-focused approach to preclinical drug discovery that may improve the translational bottleneck currently hindering the development of effective treatments for CIAS.

2. HPC–PFC Circuitry in Core Cognitive Domains Relevant to CIAS

The last two decades have seen a more fundamental biological approach to diagnosing, understanding, and treating mental illnesses. Primarily, this has been to assess observable behaviors as caused by neurocircuitry and neurochemistry rather than predefined symptom presentation.41,42 The development of methods allowing for the quantification of interactions between brain regions such as electrophysiology, electroencephalography (EEG), and functional neuroimaging have been crucial in providing detailed insight into specific neurocircuit processes implicated in CIAS.43 Aberrant neurocircuit function underlies several hypotheses for CIAS pathology, such as the disconnection hypothesis44 and the excitation/inhibition imbalance hypothesis.45,46 These neurocircuit-based hypotheses suggest that impaired functional and anatomical connections in and between key brain regions drive many schizophrenia-relevant neural dysfunctions with cognitive consequences, i.e., in synaptic plasticity and neural synchrony.

The hippocampus (HPC), prefrontal cortex (PFC), and their associated circuits are consistently implicated in cognitive processes relevant to CIAS across mammalian species.4749 Structural and functional abnormalities within HPC–PFC circuitry are observed in schizophrenia patients50 and are commonly reflected in various animal models of schizophrenia-relevant symptoms.51 Herein we detail the specific HPC–PFC circuits critically involved in three cognitive processes commonly dysfunctional in CIAS: working memory, cognitive flexibility, and episodic memory.

2.1. Working Memory

Working memory describes the storage of task-relevant information in the short term to aid in the completion of a task but not to be remembered thereafter. Effective communication between the HPC and PFC is critical for working memory performance in a manner that is remarkably well-conserved across mammalian species. Indeed, the HPC and medial PFC (mPFC) are highly synchronized during spatial working memory performances in humans,5256 rats,57,58 and mice.5961 The nucleus reuniens (NRe) of the midline thalamus makes strong, reciprocal, excitatory connections with the mPFC and the dorsal and ventral HPC62,63 and contains neurons that project simultaneously to both structures64,65 (Figure 1, top).

Figure 1.

Figure 1

Schematic representation of the HPC–PFC neurocircuits underlying the key cognitive processes dysfunctional in CIAS. Key excitatory, inhibitory, and disinhibitory projections between the HPC, PFC, NRe, EC, and NAc engaged during working memory, episodic memory, and cognitive flexibility processes. PFC, prefrontal cortex; HPC, hippocampus; NRe, nucleus reuniens; EC, entorhinal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area. Solid arrows, excitatory; blunted arrows, inhibitory; dotted arrows, disinhibitory.

Inactivation studies of the NRe have highlighted its critical role in the functional connectivity of the mPFC and HPC by maintaining synchronous activity during spatial working memory tasks in rodents.6669 Various encephalography and functional imaging techniques have revealed aberrant functional coupling and synchrony between the human dorsolateral PFC (dlPFC; equivalent to the mouse mPFC) and HPC during working-memory tasks in chronic schizophrenia patients,7074 first-episode patients, at-risk individuals, and first-degree relatives of patients.75,76 This highlights the endophenotypic nature of aberrant HPC–PFC circuitry and working memory dysfunction in schizophrenia.77,78 Furthermore, various animal models also display impaired HPC–PFC synchrony that correlates with working memory performance.7982

2.2. Cognitive Flexibility

Cognitive flexibility comprises multiple executive functions that allow shifting between multiple tasks, perspectives, or strategies, ultimately to update goal-directed behavior. It includes the ability to refocus attention to update rules on relevant versus irrelevant stimuli (attentional set-shifting), and the ability to update new feedback on action–outcome contingencies within a context to adapt behavioral responding to be more optimal (behavioral flexibility).83,84 Given the high level of cognitive control, cognitive flexibility has been shown to require complex neural networks involving multiple brain regions (Figure 1, middle). When carrying out functions that require cognitive flexibility such as during goal-directed behavior, the nucleus accumbens (NAc) of the ventral striatum is proposed to integrate information from limbic and cortical regions into behavioral outcomes via the ventral tegmental area (VTA).8587

Intact and functional connectivity of HPC–NAc–VTA–PFC circuitry is critically involved in goal-directed behaviors and executive functions in humans,8890 nonhuman primates,91 and rodents.85,9294 Furthermore, in addition to its role in spatial working memory, rodent studies have implicated the PFC–NRe–HPC circuit in cognitive flexibility functions such as attentional set-shifting and reversal learning (RL).9599 Indeed, large-scale networks involving the PFC, HPC, thalamus, striatum, and other limbic structures such as the amygdala are frequently implicated in executive processes and goal-directed behaviors.100103 Functional neuroimaging studies involving patients with CIAS show impaired connectivity between, and engagement of, the PFC, HPC, NAc, and thalamus during behaviors requiring cognitive flexibility,104106 and several animal models commonly used to represent CIAS consistently display deficits in similar cognitive flexibility behavioral paradigms.107113

2.3. Episodic Memory Encoding and Retrieval

Episodic memory describes the long-term storage of memories containing information pertaining to the ‘what, where, and when’ of autobiographical events. While animals cannot speak about their past experiences, they are able to learn behavioral tasks that rely on episodic or episodic-like memory, typically involving remembering a particular item (“what”) in a particular context (“where”).114116 The entorhinal cortex (EC) is considered the hub for the cortical–hippocampal episodic memory network as it receives dense excitatory input from several cortical areas including the PFC, perirhinal cortex (PC), and parahippocampal cortex (PHC) and relays this cortical information directly to the HPC via disinhibition during episodic memory encoding.117119 The HPC sends projections back to cortical areas forming a functional feedback “loop”, allowing the HPC to retrieve contextual information via the EC during memory retrieval that has been integrated initially by the PFC120,121 (Figure 1, bottom).

Disconnection studies of PFC–HPC and PFC–EC connectivity produce significant deficits in episodic memory encoding and retrieval in rodents,122124 while neuroimaging and lesion studies in humans consistently implicate connectivity between PFC and medial temporal lobe structures (HPC, EC, PC, and PHC) during episodic encoding and retrieval.125127 Functional neuroimaging studies further show a reduced ability for patients with CIAS to engage the dorsolateral PFC, HPC, and other cortical and medial temporal lobe structures during episodic memory tasks.128130 Furthermore, commonly used animal models of CIAS produce deficits in episodic memory tasks131,132 along with thinning of the EC,133 reflecting the neuropathological characteristics seen in schizophrenia patients, antipsychotic-treatment-naïve or otherwise.134,135

3. HPC–PFC Circuit-Enriched GPCR Targets for the Treatment of CIAS

3.1. GPCRs as Neurotherapeutic Targets

G protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors and are the target for the greatest proportion of currently marketed therapeutics (∼34%).136139 They mediate signaling by ligands as diverse as protons, amino acids, biogenic amines, peptides, and proteins. While the topic is too complex to cover in any depth herein, heterotrimeric G proteins of different families transduce these extracellular stimuli into excitatory or inhibitory intracellular second messenger cascades,140 primarily modulating levels of cyclic nucleotides, inositol phosphates, and intracellular calcium. Another dimension of GPCR signaling emerged when it was shown that β-arrestin proteins, far from simply acting as “signal-terminating” proteins, scaffold their own signaling to downstream effectors, such as ERK1/2 (extracellular signal-regulated kinase 1/2). Irrespective of its dependence on G proteins and/or β-arrestins, metabotropic signaling shapes the responses elicited by fast ionotropic synaptic transmission, including modulating synaptic plasticity, which drives learning, memory, and attention.141 While ionotropic receptors such as N-methyl-d-aspartate (NMDA; GluN),142 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA; GluA),143 γ-aminobutyric acid type A (GABAA),144 and α7 nicotinic receptors145 have been implicated in schizophrenia pathophysiology and as direct and indirect drug targets, these approaches are beyond the scope of this review. Rather, given the general tractability of GPCRs to drug discovery, contemporary approaches available to selective targeting of members of this superfamily (vide infra) and specific localization of some GPCRs in relevant HPC–PFC circuitry (Figure 2), we focus on opportunities for novel GPCR-targeted CIAS drug discovery.

Figure 2.

Figure 2

Messenger RNA expression levels of therapeutically relevant GPCRs in key nodes of HPC–PFC circuitry. Therapeutically relevant GPCRs are enriched in key nodes of HPC–PFC circuitry in both mice and humans compared to the putative negative control, Grm6. DropViz data are mouse brain single-cell neuronal mRNA expression levels in transcripts per 100 000 unique molecular identifiers; each data point represents expression level in a genetically defined neuronal population (where there are fewer data points it is due to lack of expression in certain neuronal populations).317 Janelia data are from NeuroSeq mouse brain initiative and represent single-cell neuronal mRNA expression levels in transcripts per million; each data point represents expression level in a genetically distinct neuronal population (where there are fewer data points it is due to lack of expression in certain neuronal populations).318 HPA data are regional human brain mRNA expression data combined from Consensus Human Brain (normalized), GTEX Human Brain mRNA (transcripts per million), and the FANTOM Human Brain CAGE (scaled tags per million) data sets as follows:319,320 CTX, cortex, includes frontal cortex (DropViz); insula, ectorhinal, orbital, primary motor, somatosensory, retrosplenial, visual, and isocortex (NeuroSeq/Janelia); cerebral cortex, BA24, BA9, frontal lobe, insula, medial frontal gyrus, medial temporal gyrus, occipital, parietal lobe, and temporal lobe (CHB/GTEX/FANTOM CAGE); HPC, hippocampus, includes hippocampus (DropViz); CA1, CA2, CA3, dentate gyrus, and subiculum (NeuroSeq/Janelia); hippocampal formation (CHB/GTEX/FANTOM CAGE); Thal, thalamus, includes thalamus (DropViz); anterodorsal nucleus, anteroventral nucleus, central lateral nucleus, lateral geniculate complex, paracentral nucleus, paraventricular nucleus, and ventral posteromedial nucleus (NeuroSeq/Janelia); thalamus (CHB/GTEX/FANTOM CAGE). Drd1, dopamine D1 receptor; Drd2, dopamine D2 receptor; Chrm1, M1 muscarinic acetylcholine receptor; Htr6, serotonin 5-HT6 receptor; Hrh3, histamine H3 receptor; Gpr52, orphan GPR52; Gpr139, orphan GPR139; Grm6, mGlu6 metabotropic glutamate receptor. Vertical lines indicate the mean of the data set (including zero values not shown on Log2 axis; n/a = not available in the database).

Several GPCRs, including the dopamine D1 and D2, muscarinic M1, serotonin 5-HT6, and histamine H3 receptors are enriched in HPC–PFC circuitry in mice and humans. Compounds targeting these receptors have met with varying degrees of success in clinical trials, but none has yet resulted in an approved therapeutic for CIAS. While this has often been due to lack of efficacy, e.g., H3 antagonists, other limitations have been insufficient subtype selectivity or target-mediated side-effects, e.g., dopamine D1 and muscarinic M1 agonists, vide infra.

Many of these limitations of “old targets” could be addressed by harnessing advances in our understanding of GPCR pharmacology. Equally, contemporary drug discovery methods may also provide a path for “new targets”, such as orphan GPCRs, which have emerged from the genomic-era of drug discovery. Incorporating the most appropriate mechanism of action for a drug in the context of a given disease state is critical to its chances of success.

Two approaches that are revolutionizing the field of small-molecule drug discovery are “allosteric modulation” and “biased agonism”. Allosteric modulators (Figure 3) bind to secondary sites on receptor proteins that are distinct from, but conformationally linked to, the endogenous ligand binding site (“orthosteric site”; Figure 3). These sites open up new avenues for medicinal chemistry and greater receptor-subtype-selectivity. Allosteric modulators either enhance or diminish the responses to the endogenous agonist, effectively acting as a “dimmer switch” mechanism.146 In contrast to orthosteric agonists and antagonists, allosteric modulators preserve the spatial and temporal nature of endogenous signaling,146148 which is important for complex cognitive processes that rely on conservation of the dynamics of neurotransmission. Further control is engendered by the cooperativity between an allosteric modulator and the endogenous agonist. This governs the direction and magnitude of the modulation, providing a ceiling level to the effect, which can be designed to align with the desired therapeutic outcome while avoiding on-target effects associated with overstimulation or complete inactivation of a receptor.

Figure 3.

Figure 3

Modalities of targeting GPCRs in drug discovery. (A) Classical targeting: Classical modes of drug action at GPCRs involve engaging the same site as the endogenous ligand (the orthosteric binding site), either directly activating the receptor (agonist) or preventing the actions of the endogenous ligand (antagonist). (B) Allosteric modulation: Allosteric modulators bind to secondary sites distinct from, but conformationally linked to, the orthosteric binding site, to modulate endogenous agonist affinity and/or efficacy. Most commonly, a negative allosteric modulator (NAM) will reduce the intracellular signal of the endogenous agonist while a positive allosteric modulator (PAM) will enhance its signal. (C) Biased agonism: Biased agonists trigger specific intracellular signaling cascades to a greater extent than others, even when different levels of stimulus–response coupling for pathways are taken into account. In this example, the endogenous ligand (left) signals pathway #3 > pathway #2 > pathway #1, whereas a biased agonist (right) differentially activates the same subset of pathways.

The second novel paradigm for targeting GPCRs is through “biased agonists” (Figure 3), which trigger specific intracellular signaling cascades at the relative or total exclusion of others, thereby enabling the activation of therapeutically relevant cellular responses while avoiding those linked to on-target adverse effects.149,150 Many biased agonists grossly discern G protein versus β-arrestin mediated signaling,151 and theoretically, it is also possible to combine the two phenomena. Allosteric modulators can differentially promote or inhibit the signaling of agonists to particular signaling pathways.152

Applying these alternative targeting modalities to GPCR drug discovery for CIAS represents an opportunity for a new generation of therapeutic agents capable of selectively modulating key circuitry. Key GPCR approaches to CIAS are summarized below and in Table 1.

Table 1. GPCR-Targeting Compounds Currently (or Recently) in Preclinical and Clinical Development for the Treatment of CIASa.

mechanism of action drug/compound company/institute phase of development (year) clinical trial end-points [trial ID] outcome ref
dopamine D1 agonists/PAMs dihydrexidine Antonia New, Icahn School of Medicine at Mount Sinai II (2018) attention and working memory performance schizotypical personality disorder [NCT02507206] improvements in working memory, moderate cardiovascular side-effects (162)
PF-06412562 Pfizer Ib (2016) safety, tolerability and working memory performance as an add-on treatment in patients with in patients with schizophrenia [NCT02418819] safe and well-tolerated, no improvements in working memory (164)
ASP4345 Astellas Pharma IIa (2019) safety, tolerability and cognitive performance in MCCB as an add-on treatment in patients with in patients with schizophrenia [NCT03557931] unpublished, but project discontinued (172)
dopamine D2 biased agonists UNC99 series University of North Carolina preclinical   improvements in episodic-like memory deficits in PCP-treated mice (NOR) (190)
muscarinic M1 agonists/PAMs xanomeline Eli Lilly and Company II (2008) safety, tolerability, antipsychotic efficacy and performance in a cognitive test battery in patients with schizophrenia antipsychotic efficacy, improvements in verbal learning and short-term memory, moderate gastrointestinal side-effects (199)
KarXT (xanomeline + trospium) Karuna Therapeutics II (2019) Safety, tolerability and antipsychotic efficacy in patients with schizophrenia [NCT03697252] unpublished, presumed safe and well-tolerated according to public announcement, no mention of future assessments on cognition (201)
GSK1034702 GlaxoSmithKline Ib (2010) safety, tolerability and performance in a touchscreen cognitive test battery in nicotine-abstained smokers [NCT01371799] improvements in model-induced impairments in episodic memory, mild gastrointestinal side-effects (202)
serotonin 5-HT6 antagonists AVN-211 Avineuro Pharmaceuticals II (2014) PANSS score and performance in tests of attention as an add-on treatment in patients with schizophrenia improvements in attention (220)
AVN-322 Avineuro Pharmaceuticals I (2017) PK, safety and tolerability in healthy volunteers good PK, safety and tolerability profile (221)
GPR52 agonists FTBMT/3-BTBZ series Takeda Pharmaceutical Company preclinical   improvements in episodic-like memory (NOR) and working memory (RAM) deficits in MK-801-treated rats (226)
unknown GPR52 agonist Beacon Discovery/Boeringer Ingelheim Pharma preclinical   improvements in cognitive flexibility (ASST) in PCP-treated rats (230)
HTL-A Sosei Heptares preclinical   improvements in cognitive flexibility (RL) in PCP-treated rats (231)
GPR139 agonists TAK-041 Takeda Pharmaceutical Company/Neurocrine Biosciences II (2019) performance in the BACS task as an add-on treatment in patients with schizophrenia [NCT03319953] unpublished  
a

Abbreviations: MCCB, Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery; PCP, phencyclidine; NOR, novel object recognition; PANSS, positive and negative syndrome scale; PK, pharmacokinetics; RAM, radial arm maze; BOLD, blood-oxygen-level-dependent; BACS, Brief Assessment of Cognition in Schizophrenia. Trial IDs are as listed on clinicaltrials.gov.

3.3. Mechanisms of Action of Putative Therapeutic Agents for CIAS

3.3.1. Dopamine D1 Receptor Agonists/PAMs

The dopamine D1 receptor is the most highly expressed dopamine receptor subtype in the PFC153 and has been consistently implicated in cognitive functions relying on PFC function such as attention, working memory, and other executive processes.154 Importantly, its function in the PFC yields an inverted U-shape relationship such that too much or too little activation is detrimental to cognitive outcome.155157

Unfortunately dopamine D1 receptor agonists have notoriously poor tolerability and pharmacokinetics, tachyphylaxis, and severe adverse effects in clinical trials.158160 Dihydrexidine, a centrally acting, selective dopamine D1 receptor full agonist,161 improved working memory deficits in patients with schizotypal personality disorder,162 but it caused mild to moderate cardiovascular side-effects that prevented its further development.

The selective, noncatechol dopamine D1/D5 receptor partial agonist PF-06412562 was developed to avoid such bioavailability and safety concerns. Originally trialled as an efficacious anti-Parkinsonian agent with few cardiovascular side-effects,163 PF-06412562 was recently found to be safe and well-tolerated in a phase Ib clinical trial for schizophrenia.164 Unfortunately, it failed to display procognitive efficacy, which the study authors attributed to the conservative, safety-focused study design.

Recently, there has been significant effort to develop noncatechol D1 receptor positive allosteric modulators165,166 (PAMs; Figure 3B) with improved subtype selectivity, a greater therapeutic index, better pharmacokinetics, and a lack of tachyphylaxis by not constantly activating the receptor.167 The dopamine D1 receptor PAM, DETQ reverses episodic-like memory deficits in mouse models of CIAS while enhancing acetylcholine signaling in the PFC and HPC.168 Astellas Pharma has patented two families of dopamine D1 receptor PAMs indicated for the treatment of CIAS, Alzheimer’s, Parkinson’s, and Huntington’s diseases,169,170 which reverse working memory deficits in mouse models of CIAS. Astellas Pharma also recently sponsored a phase IIa clinical trial to evaluate the safety and procognitive efficacy of ASP4345, as an add-on treatment in 233 patients with CIAS [NCT03557931] after it improved information processing, visual attention, and mismatch negativity in patients with schizophrenia or schizoaffective disorder in a phase Ib trial.171 Disappointingly, Astellas Pharma announced in May 2020 that the program had been discontinued as the primary end point in phase II had not been met;172 it is not clear whether this represents a limitation of study design, e.g., add-on therapy, inappropriate compound pharmacology/pharmacokinetics, or limitation of the dopamine D1 receptor as a target per se.

Despite the above setbacks there are other D1 receptor partial agonists (tavapadon, phase III [NCT04201093]; CVL-871, phase I) and PAMs (LY3154207, phase II [NCT03305809]) in active development for non-CIAS indications, including dementia and Parkinson’s disease. It remains to be seen whether these agents might be successfully repurposed for the treatment of CIAS.

3.3.2. Dopamine D2 Receptor Biased Agonists

Blockade of dopamine D2 receptors to counteract aberrantly high dopaminergic tone in the striatum is integral to antipsychotic efficacy:173,174 All currently marketed antipsychotic drugs functionally antagonize the dopamine D2 receptor. However, endogenous activation of hippocampal dopamine D2 is positively correlated with performances in schizophrenia-related cognitive tasks that rely on functional HPC–PFC circuitry.175 Furthermore, chronic antipsychotic treatment is associated with progressive cognitive impairment and exacerbation of neuropathological characteristics indicative of schizophrenia in nonhuman primates and lower order species.176178 This presents a problem whereby to achieve simultaneous antipsychotic and procognitive effects a compound must act as context- or region-specific dopamine D2 receptor antagonist or agonist.

A dopamine D2 receptor partial agonist has been postulated to provide relief from both cognitive and psychotic symptoms by essentially restabilizing aberrant dopamine signaling. Aripiprazole was developed and marketed as such a stabilizer;179 however, despite its significant antipsychotic efficacy, procognitive efficacy has been limited.180,181

Recent preclinical studies of biased signaling via the dopamine D2 receptor may explain aripiprazole’s lack of clinical procognitive efficacy. While this drug is a partial agonist at the dopamine D2 receptor for Gαi/o coupling and therefore cAMP signaling, it is comparable to dopamine D2 antagonists in its inability to recruit β-arrestin-2.182 While β-arrestin-2 antagonism in the striatum contributes to antipsychotic efficacy,182185 the potentiation of β-arrestin-2 recruitment in the PFC may be crucial for HPC–PFC-related cognitive outcomes. Recently, two aripiprazole analogues, UNC9994 and UNC9975, were shown to be β-arrestin-2 agonists in the PFC, but antagonists in the striatum.186 Furthermore, UNC99-series compounds, but not aripiprazole, are able to activate GABAergic fast-spiking interneurons in the PFC, which are essential for synchronized cortical activity and are known to have impaired function in schizophrenia patients.187189 Further preclinical assessment shows that UNC99-series compounds display simultaneous efficacy in both mouse models of positive symptoms and CIAS,190 thus providing a template for agents with highly engineered biased signaling to treat a broader range of symptoms in the disorder.

3.3.3. Muscarinic Acetylcholine M1 Receptor Agonists/PAMs

The M1 receptor is highly expressed within HPC–PFC circuitry including the cortex, HPC, and striatum.191 Levels are lower in the CNS of schizophrenia patients,192 notably in the dlPFC193 wherein lower M1 binding potential in patients with schizophrenia significantly correlates with impaired performance in the Cambridge Neuropsychological Test Automated Battery (CANTAB).194 Unfortunately, muscarinic receptors have a highly conserved orthosteric site, which has made the development of subtype-selective orthosteric agonists for the M1 receptor very challenging.

Xanomeline, the muscarinic acetylcholine M1/M4 receptor-preferring agonist, has procognitive and antipsychotic efficacy in rodent and nonhuman primate animal models of CIAS and schizophrenia.195197 It was originally developed for the treatment of Alzheimer’s disease, where it showed efficacy in treating behavioral disturbances and cognitive deficits (akin to those found in schizophrenia) in phase II clinical trials,198 and versus positive and cognitive symptoms in a subsequent pilot study with schizophrenia patients.199 Unfortunately, its use is heavily limited by side-effects largely mediated by other muscarinic receptor subtypes, notably severe gastrointestinal disturbances.198,200 Karuna Therapeutics aims to reduce these liabilities by coadministering xanomeline with the peripherally restricted antimuscarinic agent, trospium, and a phase II clinical trial assessing its safety and antipsychotic efficacy was completed in September 2019. The combination therapy was well-tolerated, and a phase III trial is planned by the end of 2020,201 though it is not clear whether an assessment of procognitive efficacy will be included as an end point.

Amidst these studies, a phase Ib clinical trial sponsored by GlaxoSmithKline showed that the muscarinic M1 receptor selective agonist, GSK1034702, was procognitive in a nicotine abstinence model with minimal to mild gastrointestinal side-effects.202 This provided the first evidence that muscarinic M1-selective ligands could produce procognitive effects in humans with minimal cholinergic side-effects. Whether these improvements in cognition could be replicated in patients with CIAS was never reported. GSK1034702 was removed from the GlaxoSmithKline pipeline in 2010; more recent studies have suggested that its subtype-selectivity and hence therapeutic index might be more limited than first estimated.203 Reportedly, more selective muscarinic M1 receptor agonists have been developed and moved into clinical development, albeit for dementia, rather than CIAS. HTL-9936 progressed into phase I [NCT02291783], and HTL-18318 moved as far as a phase II trial. However, further development was voluntarily suspended due to unexpected toxicology findings in nonhuman primates.204

Various muscarinic M1 receptor PAMs (e.g., VU0467319) are being developed to improve the subtype selectivity for the M1 receptor, therefore avoiding the gastrointestinal side-effects associated with agonist activity at other subtypes. These ligands have a range of functional selectivity profiles and intrinsic agonistic activity205209 with many displaying in vivo efficacy in animal models relevant to CIAS in the absence of gastrointestinal side-effects.210212 However, clinical development of muscarinic M1 receptor PAMs has been mostly early stage and limited to neurodegenerative diseases. The most advanced agent, MK-7622, progressed into phase II trials for Alzheimer’s disease but did not significantly improve cognition in patients.213 A notable side-effect was diarrhea, suggesting that M1 receptor activation may contribute to GI effects in humans and that the degree of allosteric cooperativity and/or agonist activity for a PAM is an important factor in its safety profile.

3.3.4. Serotonin 5-HT6 Receptor Antagonists

5-HT6 receptors are expressed exclusively postsynaptically within HPC–PFC circuitry,214,215 suggesting its primary function is regulating neurotransmission. 5-HT6 receptor antagonists increase glutamatergic and cholinergic signaling in the HPC and PFC,216218 and this mechanism is posited to underlie the consistent in vivo procognitive efficacy of 5-HT6 receptor antagonists in behavioral tests and models relevant to CIAS,219 though this approach has largely failed in clinical trials for neurodegenerative diseases.

Avineuro Pharmaceuticals has two 5-HT6 antagonists in clinical development for the treatment of CIAS; AVN-211 (phase II/III) and AVN-322 (phase I/II). In a pilot study, AVN-211 significantly improved various measures of attention when compared to placebo.220 AVN-322 has greater selectivity for the 5-HT6 receptor compared to AVN-211 and displays procognitive efficacy in preclinical models of CIAS across various behavioral tasks.221 Phase I studies with AVN-322 suggest an excellent pharmacokinetic and safety profile following short-term exposure; the company suggests that this compound is ready to enter phase II trials.

3.3.5. Targeting Orphan GPCRs

There are nearly 400 nonodorant GPCRs in the human genome, of which around 110 are the target of approved drugs and a further 70 are targets of compounds in clinical trials.136 Orphan GPCRs, receptors that have no known endogenous ligand, represent the majority of the remaining 220 unexploited GPCRs. This class of receptors may offer new insights into complex disease pathology or play distinct functional roles that can be exploited in the treatment of diseases with fewer side-effects. As such, developing compounds that target orphan GPCRs highly enriched within HPC–PFC circuitry offers a source of innovation that may help advance drug discovery for CIAS with greater translational relevance. Here we highlight recent breakthroughs in targeting two such receptors, GPR52 and GPR139.

The Gαs-coupled orphan GPCR GPR52 is expressed exclusively in the brain and highly enriched within HPC–PFC circuitry, mostly coexpressed with dopamine D2 receptors in the NAc and dopamine D1 receptors in the PFC.222,223 As such, agonists of GPR52 could theoretically produce simultaneous antipsychotic and procognitive effects by counteracting Gαi-coupled-D2 receptor hyperactivity in the striatum while rescuing Gαs-coupled-D1 receptor hypoactivity in the PFC, respectively. GPR52 agonists developed by Takeda Pharmaceutical Company, 3-BTBZ (7m)224 and FTBMT (4u),225 display both antipsychotic and procognitive efficacy in preclinical models of schizophrenia.222,226 The mechanistic basis of cortical GPR52 signaling is slowly being elucidated; recent studies show that GPR52-mediated ERK1/2 signaling in frontal cortical neurons is β-arrestin-2-dependent227 and that cortical GPR52 regulates striatal function,223 providing insights into mechanisms of efficacy in HPC–PFC-related cognitive outcomes.228,229 Whether or not a β-arrestin-biased GPR52 agonist would produce better efficacy remains unknown. Further GPR52 agonists developed by Boeringer Ingelheim Pharma/Beacon Discovery and Sosei Heptares display procognitive effects related to cognitive flexibility in rodent models of CIAS,230,231 though their pharmacology is unknown. While still in the early stage of research, GPR52 is an exciting and novel target for the treatment of both psychosis and CIAS.

The Gαq-coupled orphan GPCR GPR139 is coexpressed with dopamine D2 receptors in HPC–PFC circuitry.232 It is also found in regions implicated in motivation and emotion and has emerged as a target for the treatment of cognitive and motivation deficits associated with schizophrenia. GPR139 knockout mice show impaired episodic-like memory, working memory, and motivation, while a GPR139 agonist reverses impaired cognitive flexibility in mouse models of CIAS.233 A phase II proof-of-concept clinical trial was completed in September 2019 assessing the procognitive and motivational efficacy of the GPR139 agonist TAK-041 as an add-on treatment for schizophrenia patients with CIAS. While results are yet to be posted, TAK-041 remains an active program.

3.3.6. Other GPCR Targets

Other GPCRs not included above represent targets of interest for schizophrenia treatment due to their nondopaminergic mechanisms of action and antipsychotic efficacy at the preclinical and/or clinical level. These include metabotropic glutamate receptors (mGlu1, mGlu2/3, and mGlu5)234,235 and the muscarinic M4 acetylcholine receptor.236,237 While some of these targets and their ligands have a theoretical or even preclinical basis for procognitive efficacy,238,239 they are not reviewed herein as they have not been assessed clinically with CIAS as a primary end point.

4. Preclinical Behavioral Tasks for CIAS

Even with appropriate therapeutic targets and mechanisms of action, the lack of a true “positive control” against CIAS limits the assessment of in vivo efficacy with any predictive validity. Many commonly employed cognitive behavioral tests for rodents do not reflect those used in the clinic, contributing to the overwhelming false-positive rate for compounds against CIAS.240,241 There is an urgent need for procognitive agents to be tested in preclinical cognitive behavioral tasks that probe the same processes in humans relevant for CIAS and rely on common neural mechanisms. Importantly, equal focus should be paid to selecting adequate animal models of CIAS. However, outlining the validity and limitations of animal manipulations is beyond the scope of this current review but has been documented extensively elsewhere.241244

Herein we highlight preclinical behavioral tasks recommended by the Cognitive Neuroscience Treatment to Improve Cognition in Schizophrenia (CNTRICS) initiative, which identified tests from cognitive and clinical neuroscience that examine specific cognitive processes linked to CIAS-relevant neurocircuitry.245,246 Furthermore, we highlight operant touchscreen-based behavioral tasks based on the Cambridge Neuropsychological Test Automated Battery (CANTAB) that assess cognitive function in humans, nonhuman primates, and rodents. These rodent variants are similar, if not identical, to the original CANTAB tasks.247250 As numerous studies have proven the utility of CANTAB testing in patients with CIAS,251255 the ability to use a comparable touchscreen approach to measure cognition in rodents, nonhuman primates, and human patients may significantly improve the likelihood of successful translation of preclinical studies. Coupled with a greater potential for translation, these touchscreen-based cognitive tasks have many added benefits of operant automation including reduced experimenter interference and labor, and therefore improved standardization and reduced variability.248

4.1. Working Memory

Historically, working-memory performance in rodents has overwhelmingly been assessed using the T- or Y-maze tests.256 These maze tasks rely on a rodent’s intrinsic tendency to alternate their choice and can be tested with and without the use of food rewards (Figure 4A), making them relatively quick tests that are not reliant on extended training sessions or food restriction. It is assumed that alternating behavior relies on spatial working memory due to a need to remember their initial choice in order to enter an alternative arm, and various lesion studies implicate functioning of key HPC–PFC nodes, although not exclusively.257 However, tasks based on the innate preference of rodents for novelty are arguably more dependent on short-term habituation than working memory processes.258,259 While schizophrenia patients can present with impairments in short-term habituation, working memory and short-term habituation rely on distinct neural mechanisms and differentially impact patient outcomes.260

Figure 4.

Figure 4

Schemes of various behavioral tasks used to assess the key cognitive processes dysfunctional in CIAS. In all cases, S+ represents the correct choice, while S represents the incorrect choice. (A) T-maze rewarded alternation task. (B) Delayed nonmatch to position win-shift paradigm using the radial arm maze. (C) Two-lever operant tasks using either a delayed matching to position (DMTP) or a delayed nonmatching to position (DNMTP) test. (D) Mouse trial unique nonmatch to location (TUNL) touchscreen task. (E) The rodent odor intradimensional/extradimensional (ID/ED) test of attentional set-shifting. (F) Touchscreen visual discrimination and reversal (VD/RL) task. (G) Simple novel object recognition task. (H) Touchscreen paired-associate learning (PAL) task, in this case the correct object–location pairs are flower–left, aeroplane–middle, and spider–right.

The eight-arm radial arm maze (RAM) variant may be less reliant on a passive preference for novelty as there are considerably more arm entry options than the simpler win-shifting tasks, and it generally employs appetitive reinforced training261 (Figure 4B). However, mice in this task readily adopt a clockwise or anticlockwise entry strategy, avoiding the need for active engagement of working memory processes and instead relying on spatial strategy development.262264 This makes it difficult to determine whether compounds that improve performance in these tasks are improving working memory or are simply improving spatial strategy. Interestingly, humans partaking in a head-mounted display version of the RAM also readily adopt clockwise or anticlockwise entry strategies265 which only reinforces the poor face and construct validity of the RAM as a test of working memory as opposed to spatial strategy.

While CNTRICS have included the RAM in their recommendations for the preclinical assessment, they place a greater emphasis on operant delayed match to position (DMTP) and operant delayed nonmatch to position (DNMTP) tasks.266 Two-choice operant DMTP/DNMTP tasks involve the presentation of one retractable lever in a given position (left or right) during the sample phase, which is pressed to trigger a delay period. Following the delay period, both levers are presented, and the animal must press the lever that either matches (DMTP) or nonmatches (DNMTP) the sample phase position to obtain a reward (Figure 4C). Variations have also been made with two nose-poke holes in place of the two levers.267,268 However, these two-position paradigms face a common confound whereby animals can “solve” the task by preemptively positioning themselves in front of the correct position during the delay period by long-term habitual memory rather than relying on working memory processes.269

The trial unique nonmatch to location (TUNL) touchscreen task is a DNMTP test that has been developed to mitigate non-working-memory-dependent strategies by using multiple location pairs across trials, offering more trial types and less repetition of same trials, and therefore greater overall “trial uniqueness”.270 Along with improved face validity, improved construct validity over other working memory tasks is reflected in the similarities between the TUNL touchscreen task the CANTAB touchscreen spatial working memory task for use in humans and nonhuman primates.248,271 During TUNL, one of the possible locations on screen (5 for mice and 14 for rats) will illuminate and must be touched to trigger a delay period. After the delay period, the animal must return to the opposite side of the chamber in order to trigger the choice phase, thereby further mitigating mediating strategies. The animal is then presented with two illuminated locations and must touch the nonmatching location to receive a reward (Figure 4D). TUNL involves extensive training protocols,272 but as multiple animals can be run in the task simultaneously, the overall time taken is similar if not less than nonautomated task variants.248 Performance in TUNL is dependent on intact HPC and PFC function in both mice and rats,270,272275 however further validating studies assessing circuit function and synchrony during this task, e.g., by in vivo electrophysiology,276,277 would provide further evidence for cross-species translatability of results in TUNL. Performance in TUNL appears to be impaired in multiple models of CIAS278282 and it is notable that mGlu2/mGlu3 receptor activation (a mechanism that has largely failed in clinical trials) is unable to reverse CIAS model-induced deficits in TUNL.280 Overall, these data highlight the TUNL touchscreen task as a preclinical test of working memory with high face and construct validity and potentially high predictive validity for CIAS drug development and as a test which avoids confounds associated with traditional working memory tasks.

4.2. Cognitive Flexibility

Following the recommendation by CNTRICS that the CANTAB intradimensional/extradimensional (ID/ED) test of attentional-set shifting be used in clinical assessment of cognitive flexibility in patients with CIAS,283 CNTRICS further recommended the rodent version, odor ID/ED, be used in preclinical assessments.284 Odor ID/ED requires rodents to dig in bowls containing food reward by discriminating their choices based on two dimensions: type of digging medium and odor applied to the bowl. The task consists of three phases; compound discrimination (CD), ID shift, and ED shift, with each phase followed by a test of RL (Figure 4E). During CD, animals form an attentional set by learning to respond to a rewarded positive cue from the relevant dimension, i.e., odor 1 versus odor 2, while ignoring the irrelevant dimension, i.e., medium. During reversal, the previously negative cue becomes positive. ID shift is identical to CD except the specific odor and medium cues change. During the ED shift, the rewarded cue is from the previously irrelevant dimension, i.e., medium 1 versus medium 2, and the previously relevant dimension becomes irrelevant, i.e., odor. The number of trials taken to behaviorally shift responses to support the rule change is used as a measure of cognitive flexibility. The odor ID/ED task is notably similar to the human CANTAB task, varying only in the type of dimensions (odor/medium vs number/color/shape) and the behavioral response (digging in a bowl vs touchscreen). Indeed, the neural correlates required for odor ID/ED highly reflect those necessary for ID/ED performance in humans and nonhuman primates such as the intact function of key HPC–PFC nodes.285288 Furthermore, deficits in odor ID/ED are observed in animal models of CIAS,289291 while patients with CIAS display robust deficits in the CANTAB ID/ED task,292,293 making it a valuable assessor of cognitive flexibility with high face validity. However, odor ID/ED has to be administered entirely manually and is therefore very low-throughput.294,295 Additionally, odor-based cues can be difficult to systematically control, therefore contributing to variability. These limitations essentially preclude its use for CIAS drug development, rendering it incompatible with the need for early “go/no-go” decisions in CNS drug discovery.296

Although not recommended for clinical research, CNTRICS suggested the use of high-throughput RL paradigms for preclinical behavioral assessment primarily due to their relative ease of use. While RL can be assessed in rodents in a plethora of paradigms, the touchscreen visual discrimination and RL (VD/RL) task remains the most widely employed rodent touchscreen task. A unique benefit of the rodent touchscreen VD/RL paradigm is that it can be administered as part of a cognitive battery along with other tasks, e.g., TUNL and paired associate learning (PAL, vide infra), using the same apparatus,248,250 as for CANTAB in the clinic. In VD, animals first learn that responses to one of two stimuli (irrespective of stimulus location) results in a reward. Following discrimination learning, the stimulus–reward contingency is reversed such that the previously unrewarded stimulus is now rewarded and vice versa (Figure 4F). Measuring the accuracy across RL sessions or the number of trials required to reverse the stimulus–reward association is used as a measure of cognitive flexibility. RL has been shown to rely on key neural mechanisms involved in cognitive flexibility processes such as HPC–NAc–Thal–PFC circuit node function, connectivity, and synchrony.276,297,298 Furthermore, deficits in RL have been observed in some but not all models of CIAS.282,299302 Adapting the touchscreen VD/RL paradigm to be more comparable to the CANTAB ID/ED attentional-set-shifting task would be beneficial to improve construct validity. However, attempts thus far have revealed significant obstacles to developing such a task especially for mice, including strain differences and challenges with the attributes of discrimination stimuli.303

4.3. Episodic Memory

The novel object recognition (NOR) task is one of the most popular preclinical cognitive tasks that has been used to measure episodic-like memory.290 Like the Y-, T-, and radial arm mazes, NOR tasks rely primarily on a rodent’s innate preference for novelty. Standard NOR assesses a rodent’s ability to encode two identical objects (sample phase), then after a delay (or pharmacological insult), to recall this information when presented with both the familiar object and a novel object (choice phase) (Figure 4G). Intact memory is inferred by the animal spending more time interacting with the novel object. NOR is a favorable task due to its ease of use, simplicity, and lack of reliance on extensive training sessions or food restriction. Furthermore, interventions can be made during encoding, consolidation, and retrieval stages of the task.304,305 However, NOR does not readily reflect any episodic memory tasks used in the clinic, thus it is not recommended by CNTRICS for use in preclinical assessments of CIAS.306 Furthermore, the single-trial nature of NOR is more reliant on familiarity-based episodic memory, which in rodents is independent of the HPC,307,308 an issue for translation as patients with CIAS do not show impairments in familiarity-based episodic memory but rather recollection-based episodic memory, which is HPC-dependent and relies on intact HPC–EC–PFC circuitry.309 CNTRICS opted instead to recommend the rodent touchscreen object-location paired-associate learning (PAL) task.310312 Patients with CIAS display significant deficits in the CANTAB-PAL task, and their performance significantly correlates with symptom severity and functional capacity.313315 In the rodent touchscreen PAL, animals learn to associate three different stimuli with each of the three touchscreen locations to form an object–location association (dPAL). In a simpler version of the task, (sPAL), two identical stimuli (objects) are presented in two locations: one in the correct location and the other in an incorrect location so that animals learn a conditional rule such as “if A, then select the left; if B, then select the right” (Figure 4H). Importantly, performance in dPAL relies on intact HPC and PFC function302,312,316 suggesting it likely requires engagement of recollection-based episodic memory processes. However, investigating the role of the EC in this task will be required to maximize face validity. Rodent PAL acquisition is impaired in mouse models of genetic risk for schizophrenia,250 while PAL recall is impaired in some but not all preclinical models of CIAS.302,312 Although greater validation is likely required, rodent PAL appears to have strong potential as a translational tool with greater relevance for CIAS than previously used tasks of episodic-like memory.

5. Concluding Remarks

Drug development for CIAS has been both challenging and largely underwhelming. Despite major efforts and initiatives to increase the amount of research into CIAS, there remains no adequate treatment option. This striking translational bottleneck highlights the need for a cohesive, translational drug development strategy to improve the likelihood that procognitive effects observed at the preclinical level can be reflected in the clinic. In this review, we describe HPC–PFC circuits that regulate brain function and behavior relevant to CIAS across mammalian species and the ways our understanding of these circuits can be applied to multiple facets of preclinical drug discovery to improve translation. HPC–PFC circuit function can be used as a source of innovation for identifying novel therapeutic targets such as circuit-enriched orphan GPCRs, or more established targets that could be tackled with contemporary pharmacological approaches, such as allosteric modulation or biased agonism, to alter HPC–PFC circuit function with greater nuance. We also suggest that the procognitive efficacy of investigational compounds be assessed using cognitive paradigms with the greatest face validity (in that they rely on intact HPC–PFC circuit function) and high construct validity (in that they reflect the assessment tasks commonly used in the clinic). To this end, we propose the touchscreen cognitive tasks adapted from those used in humans and nonhuman primates have the greatest translational potential, particularly when used as a cognitive battery as that are undertaken in the clinic.

Combining mechanisms of action at HPC–PFC circuit-enriched targets with preclinical behavioral tests relying on intact HPC–PFC circuit function offers a uniquely cohesive, translation-focused approach to preclinical drug development for CIAS. Validating and applying this approach may ultimately improve the translational bottleneck and finally result in adequate therapeutic options for patients suffering with CIAS.

Glossary

Abbreviations

CANTAB

Cambridge Neuropsychological Test Automated Battery

CD

compound discrimination

CIAS

cognitive impairments associated with schizophrenia

CNTRICS

Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia

dlPFC

dorsolateral prefrontal cortex

DMTP

delayed match to position

DNMTP

delayed nonmatch to position

dPAL

different paired-associate learning

EC

entorhinal cortex

ED

extradimensional

ERK

extracellular signal-regulated kinase

GPCR

G protein-coupled receptor

HPC

hippocampus

HPC–PFC

hippocampal–prefrontal cortical

ID

intradimensional

MATRICS

Measurement and Treatment Research to Improve Cognition in Schizophrenia

mPFC

medial prefrontal cortex

NAc

nucleus accumbens

NOR

novel object recognition

NRe

nucleus reuniens

PAL

paired-associate learning

PAM

positive allosteric modulator

PC

perirhinal cortex

PFC

prefrontal cortex

PHC

parahippocampal cortex

RAM

radial arm maze

RL

reversal learning

sPAL

same paired-associate learning

TUNL

trial unique nonmatch to location

VD

visual discrimination

VTA

ventral tegmental area

The authors declare no competing financial interest.

This paper was published ASAP on October 28, 2020 with a caption incorrectly ordered for Figure 4E−H. The corrected version was posted on November 17, 2020.

References

  1. Charlson F. J.; Ferrari A. J.; Santomauro D. F.; Diminic S.; Stockings E.; Scott J. G.; McGrath J. J.; Whiteford H. A. (2018) Global Epidemiology and Burden of Schizophrenia: Findings From the Global Burden of Disease Study 2016. Schizophr Bull. 44 (6), 1195–1203. 10.1093/schbul/sby058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Olfson M.; Gerhard T.; Huang C.; Crystal S.; Stroup T. S. (2015) Premature Mortality Among Adults With Schizophrenia in the United States. JAMA Psychiatry 72 (12), 1172–1181. 10.1001/jamapsychiatry.2015.1737. [DOI] [PubMed] [Google Scholar]
  3. DSM-5 Task Force . (2013) Diagnostic and Statistical Manual of Mental Disorders: DSM-5, American Psychiatric Association, Arlington, VA. [Google Scholar]
  4. Cornblatt B. A.; Lenzenweger M. F.; Dworkin R. H.; Erlenmeyer-Kimling L. (1992) Childhood Attentional Dysfunctions Predict Social Deficits in Unaffected Adults at Risk for Schizophrenia. Br. J. Psychiatry 161 (18), 59–64. 10.1192/S0007125000297067. [DOI] [PubMed] [Google Scholar]
  5. Niendam T. A.; Bearden C. E.; Rosso I. M.; Sanchez L. E.; Hadley T.; Nuechterlein K. H.; Cannon T. D. (2003) A Prospective Study of Childhood Neurocognitive Functioning in Schizophrenic Patients and Their Siblings. Am. J. Psychiatry 160 (11), 2060–2062. 10.1176/appi.ajp.160.11.2060. [DOI] [PubMed] [Google Scholar]
  6. Green M.; Kern R.; Braff D.; Mintz J. (2000) Neurocognitive Deficits and Functional Outcome in Schizophrenia: Are We Measuring the “Right Stuff”?. Schizophr Bull. 26 (1), 119–136. 10.1093/oxfordjournals.schbul.a033430. [DOI] [PubMed] [Google Scholar]
  7. Liddle P. F. (2019) The Core Deficit of Classical Schizophrenia: Implications for Predicting the Functional Outcome of Psychotic Illness and Developing Effective Treatments. Can. J. Psychiatry 64 (10), 680–685. 10.1177/0706743719870515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Silberstein J.; Harvey P. D. (2019) Cognition, Social Cognition, and Self-Assessment in Schizophrenia: Prediction of Different Elements of Everyday Functional Outcomes. CNS Spectr 24 (1), 88–93. 10.1017/S1092852918001414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bowie C. R.; Leung W. W.; Reichenberg A.; McClure M. M.; Patterson T. L.; Heaton R. K.; Harvey P. D. (2008) Predicting Schizophrenia Patients’ Real-World Behavior with Specific Neuropsychological and Functional Capacity Measures. Biol. Psychiatry 63 (5), 505–511. 10.1016/j.biopsych.2007.05.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fett A.-K. J.; Viechtbauer W.; Dominguez M.-G.; Penn D. L.; van Os J.; Krabbendam L. (2011) The Relationship between Neurocognition and Social Cognition with Functional Outcomes in Schizophrenia: A Meta-Analysis. Neurosci. Biobehav. Rev. 35 (3), 573–588. 10.1016/j.neubiorev.2010.07.001. [DOI] [PubMed] [Google Scholar]
  11. Green M.; Kern R.; Heaton R. (2004) Longitudinal Studies of Cognition and Functional Outcome in Schizophrenia: Implications for MATRICS. Schizophr. Res. 72 (1), 41–51. 10.1016/j.schres.2004.09.009. [DOI] [PubMed] [Google Scholar]
  12. Harvey P. D.; Strassnig M. T.; Silberstein J. (2019) Prediction of Disability in Schizophrenia: Symptoms, Cognition, and Self-Assessment. J. Exp. Psychopathol. 10 (3), 2043808719865693. 10.1177/2043808719865693. [DOI] [Google Scholar]
  13. Chong S.-A. (2008) Inclusion of Cognitive Impairment in the DSM Diagnosis of Schizophrenia: If Not Now, When?. World psychiatry: official journal of the World Psychiatric Association (WPA) 7 (1), 37–38. 10.1002/j.2051-5545.2008.tb00150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davidson M. (2008) Reflections on the Inclusion of Cognitive Impairment in the Diagnostic Criteria for Schizophrenia. World psychiatry: official journal of the World Psychiatric Association (WPA) 7 (1), 33–34. 10.1002/j.2051-5545.2008.tb00146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Galderisi S. (2008) The Added Value of Including Cognitive Impairment in the Diagnostic Criteria for Schizophrenia. World psychiatry: official journal of the World Psychiatric Association (WPA) 7 (1), 36–37. 10.1002/j.2051-5545.2008.tb00149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keefe R. S. E. (2008) Should Cognitive Impairment Be Included in the Diagnostic Criteria for Schizophrenia?. World psychiatry: official journal of the World Psychiatric Association (WPA) 7 (1), 22–28. 10.1002/j.2051-5545.2008.tb00142.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Carter C. S.; Barch D. M. (2007) Cognitive Neuroscience-Based Approaches to Measuring and Improving Treatment Effects on Cognition in Schizophrenia: The CNTRICS Initiative. Schizophr Bull. 33 (5), 1131–1137. 10.1093/schbul/sbm081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nuechterlein K. H.; Barch D. M.; Gold J. M.; Goldberg T. E.; Green M. F.; Heaton R. K. (2004) Identification of Separable Cognitive Factors in Schizophrenia. Schizophr. Res. 72 (1), 29–39. 10.1016/j.schres.2004.09.007. [DOI] [PubMed] [Google Scholar]
  19. Kern R. S.; Gold J. M.; Dickinson D.; Green M. F.; Nuechterlein K. H.; Baade L. E.; Keefe R. S. E.; Mesholam-Gately R. I.; Seidman L. J.; Lee C.; Sugar C. A.; Marder S. R. (2011) The MCCB Impairment Profile for Schizophrenia Outpatients:Results from the MATRICS Psychometric and Standardization Study. Schizophr Res. 126 (1–3), 124–131. 10.1016/j.schres.2010.11.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shamsi S.; Lau A.; Lencz T.; Burdick K. E.; DeRosse P.; Brenner R.; Lindenmayer J.-P.; Malhotra A. K. (2011) Cognitive and Symptomatic Predictors of Functional Disability in Schizophrenia. Schizophr Res. 126 (1–3), 257–264. 10.1016/j.schres.2010.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reichenberg A.; Harvey P. D.; Bowie C. R.; Mojtabai R.; Rabinowitz J.; Heaton R. K.; Bromet E. (2009) Neuropsychological Function and Dysfunction in Schizophrenia and Psychotic Affective Disorders. Schizophr Bull. 35 (5), 1022–1029. 10.1093/schbul/sbn044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Heaton R. K.; Gladsjo J. A.; Palmer B. W.; Kuck J.; Marcotte T. D.; Jeste D. V. (2001) Stability and Course of Neuropsychological Deficits in Schizophrenia. Arch. Gen. Psychiatry 58 (1), 24–32. 10.1001/archpsyc.58.1.24. [DOI] [PubMed] [Google Scholar]
  23. Irani F.; Kalkstein S.; Moberg E. A.; Moberg P. J. (2011) Neuropsychological Performance in Older Patients with Schizophrenia: A Meta-Analysis of Cross-Sectional and Longitudinal Studies. Schizophrenia Bulletin 37 (6), 1318–1326. 10.1093/schbul/sbq057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zanelli J.; Mollon J.; Sandin S.; Morgan C.; Dazzan P.; Pilecka I.; Reis Marques T.; David A. S.; Morgan K.; Fearon P.; Doody G. A.; Jones P. B.; Murray R. M.; Reichenberg A. (2019) Cognitive Change in Schizophrenia and Other Psychoses in the Decade Following the First Episode. Am. J. Psychiatry 176 (10), 811–819. 10.1176/appi.ajp.2019.18091088. [DOI] [PubMed] [Google Scholar]
  25. Geyer M. A.; Tamminga C. A. (2004) Measurement and Treatment Research to Improve Cognition in Schizophrenia: Neuropharmacological Aspects. Psychopharmacology 174 (1), 1–2. 10.1007/s00213-004-1846-2. [DOI] [Google Scholar]
  26. Geyer M. A. (2010) New Opportunities in the Treatment of Cognitive Impairments Associated With Schizophrenia. Curr. Dir Psychol Sci. 19 (4), 264–269. 10.1177/0963721410378359. [DOI] [Google Scholar]
  27. Marder S. R. (2006) The NIMH-MATRICS Project for Developing Cognition-Enhancing Agents for Schizophrenia. Dialogues Clin. Neurosci. 8 (1), 109–113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Carbon M.; Correll C. U. (2014) Thinking and Acting beyond the Positive: The Role of the Cognitive and Negative Symptoms in Schizophrenia. CNS Spectrums 19, 35–53. 10.1017/S1092852914000601. [DOI] [PubMed] [Google Scholar]; quiz 35–37, 53.
  29. Haddad P. M.; Correll C. U. (2018) The Acute Efficacy of Antipsychotics in Schizophrenia: A Review of Recent Meta-Analyses. Ther. Adv. Psychopharmacol. 8 (11), 303–318. 10.1177/2045125318781475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Harvey P. D.; Keefe R. S. E. (2001) Studies of Cognitive Change in Patients With Schizophrenia Following Novel Antipsychotic Treatment. Am. J. Psychiatry 158 (2), 176–184. 10.1176/appi.ajp.158.2.176. [DOI] [PubMed] [Google Scholar]
  31. Heinrichs R. W. (2007) Cognitive Improvement in Response to Antipsychotic Drugs: Neurocognitive Effects of Antipsychotic Medications in Patients With Chronic Schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64 (6), 631–632. 10.1001/archpsyc.64.6.631. [DOI] [PubMed] [Google Scholar]
  32. Keefe R. S. E.; Bilder R. M.; Davis S. M.; Harvey P. D.; Palmer B. W.; Gold J. M.; Meltzer H. Y.; Green M. F.; Capuano G.; Stroup T. S.; McEvoy J. P.; Swartz M. S.; Rosenheck R. A.; Perkins D. O.; Davis C. E.; Hsiao J. K.; Lieberman J. A. (2007) Neurocognitive Effects of Antipsychotic Medications in Patients With Chronic Schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64 (6), 633–647. 10.1001/archpsyc.64.6.633. [DOI] [PubMed] [Google Scholar]
  33. Mintz J.; Kopelowicz A. (2007) CUtLASS Confirms CATIE. Arch. Gen. Psychiatry 64 (8), 978–978. 10.1001/archpsyc.64.8.978-a. [DOI] [PubMed] [Google Scholar]
  34. Nielsen R. E.; Levander S.; Kjaersdam Telléus G.; Jensen S. O. W.; Østergaard Christensen T.; Leucht S. (2015) Second-Generation Antipsychotic Effect on Cognition in Patients with Schizophrenia—a Meta-Analysis of Randomized Clinical Trials. Acta Psychiatr. Scand. 131 (3), 185–196. 10.1111/acps.12374. [DOI] [PubMed] [Google Scholar]
  35. Stępnicki P.; Kondej M.; Kaczor A. A. (2018) Current Concepts and Treatments of Schizophrenia. Molecules 23 (8), 2087. 10.3390/molecules23082087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Chouinard S.; Stip E.; Poulin J.; Melun J.-P.; Godbout R.; Guillem F.; Cohen H. (2007) Rivastigmine Treatment as an Add-on to Antipsychotics in Patients with Schizophrenia and Cognitive Deficits. Curr. Med. Res. Opin. 23 (3), 575–583. 10.1185/030079906X167372. [DOI] [PubMed] [Google Scholar]
  37. Fagerlund B.; Søholm B.; Fink-Jensen A.; Lublin H.; Glenthøj B. Y. (2007) Effects of Donepezil Adjunctive Treatment to Ziprasidone on Cognitive Deficits in Schizophrenia: A Double-Blind, Placebo-Controlled Study. Clin. Neuropharmacol. 30 (1), 3–12. 10.1097/01.WNF.0000240940.67241.F6. [DOI] [PubMed] [Google Scholar]
  38. Sharma T.; Reed C.; Aasen I.; Kumari V. (2006) Cognitive Effects of Adjunctive 24-Weeks Rivastigmine Treatment to Antipsychotics in Schizophrenia: A Randomized, Placebo-Controlled, Double-Blind Investigation. Schizophr. Res. 85 (1–3), 73–83. 10.1016/j.schres.2006.03.037. [DOI] [PubMed] [Google Scholar]
  39. Hagan J. J.; Jones D. N. C. (2005) Predicting Drug Efficacy for Cognitive Deficits in Schizophrenia. Schizophr Bull. 31 (4), 830–853. 10.1093/schbul/sbi058. [DOI] [PubMed] [Google Scholar]
  40. Hyman S. E.; Fenton W. S. (2003) What Are the Right Targets for Psychopharmacology?. Science 299 (5605), 350–351. 10.1126/science.1077141. [DOI] [PubMed] [Google Scholar]
  41. Anderzhanova E.; Kirmeier T.; Wotjak C. T. (2017) Animal Models in Psychiatric Research: The RDoC System as a New Framework for Endophenotype-Oriented Translational Neuroscience. Neurobiol Stress 7, 47–56. 10.1016/j.ynstr.2017.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Insel T.; Cuthbert B.; Garvey M.; Heinssen R.; Pine D. S.; Quinn K.; Sanislow C.; Wang P. (2010) Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. Am. J. Psychiatry 167 (7), 748–751. 10.1176/appi.ajp.2010.09091379. [DOI] [PubMed] [Google Scholar]
  43. van den Heuvel M. P.; Fornito A. (2014) Brain Networks in Schizophrenia. Neuropsychol Rev. 24 (1), 32–48. 10.1007/s11065-014-9248-7. [DOI] [PubMed] [Google Scholar]
  44. Stephan K. E.; Friston K. J.; Frith C. D. (2009) Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of Self-Monitoring. Schizophr Bull. 35 (3), 509–527. 10.1093/schbul/sbn176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Gao R.; Penzes P. (2015) Common Mechanisms of Excitatory and Inhibitory Imbalance in Schizophrenia and Autism Spectrum Disorders. Curr. Mol. Med. 15 (2), 146–167. 10.2174/1566524015666150303003028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Selten M.; van Bokhoven H.; Nadif Kasri N. (2018) Inhibitory Control of the Excitatory/Inhibitory Balance in Psychiatric Disorders. F1000Research 7, 23. 10.12688/f1000research.12155.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Barch D. M. (2005) The Cognitive Neuroscience of Schizophrenia. Annu. Rev. Clin. Psychol. 1 (1), 321–353. 10.1146/annurev.clinpsy.1.102803.143959. [DOI] [PubMed] [Google Scholar]
  48. Bast T.; Pezze M.; McGarrity S. (2017) Cognitive Deficits Caused by Prefrontal Cortical and Hippocampal Neural Disinhibition. Br. J. Pharmacol. 174 (19), 3211–3225. 10.1111/bph.13850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Li M.; Long C.; Yang L. (2015) Hippocampal-Prefrontal Circuit and Disrupted Functional Connectivity in Psychiatric and Neurodegenerative Disorders. BioMed Res. Int. 2015, 810548 10.1155/2015/810548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Godsil B. P.; Kiss J. P.; Spedding M.; Jay T. M. (2013) The Hippocampal–Prefrontal Pathway: The Weak Link in Psychiatric Disorders?. Eur. Neuropsychopharmacol. 23 (10), 1165–1181. 10.1016/j.euroneuro.2012.10.018. [DOI] [PubMed] [Google Scholar]
  51. Sigurdsson T. (2016) Neural Circuit Dysfunction in Schizophrenia: Insights from Animal Models. Neuroscience 321, 42–65. 10.1016/j.neuroscience.2015.06.059. [DOI] [PubMed] [Google Scholar]
  52. Bähner F.; Demanuele C.; Schweiger J.; Gerchen M. F.; Zamoscik V.; Ueltzhöffer K.; Hahn T.; Meyer P.; Flor H.; Durstewitz D.; Tost H.; Kirsch P.; Plichta M. M.; Meyer-Lindenberg A. (2015) Hippocampal–Dorsolateral Prefrontal Coupling as a Species-Conserved Cognitive Mechanism: A Human Translational Imaging Study. Neuropsychopharmacology 40 (7), 1674–1681. 10.1038/npp.2015.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Finn A. S.; Sheridan M. A.; Kam C. L. H.; Hinshaw S.; D’Esposito M. (2010) Longitudinal Evidence for Functional Specialization of the Neural Circuit Supporting Working Memory in the Human Brain. J. Neurosci. 30 (33), 11062–11067. 10.1523/JNEUROSCI.6266-09.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Payne L.; Kounios J. (2009) Coherent Oscillatory Networks Supporting Short-Term Memory Retention. Brain Res. 1247, 126–132. 10.1016/j.brainres.2008.09.095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Roux F.; Uhlhaas P. J. (2014) Working Memory and Neural Oscillations: α-γ versus θ-γ Codes for Distinct WM Information?. Trends Cognit. Sci. 18 (1), 16–25. 10.1016/j.tics.2013.10.010. [DOI] [PubMed] [Google Scholar]
  56. Sarnthein J.; Petsche H.; Rappelsberger P.; Shaw G. L.; von Stein A. (1998) Synchronization between Prefrontal and Posterior Association Cortex during Human Working Memory. Proc. Natl. Acad. Sci. U. S. A. 95 (12), 7092–7096. 10.1073/pnas.95.12.7092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Jones M. W.; Wilson M. A. (2005) Theta Rhythms Coordinate Hippocampal–Prefrontal Interactions in a Spatial Memory Task. PLoS Biol. 3 (12), e402 10.1371/journal.pbio.0030402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zielinski M. C.; Shin J. D.; Jadhav S. P. (2019) Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex. J. Neurosci. 39 (23), 4550–4565. 10.1523/JNEUROSCI.0106-19.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Abbas A. I.; Sundiang M. J. M.; Henoch B.; Morton M. P.; Bolkan S. S.; Park A. J.; Harris A. Z.; Kellendonk C.; Gordon J. A. (2018) Somatostatin Interneurons Facilitate Hippocampal-Prefrontal Synchrony and Prefrontal Spatial Encoding. Neuron 100 (4), 926–939. 10.1016/j.neuron.2018.09.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. O’Neill P.-K.; Gordon J. A.; Sigurdsson T. (2013) Theta Oscillations in the Medial Prefrontal Cortex Are Modulated by Spatial Working Memory and Synchronize with the Hippocampus through Its Ventral Subregion. J. Neurosci. 33 (35), 14211–14224. 10.1523/JNEUROSCI.2378-13.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Spellman T.; Rigotti M.; Ahmari S. E.; Fusi S.; Gogos J. A.; Gordon J. A. (2015) Hippocampal–Prefrontal Input Supports Spatial Encoding in Working Memory. Nature 522, 309. 10.1038/nature14445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. McKenna J. T.; Vertes R. P. (2004) Afferent Projections to Nucleus Reuniens of the Thalamus. J. Comp. Neurol. 480 (2), 115–142. 10.1002/cne.20342. [DOI] [PubMed] [Google Scholar]
  63. Vertes R. P.; Hoover W. B.; Do Valle A. C.; Sherman A.; Rodriguez J. J. (2006) Efferent Projections of Reuniens and Rhomboid Nuclei of the Thalamus in the Rat. J. Comp. Neurol. 499 (5), 768–796. 10.1002/cne.21135. [DOI] [PubMed] [Google Scholar]
  64. Hoover W. B.; Vertes R. P. (2012) Collateral Projections from Nucleus Reuniens of Thalamus to Hippocampus and Medial Prefrontal Cortex in the Rat: A Single and Double Retrograde Fluorescent Labeling Study. Brain Struct. Funct. 217 (2), 191–209. 10.1007/s00429-011-0345-6. [DOI] [PubMed] [Google Scholar]
  65. Varela C.; Kumar S.; Yang J. Y.; Wilson M. A. (2014) Anatomical Substrates for Direct Interactions between Hippocampus, Medial Prefrontal Cortex, and the Thalamic Nucleus Reuniens. Brain Struct. Funct. 219 (3), 911–929. 10.1007/s00429-013-0543-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hallock H. L.; Wang A.; Shaw C. L.; Griffin A. L. (2013) Transient Inactivation of the Thalamic Nucleus Reuniens and Rhomboid Nucleus Produces Deficits of a Working-Memory Dependent Tactile-Visual Conditional Discrimination Task. Behav. Neurosci. 127 (6), 860–866. 10.1037/a0034653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Hallock H. L.; Wang A.; Griffin A. L. (2016) Ventral Midline Thalamus Is Critical for Hippocampal–Prefrontal Synchrony and Spatial Working Memory. J. Neurosci. 36 (32), 8372–8389. 10.1523/JNEUROSCI.0991-16.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Layfield D. M.; Patel M.; Hallock H.; Griffin A. L. (2015) Inactivation of the Nucleus Reuniens/Rhomboid Causes a Delay-Dependent Impairment of Spatial Working Memory. Neurobiol. Learn. Mem. 125, 163–167. 10.1016/j.nlm.2015.09.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Maisson D. J.-N.; Gemzik Z. M.; Griffin A. L. (2018) Optogenetic Suppression of the Nucleus Reuniens Selectively Impairs Encoding during Spatial Working Memory. Neurobiol. Learn. Mem. 155, 78–85. 10.1016/j.nlm.2018.06.010. [DOI] [PubMed] [Google Scholar]
  70. Basar-Eroglu C.; Brand A.; Hildebrandt H.; Karolina Kedzior K.; Mathes B.; Schmiedt C. (2007) Working Memory Related Gamma Oscillations in Schizophrenia Patients. International Journal of Psychophysiology 64 (1), 39–45. 10.1016/j.ijpsycho.2006.07.007. [DOI] [PubMed] [Google Scholar]
  71. Kang S. S.; MacDonald A. W.; Chafee M. V.; Im C.-H.; Bernat E. M.; Davenport N. D.; Sponheim S. R. (2018) Abnormal Cortical Neural Synchrony during Working Memory in Schizophrenia. Clin. Neurophysiol. 129 (1), 210–221. 10.1016/j.clinph.2017.10.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Kupferschmidt D. A.; Gordon J. A. (2018) The Dynamics of Disordered Dialogue: Prefrontal, Hippocampal and Thalamic Miscommunication Underlying Working Memory Deficits in Schizophrenia. Brain Neurosci. Adv. 2, 239821281877182. 10.1177/2398212818771821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Meyer-Lindenberg A. S.; Olsen R. K.; Kohn P. D.; Brown T.; Egan M. F.; Weinberger D. R.; Berman K. F. (2005) Regionally Specific Disturbance of Dorsolateral Prefrontal–Hippocampal Functional Connectivity in Schizophrenia. Arch. Gen. Psychiatry 62 (4), 379–386. 10.1001/archpsyc.62.4.379. [DOI] [PubMed] [Google Scholar]
  74. Schmiedt C.; Brand A.; Hildebrandt H.; Basar-Eroglu C. (2005) Event-Related Theta Oscillations during Working Memory Tasks in Patients with Schizophrenia and Healthy Controls. Cognit. Brain Res. 25 (3), 936–947. 10.1016/j.cogbrainres.2005.09.015. [DOI] [PubMed] [Google Scholar]
  75. McGuire P.; Benetti S.; Mechelli A.; Picchioni M.; Broome M.; Williams S. (2009) Functional Integration between the Posterior Hippocampus and Prefrontal Cortex Is Impaired in Both First Episode Schizophrenia and the at Risk Mental State. Brain 132 (9), 2426–2436. 10.1093/brain/awp098. [DOI] [PubMed] [Google Scholar]
  76. Schneider M.; Walter H.; Moessnang C.; Schäfer A.; Erk S.; Mohnke S.; Romund L.; Garbusow M.; Dixson L.; Heinz A.; Romanczuk-Seiferth N.; Meyer-Lindenberg A.; Tost H. (2017) Altered DLPFC–Hippocampus Connectivity During Working Memory: Independent Replication and Disorder Specificity of a Putative Genetic Risk Phenotype for Schizophrenia. Schizophr Bull. 43 (5), 1114–1122. 10.1093/schbul/sbx001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Giakoumaki S. G.; Roussos P.; Pallis E. G.; Bitsios P. (2011) Sustained Attention and Working Memory Deficits Follow a Familial Pattern in Schizophrenia. Arch Clin Neuropsychol 26 (7), 687–695. 10.1093/arclin/acr060. [DOI] [PubMed] [Google Scholar]
  78. Saperstein A.; Fuller R.; Avila M.; Adami H.; Mcmahon R.; Thaker G.; Gold J. (2005) Spatial Working Memory as a Cognitive Endophenotype of Schizophrenia: Assessing Risk for Pathophysiological Dysfunction. Schizophrenia bulletin 32, 498–506. 10.1093/schbul/sbj072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Dickerson D. D.; Overeem K. A.; Wolff A. R.; Williams J. M.; Abraham W. C.; Bilkey D. K. (2014) Association of Aberrant Neural Synchrony and Altered GAD67 Expression Following Exposure to Maternal Immune Activation, a Risk Factor for Schizophrenia. Transl. Psychiatry 4, e418 10.1038/tp.2014.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Mukai J.; Tamura M.; Fenelon K.; Rosen A. M.; Spellman T.; Kang R.; Macdermott A.; Karayiorgou M.; Gordon J.; Gogos J. A. (2015) Molecular Substrates of Altered Axonal Growth and Brain Connectivity in a Mouse Model of Schizophrenia. Neuron 86, 680. 10.1016/j.neuron.2015.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Murray B. G.; Davies D. A.; Molder J. J.; Howland J. G. (2017) Maternal Immune Activation during Pregnancy in Rats Impairs Working Memory Capacity of the Offspring. Neurobiol. Learn. Mem. 141, 150–156. 10.1016/j.nlm.2017.04.005. [DOI] [PubMed] [Google Scholar]
  82. Sigurdsson T.; Stark K. L.; Karayiorgou M.; Gogos J. A.; Gordon J. A. (2010) Impaired Hippocampal–Prefrontal Synchrony in a Genetic Mouse Model of Schizophrenia. Nature 464 (7289), 763–767. 10.1038/nature08855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Diamond A. (2013) Executive Functions. Annu. Rev. Psychol. 64, 135–168. 10.1146/annurev-psych-113011-143750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Rinaldi R.; Lefebvre L. (2016) Goal-Directed Behaviors in Patients with Schizophrenia: Concept Relevance and Updated Model. Psychiatry Clin. Neurosci. 70 (9), 394–404. 10.1111/pcn.12401. [DOI] [PubMed] [Google Scholar]
  85. Mannella F.; Gurney K.; Baldassarre G. (2013) The Nucleus Accumbens as a Nexus between Values and Goals in Goal-Directed Behavior: A Review and a New Hypothesis. Front. Behav. Neurosci. 7, 135–135. 10.3389/fnbeh.2013.00135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Pennartz C. M. A.; Groenewegen H. J.; Lopes da Silva F. H. (1994) The Nucleus Accumbens as a Complex of Functionally Distinct Neuronal Ensembles: An Integration of Behavioural, Electrophysiological and Anatomical Data. Prog. Neurobiol. 42 (6), 719–761. 10.1016/0301-0082(94)90025-6. [DOI] [PubMed] [Google Scholar]
  87. Verschure P. F. M. J.; Pennartz C. M. A.; Pezzulo G. (2014) The Why, What, Where, When and How of Goal-Directed Choice: Neuronal and Computational Principles. Philos. Trans. R. Soc., B 369 (1655), 20130483. 10.1098/rstb.2013.0483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Cohen R. M.; Semple W. E.; Gross M.; King A. C.; Nordahl T. E. (1992) Metabolic Brain Pattern of Sustained Auditory Discrimination. Exp. Brain Res. 92 (1), 165–172. 10.1007/BF00230392. [DOI] [PubMed] [Google Scholar]
  89. Hampton A. N.; O’Doherty J. P. (2007) Decoding the Neural Substrates of Reward-Related Decision Making with Functional MRI. Proc. Natl. Acad. Sci. U. S. A. 104 (4), 1377–1382. 10.1073/pnas.0606297104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Insel C.; Kastman E. K.; Glenn C. R.; Somerville L. H. (2017) Development of Corticostriatal Connectivity Constrains Goal-Directed Behavior during Adolescence. Nat. Commun. 8, 1605. 10.1038/s41467-017-01369-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Dias R.; Robbins T. W.; Roberts A. C. (1996) Dissociation in Prefrontal Cortex of Affective and Attentional Shifts. Nature 380 (6569), 69–72. 10.1038/380069a0. [DOI] [PubMed] [Google Scholar]
  92. Benchenane K.; Peyrache A.; Khamassi M.; Tierney P. L.; Gioanni Y.; Battaglia F. P.; Wiener S. I. (2010) Coherent Theta Oscillations and Reorganization of Spike Timing in the Hippocampal- Prefrontal Network upon Learning. Neuron 66 (6), 921–936. 10.1016/j.neuron.2010.05.013. [DOI] [PubMed] [Google Scholar]
  93. St. Onge J. R.; Stopper C. M.; Zahm D. S.; Floresco S. B. (2012) Separate Prefrontal-Subcortical Circuits Mediate Different Components of Risk-Based Decision Making. J. Neurosci. 32 (8), 2886–2899. 10.1523/JNEUROSCI.5625-11.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Thierry A.-M.; Gioanni Y.; Dégénétais E.; Glowinski J. (2000) Hippocampo-Prefrontal Cortex Pathway: Anatomical and Electrophysiological Characteristics. Hippocampus 10 (4), 411–419. . [DOI] [PubMed] [Google Scholar]
  95. Cholvin T.; Loureiro M.; Cassel R.; Cosquer B.; Geiger K.; De Sa Nogueira D.; Raingard H.; Robelin L.; Kelche C.; Pereira de Vasconcelos A.; Cassel J.-C. (2013) The Ventral Midline Thalamus Contributes to Strategy Shifting in a Memory Task Requiring Both Prefrontal Cortical and Hippocampal Functions. J. Neurosci. 33 (20), 8772–8783. 10.1523/JNEUROSCI.0771-13.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Dolleman-Van der Weel M. J.; Morris R. G. M.; Witter M. P. (2009) Neurotoxic Lesions of the Thalamic Reuniens or Mediodorsal Nucleus in Rats Affect Non-Mnemonic Aspects of Watermaze Learning. Brain Struct. Funct. 213 (3), 329–342. 10.1007/s00429-008-0200-6. [DOI] [PubMed] [Google Scholar]
  97. Linley S. B.; Gallo M. M.; Vertes R. P. (2016) Lesions of the Ventral Midline Thalamus Produce Deficits in Reversal Learning and Attention on an Odor Texture Set Shifting Task. Brain Res. 1649, 110–122. 10.1016/j.brainres.2016.08.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Prasad J. A.; Macgregor E. M.; Chudasama Y. (2013) Lesions of the Thalamic Reuniens Cause Impulsive but Not Compulsive Responses. Brain Struct. Funct. 218 (1), 85–96. 10.1007/s00429-012-0378-5. [DOI] [PubMed] [Google Scholar]
  99. Viena T. D.; Linley S. B.; Vertes R. P. (2018) Inactivation of Nucleus Reuniens Impairs Spatial Working Memory and Behavioral Flexibility in the Rat. Hippocampus 28 (4), 297–311. 10.1002/hipo.22831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Block A. E.; Dhanji H.; Thompson-Tardif S. F.; Floresco S. B. (2007) Thalamic–Prefrontal Cortical–Ventral Striatal Circuitry Mediates Dissociable Components of Strategy Set Shifting. Cereb Cortex 17 (7), 1625–1636. 10.1093/cercor/bhl073. [DOI] [PubMed] [Google Scholar]
  101. Fettes P.; Schulze L.; Downar J. (2017) Cortico-Striatal-Thalamic Loop Circuits of the Orbitofrontal Cortex: Promising Therapeutic Targets in Psychiatric Illness. Front. Syst. Neurosci. 11, 25. 10.3389/fnsys.2017.00025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Leh S. E.; Petrides M.; Strafella A. P. (2010) The Neural Circuitry of Executive Functions in Healthy Subjects and Parkinson’s Disease. Neuropsychopharmacology 35 (1), 70–85. 10.1038/npp.2009.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Peters S. K.; Dunlop K.; Downar J. (2016) Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Front. Syst. Neurosci. 10, 104. 10.3389/fnsys.2016.00104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Giraldo-Chica M.; Rogers B. P.; Damon S. M.; Landman B. A.; Woodward N. D. (2018) Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. Biol. Psychiatry 83 (6), 509–517. 10.1016/j.biopsych.2017.09.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Morris R. W.; Quail S.; Griffiths K. R.; Green M. J.; Balleine B. W. (2015) Corticostriatal Control of Goal-Directed Action Is Impaired in Schizophrenia. Biol. Psychiatry 77 (2), 187–195. 10.1016/j.biopsych.2014.06.005. [DOI] [PubMed] [Google Scholar]
  106. Schlagenhauf F.; Huys Q. J. M.; Deserno L.; Rapp M. A.; Beck A.; Heinze H.-J.; Dolan R.; Heinz A. (2014) Striatal Dysfunction during Reversal Learning in Unmedicated Schizophrenia Patients. NeuroImage 89 (100), 171–180. 10.1016/j.neuroimage.2013.11.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Amitai N.; Semenova S.; Markou A. (2007) Cognitive-Disruptive Effects of the Psychotomimetic Phencyclidine and Attenuation by Atypical Antipsychotic Medications in Rats. Psychopharmacology (Berl.) 193 (4), 521–537. 10.1007/s00213-007-0808-x. [DOI] [PubMed] [Google Scholar]
  108. Baudin A.; Blot K.; Verney C.; Estevez L.; Santamaria J.; Gressens P.; Giros B.; Otani S.; Daugé V.; Naudon L. (2012) Maternal Deprivation Induces Deficits in Temporal Memory and Cognitive Flexibility and Exaggerates Synaptic Plasticity in the Rat Medial Prefrontal Cortex. Neurobiol. Learn. Mem. 98 (3), 207–214. 10.1016/j.nlm.2012.08.004. [DOI] [PubMed] [Google Scholar]
  109. Han X.; Li N.; Meng Q.; Shao F.; Wang W. (2011) Maternal Immune Activation Impairs Reversal Learning and Increases Serum Tumor Necrosis Factor-α in Offspring. Neuropsychobiology 64 (1), 9–14. 10.1159/000322455. [DOI] [PubMed] [Google Scholar]
  110. Kleinmans M.; Bilkey D. K. (2018) Reversal Learning Impairments in the Maternal Immune Activation Rat Model of Schizophrenia. Behav. Neurosci. 132, 520. 10.1037/bne0000275. [DOI] [PubMed] [Google Scholar]
  111. McLean S.; Grayson B.; Harris M.; Protheroe C.; Woolley M.; Neill J. (2010) Isolation Rearing Impairs Novel Object Recognition and Attentional Set Shifting Performance in Female Rats. J. Psychopharmacol. (London, U. K.) 24 (1), 57–63. 10.1177/0269881108093842. [DOI] [PubMed] [Google Scholar]
  112. Paine T. A.; Carlezon W. A. (2009) Effects of Antipsychotic Drugs on MK-801-Induced Attentional and Motivational Deficits in Rats. Neuropharmacology 56 (4), 788–797. 10.1016/j.neuropharm.2009.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Wood C.; Kohli S.; Malcolm E.; Allison C.; Shoaib M. (2016) Subtype-Selective Nicotinic Acetylcholine Receptor Agonists Can Improve Cognitive Flexibility in an Attentional Set Shifting Task. Neuropharmacology 105, 106–113. 10.1016/j.neuropharm.2016.01.006. [DOI] [PubMed] [Google Scholar]
  114. Fouquet C.; Tobin C.; Rondi-Reig L. (2010) A New Approach for Modeling Episodic Memory from Rodents to Humans: The Temporal Order Memory. Behav. Brain Res. 215 (2), 172–179. 10.1016/j.bbr.2010.05.054. [DOI] [PubMed] [Google Scholar]
  115. Panoz-Brown D.; Corbin H. E.; Dalecki S. J.; Gentry M.; Brotheridge S.; Sluka C. M.; Wu J.-E.; Crystal J. D. (2016) Rats Remember Items in Context Using Episodic Memory. Curr. Biol. 26 (20), 2821–2826. 10.1016/j.cub.2016.08.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Pause B. M.; Zlomuzica A.; Kinugawa K.; Mariani J.; Pietrowsky R.; Dere E. (2013) Perspectives on Episodic-Like and Episodic Memory. Front. Behav. Neurosci. 7, 33. 10.3389/fnbeh.2013.00033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Agster K. L.; Tomás Pereira I.; Saddoris M. P.; Burwell R. D. (2016) Subcortical Connections of the Perirhinal, Postrhinal, and Entorhinal Cortices of the Rat. II. Efferents. Hippocampus 26 (9), 1213–1230. 10.1002/hipo.22600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Tomás Pereira I.; Agster K. L.; Burwell R. D. (2016) Subcortical Connections of the Perirhinal, Postrhinal, and Entorhinal Cortices of the Rat. I. Afferents. Hippocampus 26 (9), 1189–1212. 10.1002/hipo.22603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Vertes R. P. (2004) Differential Projections of the Infralimbic and Prelimbic Cortex in the Rat. Synapse 51 (1), 32–58. 10.1002/syn.10279. [DOI] [PubMed] [Google Scholar]
  120. Dobbins I. G.; Foley H.; Schacter D. L.; Wagner A. D. (2002) Executive Control during Episodic Retrieval: Multiple Prefrontal Processes Subserve Source Memory. Neuron 35 (5), 989–996. 10.1016/S0896-6273(02)00858-9. [DOI] [PubMed] [Google Scholar]
  121. Dolan R. J.; Fletcher P. C. (1997) Dissociating Prefrontal and Hippocampal Function in Episodic Memory Encoding. Nature 388, 582. 10.1038/41561. [DOI] [PubMed] [Google Scholar]
  122. Barker G. R. I.; Bird F.; Alexander V.; Warburton E. C. (2007) Recognition Memory for Objects, Place, and Temporal Order: A Disconnection Analysis of the Role of the Medial Prefrontal Cortex and Perirhinal Cortex. J. Neurosci. 27 (11), 2948–2957. 10.1523/JNEUROSCI.5289-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Barker G. R. I.; Banks P. J.; Scott H.; Ralph G. S.; Mitrophanous K. A.; Wong L.-F.; Bashir Z. I.; Uney J. B.; Warburton E. C. (2017) Separate Elements of Episodic Memory Subserved by Distinct Hippocampal–Prefrontal Connections. Nat. Neurosci. 20, 242. 10.1038/nn.4472. [DOI] [PubMed] [Google Scholar]
  124. Chao O. Y.; Huston J. P.; Li J.-S.; Wang A.-L.; de Souza Silva M. A. (2016) The Medial Prefrontal Cortex—Lateral Entorhinal Cortex Circuit Is Essential for Episodic-like Memory and Associative Object-Recognition. Hippocampus 26 (5), 633–645. 10.1002/hipo.22547. [DOI] [PubMed] [Google Scholar]
  125. Kirchhoff B. A.; Wagner A. D.; Maril A.; Stern C. E. (2000) Prefrontal–Temporal Circuitry for Episodic Encoding and Subsequent Memory. J. Neurosci. 20 (16), 6173–6180. 10.1523/JNEUROSCI.20-16-06173.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Schacter D. L.; Wagner A. D. (1999) Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus 9 (1), 7–24. . [DOI] [PubMed] [Google Scholar]
  127. Squire L. R.; Stark C. E. L.; Clark R. E. (2004) The Medial Temporal Lobe. Annu. Rev. Neurosci. 27, 279–306. 10.1146/annurev.neuro.27.070203.144130. [DOI] [PubMed] [Google Scholar]
  128. Achim A. M.; Lepage M. (2005) Episodic Memory-Related Activation in Schizophrenia: Meta-Analysis. Br. J. Psychiatry 187 (6), 500–509. 10.1192/bjp.187.6.500. [DOI] [PubMed] [Google Scholar]
  129. Ragland J. D.; Ranganath C.; Phillips J.; Boudewyn M. A.; Kring A. M.; Lesh T. A.; Long D. L.; Luck S. J.; Niendam T. A.; Solomon M.; Swaab T. Y.; Carter C. S. (2015) Cognitive Control of Episodic Memory in Schizophrenia: Differential Role of Dorsolateral and Ventrolateral Prefrontal Cortex. Front. Hum. Neurosci. 9, 604–604. 10.3389/fnhum.2015.00604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Ragland J. D.; Ranganath C.; Harms M. P.; Barch D. M.; Gold J. M.; Layher E.; Lesh T. A.; MacDonald A. W.; Niendam T. A.; Phillips J.; Silverstein S. M.; Yonelinas A. P.; Carter C. S. (2015) Functional and Neuroanatomical Specificity of Episodic Memory Dysfunction in Schizophrenia: An FMRI Study of the Relational and Item-Specific Encoding Task. JAMA Psychiatry 72 (9), 909–916. 10.1001/jamapsychiatry.2015.0276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Rajagopal L.; Kwon S.; Huang M.; Michael E.; Bhat L.; Cantillon M.; Meltzer H. Y. (2017) RP5063, an Atypical Antipsychotic Drug with a Unique Pharmacologic Profile, Improves Declarative Memory and Psychosis in Mouse Models of Schizophrenia. Behav. Brain Res. 332, 180–199. 10.1016/j.bbr.2017.02.036. [DOI] [PubMed] [Google Scholar]
  132. Talpos J.; Aerts N.; Waddell J.; Steckler T. (2015) MK-801 and amphetamine result in dissociable profiles of cognitive impairment in a rodent paired associates learning task with relevance for schizophrenia. Psychopharmacology 232, 3911–3920. 10.1007/s00213-015-3934-x. [DOI] [PubMed] [Google Scholar]
  133. Talamini L. M.; Koch T.; Ter Horst G. J.; Korf J. (1998) Methylazoxymethanol Acetate-Induced Abnormalities in the Entorhinal Cortex of the Rat; Parallels with Morphological Findings in Schizophrenia. Brain Res. 789 (2), 293–306. 10.1016/S0006-8993(98)00020-1. [DOI] [PubMed] [Google Scholar]
  134. Baiano M.; Perlini C.; Rambaldelli G.; Cerini R.; Dusi N.; Bellani M.; Spezzapria G.; Versace A.; Balestrieri M.; Mucelli R. P. (2008) Decreased Entorhinal Cortex Volumes in Schizophrenia. Schizophr. Res. 102 (1), 171–180. 10.1016/j.schres.2007.11.035. [DOI] [PubMed] [Google Scholar]
  135. Jose S. P.; Sharma E.; Narayanaswamy J. C.; Rajendran V.; Kalmady S. V.; Rao N. P.; Venkatasubramanian G.; Gangadhar B. N. (2012) Entorhinal Cortex Volume in Antipsychotic-Naïve Schizophrenia. Indian Journal of Psychological Medicine 34 (2), 164–169. 10.4103/0253-7176.101787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Hauser A. S.; Attwood M. M.; Rask-Andersen M.; Schioth H. B.; Gloriam D. E. (2017) Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat. Rev. Drug Discovery 16 (12), 829–842. 10.1038/nrd.2017.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Rask-Andersen M.; Masuram S.; Schiöth H. B. (2014) The Druggable Genome: Evaluation of Drug Targets in Clinical Trials Suggests Major Shifts in Molecular Class and Indication. Annu. Rev. Pharmacol. Toxicol. 54 (1), 9–26. 10.1146/annurev-pharmtox-011613-135943. [DOI] [PubMed] [Google Scholar]
  138. Santos R.; Ursu O.; Gaulton A.; Bento A. P.; Donadi R. S.; Bologa C. G.; Karlsson A.; Al-Lazikani B.; Hersey A.; Oprea T. I.; Overington J. P. (2017) A Comprehensive Map of Molecular Drug Targets. Nat. Rev. Drug Discovery 16 (1), 19–34. 10.1038/nrd.2016.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Sriram K.; Insel P. A. (2018) G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs?. Mol. Pharmacol. 93 (4), 251–258. 10.1124/mol.117.111062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Tesmer J. J. G. (2016) Hitchhiking on the Heptahelical Highway: Structure and Function of 7TM Receptor Complexes. Nat. Rev. Mol. Cell Biol. 17 (7), 439–450. 10.1038/nrm.2016.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Jong Y.-J. I.; Harmon S. K.; O’Malley K. L. (2018) Intracellular GPCRs Play Key Roles in Synaptic Plasticity. ACS Chem. Neurosci. 9 (9), 2162–2172. 10.1021/acschemneuro.7b00516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Balu D. T. (2016) The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. Adv. Pharmacol. 76, 351–382. 10.1016/bs.apha.2016.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Iasevoli F.; Tomasetti C.; Buonaguro E. F.; de Bartolomeis A. (2014) The Glutamatergic Aspects of Schizophrenia Molecular Pathophysiology: Role of the Postsynaptic Density, and Implications for Treatment. Curr. Neuropharmacol 12 (3), 219–238. 10.2174/1570159X12666140324183406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Lewis D. A.; Hashimoto T.; Volk D. W. (2005) Cortical Inhibitory Neurons and Schizophrenia. Nat. Rev. Neurosci. 6 (4), 312–324. 10.1038/nrn1648. [DOI] [PubMed] [Google Scholar]
  145. Tregellas J. R.; Wylie K. P. (2019) Alpha7 Nicotinic Receptors as Therapeutic Targets in Schizophrenia. Nicotine Tob. Res. 21 (3), 349–356. 10.1093/ntr/nty034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Wootten D.; Christopoulos A.; Sexton P. M. (2013) Emerging Paradigms in GPCR Allostery: Implications for Drug Discovery. Nat. Rev. Drug Discovery 12 (8), 630–644. 10.1038/nrd4052. [DOI] [PubMed] [Google Scholar]
  147. May L. T.; Avlani V. A.; Sexton P. M.; Christopoulos A. (2004) Allosteric Modulation of G Protein-Coupled Receptors. Curr. Pharm. Des. 10 (17), 2003–2013. 10.2174/1381612043384303. [DOI] [PubMed] [Google Scholar]
  148. May L. T.; Leach K.; Sexton P. M.; Christopoulos A. (2007) Allosteric Modulation of G Protein-Coupled Receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51. 10.1146/annurev.pharmtox.47.120505.105159. [DOI] [PubMed] [Google Scholar]
  149. Kenakin T.; Christopoulos A. (2013) Signalling Bias in New Drug Discovery: Detection, Quantification and Therapeutic Impact. Nat. Rev. Drug Discovery 12 (3), 205–216. 10.1038/nrd3954. [DOI] [PubMed] [Google Scholar]
  150. Wootten D.; Christopoulos A.; Marti-Solano M.; Babu M. M.; Sexton P. M. (2018) Mechanisms of Signalling and Biased Agonism in G Protein-Coupled Receptors. Nat. Rev. Mol. Cell Biol. 19 (10), 638. 10.1038/s41580-018-0049-3. [DOI] [PubMed] [Google Scholar]
  151. Slosky L. M.; Bai Y.; Toth K.; Ray C.; Rochelle L. K.; Badea A.; Chandrasekhar R.; Pogorelov V. M.; Abraham D. M.; Atluri N.; Peddibhotla S.; Hedrick M. P.; Hershberger P.; Maloney P.; Yuan H.; Li Z.; Wetsel W. C.; Pinkerton A. B.; Barak L. S.; Caron M. G. (2020) β-Arrestin-Biased Allosteric Modulator of NTSR1 Selectively Attenuates Addictive Behaviors. Cell 181 (6), 1364–1379. 10.1016/j.cell.2020.04.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Diepenhorst N. A.; Leach K.; Keller A. N.; Rueda P.; Cook A. E.; Pierce T. L.; Nowell C.; Pastoureau P.; Sabatini M.; Summers R. J.; Charman W. N.; Sexton P. M.; Christopoulos A.; Langmead C. J. (2018) Divergent Effects of Strontium and Calcium-Sensing Receptor Positive Allosteric Modulators (Calcimimetics) on Human Osteoclast Activity. Br. J. Pharmacol. 175 (21), 4095–4108. 10.1111/bph.14344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Hall H.; Sedvall G.; Magnusson O.; Kopp J.; Halldin C.; Farde L. (1994) Distribution of D1- and D2-Dopamine Receptors, and Dopamine and Its Metabolites in the Human Brain. Neuropsychopharmacology 11, 245. 10.1038/sj.npp.1380111. [DOI] [PubMed] [Google Scholar]
  154. Arnsten A. F. T. (2013) The Neurobiology of Thought: The Groundbreaking Discoveries of Patricia Goldman-Rakic 1937–2003. Cereb Cortex 23 (10), 2269–2281. 10.1093/cercor/bht195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Castner S. A.; Goldman-Rakic P. S. (2004) Enhancement of Working Memory in Aged Monkeys by a Sensitizing Regimen of Dopamine D1 Receptor Stimulation. J. Neurosci. 24 (6), 1446–1450. 10.1523/JNEUROSCI.3987-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Cools R.; D’Esposito M. (2011) Inverted-U-Shaped Dopamine Actions on Human Working Memory and Cognitive Control. Biol. Psychiatry 69 (12), e113–e125. 10.1016/j.biopsych.2011.03.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Vijayraghavan S.; Wang M.; Birnbaum S. G.; Williams G. V.; Arnsten A. F. (2007) Inverted-U Dopamine D1 Receptor Actions on Prefrontal Neurons Engaged in Working Memory. Nat. Neurosci. 10 (3), 376–384. 10.1038/nn1846. [DOI] [PubMed] [Google Scholar]
  158. Blanchet P. J.; Fang J.; Gillespie M.; Sabounjian L.; Locke K. W.; Gammans R.; Mouradian M. M.; Chase T. N. (1998) Effects of the Full Dopamine D1 Receptor Agonist Dihydrexidine in Parkinson’s Disease. Clin. Neuropharmacol. 21 (6), 339–343. [PubMed] [Google Scholar]
  159. Gilmore J. H.; Watts V. J.; Lawler C. P.; Noll E. P.; Nichols D. E.; Mailman R. B. (1995) Full” Dopamine D1 Agonists in Human Caudate: Biochemical Properties and Therapeutic Implications. Neuropharmacology 34 (5), 481–488. 10.1016/0028-3908(95)00014-W. [DOI] [PubMed] [Google Scholar]
  160. Watts V. J.; Lawler C. P.; Gilmore J. H.; Southerland S. B.; Nichols D. E.; Mailman R. B. (1993) Dopamine D1 Receptors: Efficacy of Full (Dihydrexidine) vs. Partial (SKF38393) Agonists in Primates vs. Rodents. Eur. J. Pharmacol. 242 (2), 165–172. 10.1016/0014-2999(93)90076-T. [DOI] [PubMed] [Google Scholar]
  161. Lovenberg T. W.; Brewster W. K.; Mottola D. M.; Lee R. C.; Riggs R. M.; Nichols D. E.; Lewis M. H.; Mailman R. B. (1989) Dihydrexidine, a Novel Selective High Potency Full Dopamine D-1 Receptor Agonist. Eur. J. Pharmacol. 166 (1), 111–113. 10.1016/0014-2999(89)90690-0. [DOI] [PubMed] [Google Scholar]
  162. Rosell D. R.; Zaluda L. C.; McClure M. M.; Perez-Rodriguez M. M.; Strike K. S.; Barch D. M.; Harvey P. D.; Girgis R. R.; Hazlett E. A.; Mailman R. B.; Abi-Dargham A.; Lieberman J. A.; Siever L. J. (2015) Effects of the D1 Dopamine Receptor Agonist Dihydrexidine (DAR-0100A) on Working Memory in Schizotypal Personality Disorder. Neuropsychopharmacology 40 (2), 446–453. 10.1038/npp.2014.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Papapetropoulos S.; Liu W.; Duvvuri S.; Thayer K.; Gray D. L. (2019) Evaluation of D1/D5 Partial Agonist PF-06412562 in Parkinson’s Disease Following Oral Administration. Neurodegener. Dis. 18 (5–6), 262–269. 10.1159/000492498. [DOI] [PubMed] [Google Scholar]
  164. Arce E.; Balice-Gordon R.; Duvvuri S.; Naylor M.; Xie Z.; Harel B.; Kozak R.; Gray D. L.; DeMartinis N. (2019) A Novel Approach to Evaluate the Pharmacodynamics of a Selective Dopamine D1/D5 Receptor Partial Agonist (PF-06412562) in Patients with Stable Schizophrenia. J. Psychopharmacol. 33 (10), 1237–1247. 10.1177/0269881119855302. [DOI] [PubMed] [Google Scholar]
  165. Lewis M. A.; Hunihan L.; Watson J.; Gentles R. G.; Hu S.; Huang Y.; Bronson J.; Macor J. E.; Beno B. R.; Ferrante M.; Hendricson A.; Knox R. J.; Molski T. F.; Kong Y.; Cvijic M. E.; Rockwell K. L.; Weed M. R.; Cacace A. M.; Westphal R. S.; Alt A.; Brown J. M. (2015) Discovery of D1 Dopamine Receptor Positive Allosteric Modulators: Characterization of Pharmacology and Identification of Residues That Regulate Species Selectivity. J. Pharmacol. Exp. Ther. 354 (3), 340–349. 10.1124/jpet.115.224071. [DOI] [PubMed] [Google Scholar]
  166. Hall A.; Provins L.; Valade A. (2019) Novel Strategies To Activate the Dopamine D1 Receptor: Recent Advances in Orthosteric Agonism and Positive Allosteric Modulation. J. Med. Chem. 62 (1), 128–140. 10.1021/acs.jmedchem.8b01767. [DOI] [PubMed] [Google Scholar]
  167. Svensson K. A.; Hao J.; Bruns R. F. (2019) Chapter Nine - Positive Allosteric Modulators of the Dopamine D1 Receptor: A New Mechanism for the Treatment of Neuropsychiatric Disorders. Adv. Pharmacol. 86, 273–305. 10.1016/bs.apha.2019.06.001. [DOI] [PubMed] [Google Scholar]
  168. Meltzer H. Y.; Rajagopal L.; Matrisciano F.; Hao J.; Svensson K. A.; Huang M. (2019) The Allosteric Dopamine D1 Receptor Potentiator, DETQ, Ameliorates Subchronic Phencyclidine-Induced Object Recognition Memory Deficits and Enhances Cortical Acetylcholine Efflux in Male Humanized D1 Receptor Knock-in Mice. Behav. Brain Res. 361, 139–150. 10.1016/j.bbr.2018.12.006. [DOI] [PubMed] [Google Scholar]
  169. Kawakami S., Imaizumi T., Masuda N., Kunikawa S., Morita M., and Yarimizu J. (July 5, 2018) Imidazodiazepine Compound. US20180185383.
  170. Shiraki R., Tobe T., Kawakami S., Moritomo H., and Ohmiya M. (January 20, 2015) Heterocyclic Acetamide Compound. USUS8937087B2.
  171. Desai A., Benner L., Wu R., Gertsik L., Maruff P., Light G., Uz T., and Marek G. (2019) Phase I Study on the Safety, Tolerability, and Pharmacodynamic Effects of ASP4345 for the Treatment of Cognitive Impairment in Patients With Schizophrenia [Poster], Schizophrenia International Research Society (SIRS). [Google Scholar]
  172. (ending March 31, 2020).
  173. Seeman P. (2006) Targeting the Dopamine D2 Receptor in Schizophrenia. Expert Opin. Ther. Targets 10 (4), 515–531. 10.1517/14728222.10.4.515. [DOI] [PubMed] [Google Scholar]
  174. Kapur S.; Zipursky R.; Jones C.; Remington G.; Houle S. (2000) Relationship Between Dopamine D2 Occupancy, Clinical Response, and Side Effects: A Double-Blind PET Study of First-Episode Schizophrenia. Am. J. Psychiatry 157 (4), 514–520. 10.1176/appi.ajp.157.4.514. [DOI] [PubMed] [Google Scholar]
  175. Takahashi H.; Kato M.; Hayashi M.; Okubo Y.; Takano A.; Ito H.; Suhara T. (2007) Memory and Frontal Lobe Functions; Possible Relations with Dopamine D2 Receptors in the Hippocampus. NeuroImage 34 (4), 1643–1649. 10.1016/j.neuroimage.2006.11.008. [DOI] [PubMed] [Google Scholar]
  176. Castner S. A.; Williams G. V.; Goldman-Rakic P. S. (2000) Reversal of Antipsychotic-Induced Working Memory Deficits by Short-Term Dopamine D1 Receptor Stimulation. Science 287 (5460), 2020–2022. 10.1126/science.287.5460.2020. [DOI] [PubMed] [Google Scholar]
  177. Dorph-Petersen K. A.; Pierri J. N.; Perel J. M.; Sun Z.; Sampson A. R.; Lewis D. A. (2005) The Influence of Chronic Exposure to Antipsychotic Medications on Brain Size before and after Tissue Fixation: A Comparison of Haloperidol and Olanzapine in Macaque Monkeys. Neuropsychopharmacology 30 (9), 1649–1661. 10.1038/sj.npp.1300710. [DOI] [PubMed] [Google Scholar]
  178. Konopaske G. T.; Dorph-Petersen K. A.; Pierri J. N.; Wu Q.; Sampson A. R.; Lewis D. A. (2007) Effect of Chronic Exposure to Antipsychotic Medication on Cell Numbers in the Parietal Cortex of Macaque Monkeys. Neuropsychopharmacology 32 (6), 1216–1223. 10.1038/sj.npp.1301233. [DOI] [PubMed] [Google Scholar]
  179. Frampton J. E. (2017) Aripiprazole Lauroxil: A Review in Schizophrenia. Drugs 77 (18), 2049–2056. 10.1007/s40265-017-0848-4. [DOI] [PubMed] [Google Scholar]
  180. Lee B. J.; Lee S. J.; Kim M. K.; Lee J. G.; Park S. W.; Kim G. M.; Kim Y. H. (2013) Effect of Aripiprazole on Cognitive Function and Hyperprolactinemia in Patients with Schizophrenia Treated with Risperidone. Clin. Psychopharmacol. Neurosci. 11 (2), 60–66. 10.9758/cpn.2013.11.2.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Harrison T. S.; Perry C. M. (2004) Aripiprazole. Drugs 64 (15), 1715–1736. 10.2165/00003495-200464150-00010. [DOI] [PubMed] [Google Scholar]
  182. Masri B.; Salahpour A.; Didriksen M.; Ghisi V.; Beaulieu J.-M.; Gainetdinov R. R.; Caron M. G. (2008) Antagonism of Dopamine D2 Receptor/Beta-Arrestin 2 Interaction Is a Common Property of Clinically Effective Antipsychotics. Proc. Natl. Acad. Sci. U. S. A. 105 (36), 13656–13661. 10.1073/pnas.0803522105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Allen J. A.; Yost J. M.; Setola V.; Chen X.; Sassano M. F.; Chen M.; Peterson S.; Yadav P. N.; Huang X.; Feng B.; Jensen N. H.; Che X.; Bai X.; Frye S. V.; Wetsel W. C.; Caron M. G.; Javitch J. A.; Roth B. L.; Jin J. (2011) Discovery of β-Arrestin-Biased Dopamine D2 Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy. Proc. Natl. Acad. Sci. U. S. A. 108 (45), 18488–18493. 10.1073/pnas.1104807108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Del’Guidice T.; Lemasson M.; Beaulieu J.-M. (2011) Role of Beta-Arrestin 2 Downstream of Dopamine Receptors in the Basal Ganglia. Front. Neuroanat. 5, 58. 10.3389/fnana.2011.00058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Klewe I. V.; Nielsen S. M.; Tarpø L.; Urizar E.; Dipace C.; Javitch J. A.; Gether U.; Egebjerg J.; Christensen K. V. (2008) Recruitment of Beta-Arrestin2 to the Dopamine D2 Receptor: Insights into Anti-Psychotic and Anti-Parkinsonian Drug Receptor Signaling. Neuropharmacology 54 (8), 1215–1222. 10.1016/j.neuropharm.2008.03.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Urs N. M.; Gee S. M.; Pack T. F.; McCorvy J. D.; Evron T.; Snyder J. C.; Yang X.; Rodriguiz R. M.; Borrelli E.; Wetsel W. C.; Jin J.; Roth B. L.; O’Donnell P.; Caron M. G. (2016) Distinct Cortical and Striatal Actions of a β-Arrestin–Biased Dopamine D2 Receptor Ligand Reveal Unique Antipsychotic-like Properties. Proc. Natl. Acad. Sci. U. S. A. 113 (50), E8178–E8186. 10.1073/pnas.1614347113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Spencer K. M.; Nestor P. G.; Perlmutter R.; Niznikiewicz M. A.; Klump M. C.; Frumin M.; Shenton M. E.; McCarley R. W. (2004) Neural Synchrony Indexes Disordered Perception and Cognition in Schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 101 (49), 17288–17293. 10.1073/pnas.0406074101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Volk D. W.; Lewis D. A. (2005) GABA Targets for the Treatment of Cognitive Dysfunction in Schizophrenia. Current neuropharmacology 3 (1), 45–62. 10.2174/1570159052773396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Woo T. U.; Whitehead R. E.; Melchitzky D. S.; Lewis D. A. (1998) A Subclass of Prefrontal Gamma-Aminobutyric Acid Axon Terminals Are Selectively Altered in Schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 95 (9), 5341–5346. 10.1073/pnas.95.9.5341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Park S. M.; Chen M.; Schmerberg C. M.; Dulman R. S.; Rodriguiz R. M.; Caron M. G.; Jin J.; Wetsel W. C. (2016) Effects of Beta-Arrestin-Biased Dopamine D2 Receptor Ligands on Schizophrenia-Like Behavior in Hypoglutamatergic Mice. Neuropsychopharmacology 41 (3), 704–715. 10.1038/npp.2015.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Levey A. I.; Kitt C. A.; Simonds W. F.; Price D. L.; Brann M. R. (1991) Identification and Localization of Muscarinic Acetylcholine Receptor Proteins in Brain with Subtype-Specific Antibodies. J. Neurosci. 11 (10), 3218–3226. 10.1523/JNEUROSCI.11-10-03218.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Crook J. M.; Tomaskovic-Crook E.; Copolov D. L.; Dean B. (2000) Decreased Muscarinic Receptor Binding in Subjects with Schizophrenia: A Study of the Human Hippocampal Formation. Biol. Psychiatry 48 (5), 381–388. 10.1016/S0006-3223(00)00918-5. [DOI] [PubMed] [Google Scholar]
  193. Dean B.; McLeod M.; Keriakous D.; McKenzie J.; Scarr E. (2002) Decreased Muscarinic1 Receptors in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia. Mol. Psychiatry 7 (10), 1083–1091. 10.1038/sj.mp.4001199. [DOI] [PubMed] [Google Scholar]
  194. Bakker G.; Vingerhoets C.; Boucherie D.; Caan M.; Bloemen O.; Eersels J.; Booij J.; van Amelsvoort T. (2018) Relationship between Muscarinic M1 Receptor Binding and Cognition in Medication-Free Subjects with Psychosis. Neuroimage Clin 18, 713–719. 10.1016/j.nicl.2018.02.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Andersen M. B.; Fink-Jensen A.; Peacock L.; Gerlach J.; Bymaster F.; Lundbæk J. A.; Werge T. (2003) The Muscarinic M1/M4 Receptor Agonist Xanomeline Exhibits Antipsychotic-Like Activity in Cebus Apella Monkeys. Neuropsychopharmacology 28, 1168. 10.1038/sj.npp.1300151. [DOI] [PubMed] [Google Scholar]
  196. Brown J. W.; Rueter L. E.; Zhang M. (2014) Predictive Validity of a MK-801-Induced Cognitive Impairment Model in Mice: Implications on the Potential Limitations and Challenges of Modeling Cognitive Impairment Associated with Schizophrenia Preclinically. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 49, 53–62. 10.1016/j.pnpbp.2013.11.008. [DOI] [PubMed] [Google Scholar]
  197. Weiner I.; Barak S. (2011) The M1/M4 Preferring Agonist Xanomeline Reverses Amphetamine-, MK801- and Scopolamine-Induced Abnormalities of Latent Inhibition: Putative Efficacy against Positive, Negative and Cognitive Symptoms in Schizophrenia. Int. J. Neuropsychopharmacol. 14 (9), 1233–1246. 10.1017/S1461145710001549. [DOI] [PubMed] [Google Scholar]
  198. Bodick N. C.; Offen W. W.; Levey A. I.; Cutler N. R.; Gauthier S. G.; Satlin A.; Shannon H. E.; Tollefson G. D.; Rasmussen K.; Bymaster F. P.; Hurley D. J.; Potter W. Z.; Paul S. M. (1997) Effects of Xanomeline, a Selective Muscarinic Receptor Agonist, on Cognitive Function and Behavioral Symptoms in Alzheimer Disease. Arch. Neurol. 54 (4), 465–473. 10.1001/archneur.1997.00550160091022. [DOI] [PubMed] [Google Scholar]
  199. Shekhar A.; Potter W. Z.; Lightfoot J.; Lienemann J.; Dube S.; Mallinckrodt C.; Bymaster F. P.; McKinzie D. L.; Felder C. C. (2008) Selective Muscarinic Receptor Agonist Xanomeline as a Novel Treatment Approach for Schizophrenia. Am. J. Psychiatry 165 (8), 1033–1039. 10.1176/appi.ajp.2008.06091591. [DOI] [PubMed] [Google Scholar]
  200. Bymaster F. P.; Whitesitt C. A.; Shannon H. E.; DeLapp N.; Ward J. S.; Calligaro D. O.; Shipley L. A.; Buelke-Sam J. L.; Bodick N. C.; Farde L.; Sheardown M. J.; Olesen P. H.; Hansen K. T.; Suzdak P. D.; Swedberg M. D. B.; Sauerberg P.; Mitch C. H. (1997) Xanomeline: A Selective Muscarinic Agonist for the Treatment of Alzheimer’s Disease. Drug Dev. Res. 40 (2), 158–170. . [DOI] [Google Scholar]
  201. Business Wire . (Nov. 18, 2019) Karuna Therapeutics Announces KarXT Met Primary Endpoint in Phase 2 Clinical Trial of Acute Psychosis in Patients with Schizophrenia.https://www.businesswire.com/news/home/20191118005243/en/Karuna-Therapeutics-Announces-KarXT-Met-Primary-Endpoint (accessed May 13, 2020).
  202. Nathan P. J.; Watson J.; Lund J.; Davies C. H.; Peters G.; Dodds C. M.; Swirski B.; Lawrence P.; Bentley G. D.; O’Neill B. V.; Robertson J.; Watson S.; Jones G. A.; Maruff P.; Croft R. J.; Laruelle M.; Bullmore E. T. (2013) The Potent M1 Receptor Allosteric Agonist GSK1034702 Improves Episodic Memory in Humans in the Nicotine Abstinence Model of Cognitive Dysfunction. Int. J. Neuropsychopharmacol. 16 (4), 721–731. 10.1017/S1461145712000752. [DOI] [PubMed] [Google Scholar]
  203. Bradley S. J.; Molloy C.; Bundgaard C.; Mogg A. J.; Thompson K. J.; Dwomoh L.; Sanger H. E.; Crabtree M. D.; Brooke S. M.; Sexton P. M.; Felder C. C.; Christopoulos A.; Broad L. M.; Tobin A. B.; Langmead C. J. (2018) Bitopic Binding Mode of an M1Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes. Mol. Pharmacol. 93 (6), 645–656. 10.1124/mol.118.111872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Sosei Group Corporation . (Sept. 18, 2018) Sosei Provides Update on HTL0018318. https://www.prnewswire.com/news-releases/sosei-provides-update-on-htl0018318-821503987.html (accessed Oct. 9, 2020).
  205. Davoren J. E.; O’Neil S. V.; Anderson D. P.; Brodney M. A.; Chenard L.; Dlugolenski K.; Edgerton J. R.; Green M.; Garnsey M.; Grimwood S.; Harris A. R.; Kauffman G. W.; LaChapelle E.; Lazzaro J. T.; Lee C.-W.; Lotarski S. M.; Nason D. M.; Obach R. S.; Reinhart V.; Salomon-Ferrer R.; Steyn S. J.; Webb D.; Yan J.; Zhang L. (2016) Design and Optimization of Selective Azaindole Amide M1 Positive Allosteric Modulators. Bioorg. Med. Chem. Lett. 26 (2), 650–655. 10.1016/j.bmcl.2015.11.053. [DOI] [PubMed] [Google Scholar]
  206. Jörg M.; van der Westhuizen E. T.; Khajehali E.; Burger W. A. C.; White J. M.; Choy K. H. C.; Tobin A. B.; Sexton P. M.; Valant C.; Capuano B.; Christopoulos A.; Scammells P. J. (2019) 6-Phenylpyrimidin-4-Ones as Positive Allosteric Modulators at the M1MAChR: The Determinants of Allosteric Activity. ACS Chem. Neurosci. 10, 1099. 10.1021/acschemneuro.8b00613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Marlo J. E.; Niswender C. M.; Days E. L.; Bridges T. M.; Xiang Y.; Rodriguez A. L.; Shirey J. K.; Brady A. E.; Nalywajko T.; Luo Q.; Austin C. A.; Williams M. B.; Kim K.; Williams R.; Orton D.; Brown H. A.; Lindsley C. W.; Weaver C. D.; Conn P. J. (2009) Discovery and Characterization of Novel Allosteric Potentiators of M1 Muscarinic Receptors Reveals Multiple Modes of Activity. Mol. Pharmacol. 75 (3), 577–588. 10.1124/mol.108.052886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Mistry S. N.; Jörg M.; Lim H.; Vinh N. B.; Sexton P. M.; Capuano B.; Christopoulos A.; Lane J. R.; Scammells P. J. (2016) 4-Phenylpyridin-2-One Derivatives: A Novel Class of Positive Allosteric Modulator of the M1Muscarinic Acetylcholine Receptor. J. Med. Chem. 59 (1), 388–409. 10.1021/acs.jmedchem.5b01562. [DOI] [PubMed] [Google Scholar]
  209. Rook J. M.; Abe M.; Cho H. P.; Nance K. D.; Luscombe V. B.; Adams J. J.; Dickerson J. W.; Remke D. H.; Garcia-Barrantes P. M.; Engers D. W.; Engers J. L.; Chang S.; Foster J. J.; Blobaum A. L.; Niswender C. M.; Jones C. K.; Conn P. J.; Lindsley C. W. (2017) Diverse Effects on M1 Signaling and Adverse Effect Liability within a Series of M1 Ago-PAMs. ACS Chem. Neurosci. 8 (4), 866–883. 10.1021/acschemneuro.6b00429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Ghoshal A.; Rook J. M.; Dickerson J. W.; Roop G. N.; Morrison R. D.; Jalan-Sakrikar N.; Lamsal A.; Noetzel M. J.; Poslusney M. S.; Wood M. R.; Melancon B. J.; Stauffer S. R.; Xiang Z.; Daniels J. S.; Niswender C. M.; Jones C. K.; Lindsley C. W.; Conn P. J. (2016) Potentiation of M1Muscarinic Receptor Reverses Plasticity Deficits and Negative and Cognitive Symptoms in a Schizophrenia Mouse Model. Neuropsychopharmacology 41 (2), 598–610. 10.1038/npp.2015.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Grannan M. D.; Mielnik C. A.; Moran S. P.; Gould R. W.; Ball J.; Lu Z.; Bubser M.; Ramsey A. J.; Abe M.; Cho H. P.; Nance K. D.; Blobaum A. L.; Niswender C. M.; Conn P. J.; Lindsley C. W.; Jones C. K. (2016) Prefrontal Cortex-Mediated Impairments in a Genetic Model of NMDA Receptor Hypofunction Are Reversed by the Novel M(1) PAM VU6004256. ACS Chem. Neurosci. 7 (12), 1706–1716. 10.1021/acschemneuro.6b00230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Rook J. M.; Bertron J. L.; Cho H. P.; Garcia-Barrantes P. M.; Moran S. P.; Maksymetz J. T.; Nance K. D.; Dickerson J. W.; Remke D. H.; Chang S.; Harp J. M.; Blobaum A. L.; Niswender C. M.; Jones C. K.; Stauffer S. R.; Conn P. J.; Lindsley C. W. (2018) A Novel M1 PAM VU0486846 Exerts Efficacy in Cognition Models without Displaying Agonist Activity or Cholinergic Toxicity. ACS Chem. Neurosci. 9 (9), 2274–2285. 10.1021/acschemneuro.8b00131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Voss T.; Li J.; Cummings J.; Farlow M.; Assaid C.; Froman S.; Leibensperger H.; Snow-Adami L.; McMahon K. B.; Egan M.; Michelson D. (2018) Randomized, Controlled, Proof-of-Concept Trial of MK-7622 in Alzheimer’s Disease. Alzheimer's Dementia 4, 173–181. 10.1016/j.trci.2018.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Roberts J. C.; Reavill C.; East S. Z.; Harrison P. J.; Patel S.; Routledge C.; Leslie R. A. (2002) The Distribution of 5-HT6 Receptors in Rat Brain: An Autoradiographic Binding Study Using the Radiolabelled 5-HT6 Receptor Antagonist [125I]SB-258585. Brain Res. 934 (1), 49–57. 10.1016/S0006-8993(02)02360-0. [DOI] [PubMed] [Google Scholar]
  215. Ward R. P.; Dorsa D. M. (1996) Colocalization of Serotonin Receptor Subtypes 5-HT2A, 5-HT2C, and 5-HT6 with Neuropeptides in Rat Striatum. J. Comp. Neurol. 370 (3), 405–414. . [DOI] [PubMed] [Google Scholar]
  216. East S. Z.; Burnet P. W. J.; Leslie R. A.; Roberts J. C.; Harrison P. J. (2002) 5-HT6 Receptor Binding Sites in Schizophrenia and Following Antipsychotic Drug Administration: Autoradiographic Studies with [125I]SB-258585. Synapse 45 (3), 191–199. 10.1002/syn.10097. [DOI] [PubMed] [Google Scholar]
  217. Dawson L. A.; Nguyen H. Q.; Li P. (2001) The 5-HT6 Receptor Antagonist SB-271046 Selectively Enhances Excitatory Neurotransmission in the Rat Frontal Cortex and Hippocampus. Neuropsychopharmacology 25, 662. 10.1016/S0893-133X(01)00265-2. [DOI] [PubMed] [Google Scholar]
  218. Marcos B.; Gil-Bea F. J.; Hirst W. D.; García-Alloza M.; Ramírez M. J. (2006) Lack of Localization of 5-HT6 Receptors on Cholinergic Neurons: Implication of Multiple Neurotransmitter Systems in 5-HT6 Receptor-Mediated Acetylcholine Release. European Journal of Neuroscience 24 (5), 1299–1306. 10.1111/j.1460-9568.2006.05003.x. [DOI] [PubMed] [Google Scholar]
  219. de Bruin N.; Kruse C. (2015) 5-HT6 Receptor Antagonists: Potential Efficacy for the Treatment of Cognitive Impairment in Schizophrenia. Curr. Pharm. Des. 21 (26), 3739–3759. 10.2174/1381612821666150605112105. [DOI] [PubMed] [Google Scholar]
  220. Morozova M. A.; Lepilkina T. A.; Rupchev G. E.; Beniashvily A. G.; Burminskiy D. S.; Potanin S. S.; Bondarenko E. V.; Kazey V. I.; Lavrovsky Y.; Ivachtchenko A. V. (2014) Add-on Clinical Effects of Selective Antagonist of 5HT6 Receptors AVN-211 (CD-008–0173) in Patients with Schizophrenia Stabilized on Antipsychotic Treatment: Pilot Study. CNS Spectrums 19 (4), 316–323. 10.1017/S1092852913000394. [DOI] [PubMed] [Google Scholar]
  221. Ivachtchenko A. V.; Ivanenkov Y. A.; Veselov M. S. (2016) AVN-322 Is a Safe Orally Bio-Available Potent and Highly Selective Antagonist of 5-HT6R with Demonstrated Ability to Improve Impaired Memory in Animal Models. Curr. Alzheimer Res. 14 (3), 268–294. 10.2174/1567205013666161108105005. [DOI] [PubMed] [Google Scholar]
  222. Komatsu H.; Maruyama M.; Yao S.; Shinohara T.; Sakuma K.; Imaichi S.; Chikatsu T.; Kuniyeda K.; Siu F. K.; Peng L. S.; Zhuo K.; Mun L. S.; Han T. M.; Matsumoto Y.; Hashimoto T.; Miyajima N.; Itoh Y.; Ogi K.; Habata Y.; Mori M. (2014) Anatomical Transcriptome of G Protein-Coupled Receptors Leads to the Identification of a Novel Therapeutic Candidate GPR52 for Psychiatric Disorders. PLoS One 9 (2), e90134 10.1371/journal.pone.0090134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Spark D. L.; Mao M.; Ma S.; Sarwar M.; Nowell C. J.; Shackleford D. M.; Sexton P. M.; Nithianantharajah J.; Stewart G.; Langmead C. J. (2020) In the Loop: Extra-Striatal Regulation of Spiny Projection Neurons by GPR52. ACS Chem. Neurosci. 11, 2066. 10.1021/acschemneuro.0c00197. [DOI] [PubMed] [Google Scholar]
  224. Setoh M.; Ishii N.; Kono M.; Miyanohana Y.; Shiraishi E.; Harasawa T.; Ota H.; Odani T.; Kanzaki N.; Aoyama K.; Hamada T.; Kori M. (2014) Discovery of the First Potent and Orally Available Agonist of the Orphan G-Protein-Coupled Receptor 52. J. Med. Chem. 57 (12), 5226–5237. 10.1021/jm5002919. [DOI] [PubMed] [Google Scholar]
  225. Tokumaru K.; Ito Y.; Nomura I.; Nakahata T.; Shimizu Y.; Kurimoto E.; Aoyama K.; Aso K. (2017) Design, Synthesis, and Pharmacological Evaluation of 4-Azolyl-Benzamide Derivatives as Novel GPR52 Agonists. Bioorg. Med. Chem. 25 (12), 3098–3115. 10.1016/j.bmc.2017.03.064. [DOI] [PubMed] [Google Scholar]
  226. Nishiyama K.; Suzuki H.; Harasawa T.; Suzuki N.; Kurimoto E.; Kawai T.; Maruyama M.; Komatsu H.; Sakuma K.; Shimizu Y.; Shimojo M. (2017) FTBMT, a Novel and Selective GPR52 Agonist, Demonstrates Antipsychotic-like and Procognitive Effects in Rodents Revealing a Potential Therapeutic Agent for Schizophrenia. J. Pharmacol. Exp. Ther. 363, 253. 10.1124/jpet.117.242925. [DOI] [PubMed] [Google Scholar]
  227. Hatzipantelis C. J.; Lu Y.; Spark D. L.; Langmead C. J.; Stewart G. D. (2020) A β-Arrestin-2-Dependent Mechanism of GPR52 Signalling in Frontal Cortical Neurons. ACS Chem. Neurosci. 11, 2077. 10.1021/acschemneuro.0c00199. [DOI] [PubMed] [Google Scholar]
  228. Liu X.; Ma L.; Li H. H.; Huang B.; Li Y. X.; Tao Y. Z.; Ma L. (2015) Beta-Arrestin-Biased Signaling Mediates Memory Reconsolidation. Proc. Natl. Acad. Sci. U. S. A. 112 (14), 4483–4488. 10.1073/pnas.1421758112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Ménard C., Gaudreau P., and Quirion R. (2015) Signaling Pathways Relevant to Cognition-Enhancing Drug Targets, in Cognitive Enhancement (Kantak K. M., and Wettstein J. G., Eds.) pp 59–98, Springer International Publishing, Cham. [DOI] [PubMed] [Google Scholar]
  230. Grottick A. J.; Grayson B.; Podda G.; Idris N.; Dorner-Ciossek C.; Neill J.; Hobson S. (2018) T40. GPR52 Agonists Represent a Novel Approach to Treat Unmet Medical Need in Schizophrenia. Schizophr Bull. 44, S128. 10.1093/schbul/sby016.316. [DOI] [Google Scholar]
  231. MacSweeney C., Watson S., Brown A., Bakker G., Mould R., Barnes M., and Nathan P. (2019) Modulation of Dopaminergic and Glutamatergic Function by GPR52 Agonist Supports Therapeutic Utility as Novel Treatment for Positive Symptoms and Cognitive Dysfunction in Psychotic Disorders Including Schizopherenia [Poster], American College of Neuropsychopharmacology (ACNP).
  232. Wang L.; Lee G.; Kuei C.; Yao X.; Harrington A.; Bonaventure P.; Lovenberg T. W.; Liu C. (2019) GPR139 and Dopamine D2 Receptor Co-Express in the Same Cells of the Brain and May Functionally Interact. Front. Neurosci. 13, 281. 10.3389/fnins.2019.00281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Atienza J.; Reichard H.; Mulligan V.; Cilia J.; Monenschein H.; Collia D.; Ray J.; Kilpatrick G.; Brice N.; Carlton M.; Hitchcock S.; Corbett G. (2018) S39. GPR139 AN OPHAN GPCR AFFECTING NEGATIVE DOMAINS OF SCHIZOPHRENIA. Schizophr Bull. 44, S339. 10.1093/schbul/sby018.826. [DOI] [Google Scholar]
  234. Maksymetz J.; Moran S. P.; Conn P. J. (2017) Targeting Metabotropic Glutamate Receptors for Novel Treatments of Schizophrenia. Mol. Brain 10, 15. 10.1186/s13041-017-0293-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Nicoletti F.; Orlando R.; Di Menna L.; Cannella M.; Notartomaso S.; Mascio G.; Iacovelli L.; Matrisciano F.; Fazio F.; Caraci F.; Copani A.; Battaglia G.; Bruno V. (2019) Targeting MGlu Receptors for Optimization of Antipsychotic Activity and Disease-Modifying Effect in Schizophrenia. Front. Psychiatry 10, 49. 10.3389/fpsyt.2019.00049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Foster D. J.; Choi D. L.; Conn P. J.; Rook J. M. (2014) Activation of M1 and M4Muscarinic Receptors as Potential Treatments for Alzheimer’s Disease and Schizophrenia. Neuropsychiatr Dis Treat 10, 183–191. 10.2147/NDT.S55104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Yohn S. E.; Conn P. J. (2018) Positive Allosteric Modulation of M1 and M4Muscarinic Receptors as Potential Therapeutic Treatments for Schizophrenia. Neuropharmacology 136, 438–448. 10.1016/j.neuropharm.2017.09.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Bubser M.; Bridges T. M.; Dencker D.; Gould R. W.; Grannan M.; Noetzel M. J.; Lamsal A.; Niswender C. M.; Daniels J. S.; Poslusney M. S.; Melancon B. J.; Tarr J. C.; Byers F. W.; Wess J.; Duggan M. E.; Dunlop J.; Wood M. W.; Brandon N. J.; Wood M. R.; Lindsley C. W.; Conn P. J.; Jones C. K. (2014) Selective Activation of M4Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents. ACS Chem. Neurosci. 5 (10), 920–942. 10.1021/cn500128b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Gastambide F.; Cotel M.-C.; Gilmour G.; O’Neill M. J.; Robbins T. W.; Tricklebank M. D. (2012) Selective Remediation of Reversal Learning Deficits in the Neurodevelopmental MAM Model of Schizophrenia by a Novel MGlu5 Positive Allosteric Modulator. Neuropsychopharmacology 37 (4), 1057–1066. 10.1038/npp.2011.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Geyer M. A. (2006) Are Cross-Species Measures of Sensorimotor Gating Useful for the Discovery of Procognitive Cotreatments for Schizophrenia?. Dialogues Clin. Neurosci. 8 (1), 9–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Young J. W.; Powell S.; Risbrough V.; Marston H. M.; Geyer M. A. (2009) Using the MATRICS to Guide Development of a Preclinical Cognitive Test Battery for Research in Schizophrenia. Pharmacol. Ther. 122 (2), 150–202. 10.1016/j.pharmthera.2009.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Jones C.; Watson D.; Fone K. (2011) Animal Models of Schizophrenia. Br. J. Pharmacol. 164 (4), 1162–1194. 10.1111/j.1476-5381.2011.01386.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Marcotte E. R.; Pearson D. M.; Srivastava L. K. (2001) Animal Models of Schizophrenia: A Critical Review. J. Psychiatry Neurosci. 26 (5), 395–410. [PMC free article] [PubMed] [Google Scholar]
  244. Winship I. R.; Dursun S. M.; Baker G. B.; Balista P. A.; Kandratavicius L.; Maia-De-Oliveira J. P.; Hallak J.; Howland J. G. (2019) An Overview of Animal Models Related to Schizophrenia. Can. J. Psychiatry 64 (1), 5–17. 10.1177/0706743718773728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Barch D. M.; Carter C. S.; Arnsten A.; Buchanan R. W.; Cohen J. D.; Geyer M.; Green M. F.; Krystal J. H.; Nuechterlein K.; Robbins T.; Silverstein S.; Smith E. E.; Strauss M.; Wykes T.; Heinssen R. (2009) Selecting Paradigms From Cognitive Neuroscience for Translation into Use in Clinical Trials: Proceedings of the Third CNTRICS Meeting. Schizophr Bull. 35 (1), 109–114. 10.1093/schbul/sbn163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Carter C. S.; Barch D. M.; Buchanan R. W.; Bullmore E.; Krystal J. H.; Cohen J.; Geyer M.; Green M.; Nuechterlein K. H.; Robbins T.; Silverstein S.; Smith E. E.; Strauss M.; Wykes T.; Heinssen R. (2008) Identifying Cognitive Mechanisms Targeted for Treatment Development in Schizophrenia: An Overview of the First Meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) Initiative. Biol. Psychiatry 64 (1), 4–10. 10.1016/j.biopsych.2008.03.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Bussey T. J.; Padain T. L.; Skillings E. A.; Winters B. D.; Morton A. J.; Saksida L. M. (2008) The Touchscreen Cognitive Testing Method for Rodents: How to Get the Best out of Your Rat. Learn. Mem. 15 (7), 516–523. 10.1101/lm.987808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Bussey T. J.; Holmes A.; Lyon L.; Mar A. C.; McAllister K. A.; Nithianantharajah J.; Oomen C. A.; Saksida L. M. (2012) New Translational Assays for Preclinical Modelling of Cognition in Schizophrenia: The Touchscreen Testing Method for Mice and Rats. Neuropharmacology 62 (3), 1191–1203. 10.1016/j.neuropharm.2011.04.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Horner A. E.; Heath C. J.; Hvoslef-Eide M.; Kent B. A.; Kim C. H.; Nilsson S. R. O.; Alsiö J.; Oomen C. A.; Holmes A.; Saksida L. M.; Bussey T. J. (2013) The Touchscreen Operant Platform for Testing Learning and Memory in Rats and Mice. Nat. Protoc. 8 (10), 1961–1984. 10.1038/nprot.2013.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Nithianantharajah J.; Komiyama N. H.; McKechanie A.; Johnstone M.; Blackwood D. H.; Clair D. S.; Emes R. D.; van de Lagemaat L. N.; Saksida L. M.; Bussey T. J.; Grant S. G. N. (2013) Synaptic Scaffold Evolution Generated Components of Vertebrate Cognitive Complexity. Nat. Neurosci. 16 (1), 16–24. 10.1038/nn.3276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Balogh N.; Égerházi A.; Berecz R. (2015) Neurocognitive Changes in Patients with Schizophrenia during Relapse and Early Remission. Eur. J. Psychiat. 29, 199. 10.4321/S0213-61632015000300004. [DOI] [Google Scholar]
  252. Kumar S.; Mulsant B. H.; Tsoutsoulas C.; Ghazala Z.; Voineskos A. N.; Bowie C. R.; Rajji T. K. (2016) An Optimal Combination of MCCB and CANTAB to Assess Functional Capacity in Older Individuals with Schizophrenia. Int. J. Geriatr Psychiatry 31 (10), 1116–1123. 10.1002/gps.4547. [DOI] [PubMed] [Google Scholar]
  253. Mathes B.; Wood S. J.; Proffitt T. M.; Stuart G. W.; Buchanan J.-A. M.; Velakoulis D.; Brewer W. J.; McGorry P. D.; Pantelis C. (2005) Early Processing Deficits in Object Working Memory in First-Episode Schizophreniform Psychosis and Established Schizophrenia. Psychol. Med. 35 (7), 1053–1062. 10.1017/S0033291705004617. [DOI] [PubMed] [Google Scholar]
  254. Pantelis C.; Barnes T. R.; Nelson H. E.; Tanner S.; Weatherley L.; Owen A. M.; Robbins T. W. (1997) Frontal-Striatal Cognitive Deficits in Patients with Chronic Schizophrenia. Brain 120, 1823–1843. 10.1093/brain/120.10.1823. [DOI] [PubMed] [Google Scholar]
  255. Rupchev G.; Alekseev A.; Morozova M.; Kaleda V.; Tkhostov A.; Tikhonov D.; Listova A. (2017) Executive Function Assessment in Young Hospitalized Schizophrenic Patients with the “CANTAB Schizophrenia Battery” (Russian Sample). European Psychiatry 41, S278. 10.1016/j.eurpsy.2017.02.119. [DOI] [Google Scholar]
  256. Hughes R. N. (2004) The Value of Spontaneous Alternation Behavior (SAB) as a Test of Retention in Pharmacological Investigations of Memory. Neurosci. Biobehav. Rev. 28 (5), 497–505. 10.1016/j.neubiorev.2004.06.006. [DOI] [PubMed] [Google Scholar]
  257. Lalonde R. (2002) The Neurobiological Basis of Spontaneous Alternation. Neurosci. Biobehav. Rev. 26 (1), 91–104. 10.1016/S0149-7634(01)00041-0. [DOI] [PubMed] [Google Scholar]
  258. Sanderson D. J.; Bannerman D. M. (2012) The Role of Habituation in Hippocampus-Dependent Spatial Working Memory Tasks: Evidence from GluA1 AMPA Receptor Subunit Knockout Mice. Hippocampus 22 (5), 981–994. 10.1002/hipo.20896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Yee B. K.; Singer P. (2013) A Conceptual and Practical Guide to the Behavioural Evaluation of Animal Models of the Symptomatology and Therapy of Schizophrenia. Cell Tissue Res. 354 (1), 221–246. 10.1007/s00441-013-1611-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Barkus C.; Sanderson D.; Rawlins J.; Walton M.; Harrison P.; Bannerman D. (2014) What Causes Aberrant Salience in Schizophrenia? A Role for Impaired Short-Term Habituation and the GRIA1 (GluA1) AMPA Receptor Subunit. Mol. Psychiatry 19 (10), 1060–1070. 10.1038/mp.2014.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Olton D. S.; Samuelson R. J. (1976) Remembrance of Places Passed: Spatial Memory in Rats. Journal of Experimental Psychology 2 (2), 97–116. 10.1037/0097-7403.2.2.97. [DOI] [Google Scholar]
  262. Dubreuil D.; Tixier C.; Dutrieux G.; Edeline J.-M. (2003) Does the Radial Arm Maze Necessarily Test Spatial Memory?. Neurobiol. Learn. Mem. 79 (1), 109–117. 10.1016/S1074-7427(02)00023-0. [DOI] [PubMed] [Google Scholar]
  263. Graham D., Schaefer T., and Vorhees C. (2016) Neurobehavioral Testing for Developmental Toxicity, in Developmental and Reproductive Toxicology: A Practical Approach, CRC Press, Boca Raton, FL. [Google Scholar]
  264. Tarantino I. S.; Sharp R. F.; Geyer M. A.; Meves J. M.; Young J. W. (2011) Working Memory Span Capacity Improved by a D2 but Not D1 Receptor Family Agonist. Behav. Brain Res. 219 (2), 181–188. 10.1016/j.bbr.2010.12.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Kim H.; Park J. Y.; Kim K. (2018) Spatial Learning and Memory Using a Radial Arm Maze with a Head-Mounted Display. Psychiatry Invest. 15 (10), 935–944. 10.30773/pi.2018.06.28.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Dudchenko P. A.; Talpos J.; Young J.; Baxter M. G. (2013) Animal Models of Working Memory: A Review of Tasks That Might Be Used in Screening Drug Treatments for the Memory Impairments Found in Schizophrenia. Neurosci. Biobehav. Rev. 37 (9), 2111–2124. 10.1016/j.neubiorev.2012.03.003. [DOI] [PubMed] [Google Scholar]
  267. Goto K.; Ito I. (2017) The Asymmetry Defect of Hippocampal Circuitry Impairs Working Memory in B2-Microglobulin Deficient Mice. Neurobiol. Learn. Mem. 139, 50–55. 10.1016/j.nlm.2016.12.020. [DOI] [PubMed] [Google Scholar]
  268. Yhnell E.; Dunnett S. B.; Brooks S. P. (2016) The Utilisation of Operant Delayed Matching and Non-Matching to Position for Probing Cognitive Flexibility and Working Memory in Mouse Models of Huntington’s Disease. J. Neurosci. Methods 265, 72–80. 10.1016/j.jneumeth.2015.08.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Chudasama Y.; Muir J. L. (1997) A Behavioural Analysis of the Delayed Non-Matching to Position Task: The Effects of Scopolamine, Lesions of the Fornix and of the Prelimbic Region on Mediating Behaviours by Rats. Psychopharmacology 134 (1), 73–82. 10.1007/s002130050427. [DOI] [PubMed] [Google Scholar]
  270. Talpos J. C.; McTighe S. M.; Dias R.; Saksida L. M.; Bussey T. J. (2010) Trial-Unique, Delayed Nonmatching-to-Location (TUNL): A Novel, Highly Hippocampus-Dependent Automated Touchscreen Test of Location Memory and Pattern Separation. Neurobiol. Learn. Mem. 94 (3–2), 341–352. 10.1016/j.nlm.2010.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  271. Rodriguez J. S.; Zürcher N. R.; Bartlett T. Q.; Nathanielsz P. W.; Nijland M. J. (2011) CANTAB Delayed Matching To Sample Task Performance in Juvenile Baboons. J. Neurosci. Methods 196 (2), 258–263. 10.1016/j.jneumeth.2011.01.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Kim C. H.; Romberg C.; Hvoslef-Eide M.; Oomen C. A.; Mar A. C.; Heath C. J.; Berthiaume A.-A.; Bussey T. J.; Saksida L. M. (2015) Trial-Unique, Delayed Nonmatching-to-Location (TUNL) Touchscreen Testing for Mice: Sensitivity to Dorsal Hippocampal Dysfunction. Psychopharmacology 232 (21–22), 3935–3945. 10.1007/s00213-015-4017-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Davies D. A.; Hurtubise J. L.; Greba Q.; Howland J. G. (2017) Medial Prefrontal Cortex and Dorsomedial Striatum Are Necessary for the Trial-Unique, Delayed Nonmatching-to-Location (TUNL) Task in Rats: Role of NMDA Receptors. Learn Mem 24 (6), 262–266. 10.1101/lm.044750.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. McAllister K. A. L.; Saksida L. M.; Bussey T. J. (2013) Dissociation between Memory Retention across a Delay and Pattern Separation Following Medial Prefrontal Cortex Lesions in the Touchscreen TUNL Task. Neurobiol. Learn. Mem. 101, 120–126. 10.1016/j.nlm.2013.01.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Talpos J.; Steckler T. (2013) Touching on Translation. Cell Tissue Res. 354 (1), 297–308. 10.1007/s00441-013-1694-7. [DOI] [PubMed] [Google Scholar]
  276. Marquardt K.; Cavanagh J. F.; Brigman J. L. (2020) Alcohol Exposure in Utero Disrupts Cortico-Striatal Coordination Required for Behavioral Flexibility. Neuropharmacology 162, 107832. 10.1016/j.neuropharm.2019.107832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Nilsson S. R. O.; Heath C. J.; Takillah S.; Didienne S.; Fejgin K.; Nielsen V.; Nielsen J.; Saksida L. M.; Mariani J.; Faure P. (2018) Continuous Performance Test Impairment in a 22q11.2 Microdeletion Mouse Model: Improvement by Amphetamine. Transl. Psychiatry 8, 247. 10.1038/s41398-018-0295-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Hurtubise J. L.; Marks W. N.; Davies D. A.; Catton J. K.; Baker G. B.; Howland J. G. (2017) MK-801-Induced Impairments on the Trial-Unique, Delayed Nonmatching-to-Location Task in Rats: Effects of Acute Sodium Nitroprusside. Psychopharmacology 234 (2), 211–222. 10.1007/s00213-016-4451-2. [DOI] [PubMed] [Google Scholar]
  279. Kumar G.; Olley J.; Steckler T.; Talpos J. (2015) Dissociable Effects of NR2A and NR2B NMDA Receptor Antagonism on Cognitive Flexibility but Not Pattern Separation. Psychopharmacology 232 (21–22), 3991–4003. 10.1007/s00213-015-4008-9. [DOI] [PubMed] [Google Scholar]
  280. Sokolenko E.; Hudson M. R.; Nithianantharajah J.; Jones N. C. (2019) The MGluR2/3 Agonist LY379268 Reverses NMDA Receptor Antagonist Effects on Cortical Gamma Oscillations and Phase Coherence, but Not Working Memory Impairments, in Mice. J. Psychopharmacol. 33 (12), 1588–1599. 10.1177/0269881119875976. [DOI] [PubMed] [Google Scholar]
  281. Sokolenko E.; Nithianantharajah J.; Jones N. C. (2020) MK-801 Impairs Working Memory on the Trial-Unique Nonmatch-to-Location Test in Mice, but This Is Not Exclusively Mediated by NMDA Receptors on PV+ Interneurons or Forebrain Pyramidal Cells. Neuropharmacology 171, 108103. 10.1016/j.neuropharm.2020.108103. [DOI] [PubMed] [Google Scholar]
  282. Zeleznikow-Johnston A. M.; Renoir T.; Churilov L.; Li S.; Burrows E. L.; Hannan A. J. (2018) Touchscreen Testing Reveals Clinically Relevant Cognitive Abnormalities in a Mouse Model of Schizophrenia Lacking Metabotropic Glutamate Receptor 5. Sci. Rep. 8, 16412. 10.1038/s41598-018-33929-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Barch D. M.; Braver T. S.; Carter C. S.; Poldrack R. A.; Robbins T. W. (2009) CNTRICS Final Task Selection: Executive Control. Schizophr Bull. 35 (1), 115–135. 10.1093/schbul/sbn154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Gilmour G.; Arguello A.; Bari A.; Brown V. J.; Carter C.; Floresco S. B.; Jentsch D. J.; Tait D. S.; Young J. W.; Robbins T. W. (2013) Measuring the Construct of Executive Control in Schizophrenia: Defining and Validating Translational Animal Paradigms for Discovery Research. Neurosci. Biobehav. Rev. 37, 2125–2140. 10.1016/j.neubiorev.2012.04.006. [DOI] [PubMed] [Google Scholar]
  285. Birrell J. M.; Brown V. J. (2000) Medial Frontal Cortex Mediates Perceptual Attentional Set Shifting in the Rat. J. Neurosci. 20 (11), 4320–4324. 10.1523/JNEUROSCI.20-11-04320.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Bissonette G. B.; Martins G. J.; Franz T. M.; Harper E. S.; Schoenbaum G.; Powell E. M. (2008) Double Dissociation of the Effects of Medial and Orbital Prefrontal Cortical Lesions on Attentional and Affective Shifts in Mice. J. Neurosci. 28 (44), 11124–11130. 10.1523/JNEUROSCI.2820-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Brooks J. M.; Pershing M. L.; Thomsen M. S.; Mikkelsen J. D.; Sarter M.; Bruno J. P. (2012) Transient Inactivation of the Neonatal Ventral Hippocampus Impairs Attentional Set-Shifting Behavior: Reversal with an α 7 Nicotinic Agonist. Neuropsychopharmacology 37 (11), 2476–2486. 10.1038/npp.2012.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. McAlonan K.; Brown V. J. (2003) Orbital Prefrontal Cortex Mediates Reversal Learning and Not Attentional Set Shifting in the Rat. Behav. Brain Res. 146 (1), 97–103. 10.1016/j.bbr.2003.09.019. [DOI] [PubMed] [Google Scholar]
  289. Canetta S.; Bolkan S.; Padilla-Coreano N.; Song L.; Sahn R.; Harrison N.; Gordon J. A.; Brown A.; Kellendonk C. (2016) Maternal Immune Activation Leads to Selective Functional Deficits in Offspring Parvalbumin Interneurons. Mol. Psychiatry 21 (7), 956–968. 10.1038/mp.2015.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Gastambide F.; Mitchell S. N.; Robbins T. W.; Tricklebank M. D.; Gilmour G. (2013) Temporally Distinct Cognitive Effects Following Acute Administration of Ketamine and Phencyclidine in the Rat. Eur. Neuropsychopharmacol. 23 (11), 1414–1422. 10.1016/j.euroneuro.2013.03.002. [DOI] [PubMed] [Google Scholar]
  291. Nikiforuk A.; Gołembiowska K.; Popik P. (2010) Mazindol Attenuates Ketamine-Induced Cognitive Deficit in the Attentional Set Shifting Task in Rats. Eur. Neuropsychopharmacol. 20 (1), 37–48. 10.1016/j.euroneuro.2009.08.001. [DOI] [PubMed] [Google Scholar]
  292. Ceaser A. E.; Goldberg T. E.; Egan M. F.; McMahon R. P.; Weinberger D. R.; Gold J. M. (2008) Set-Shifting Ability and Schizophrenia: A Marker of Clinical Illness or an Intermediate Phenotype?. Biol. Psychiatry 64 (9), 782–788. 10.1016/j.biopsych.2008.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Jazbec S.; Pantelis C.; Robbins T.; Weickert T.; Weinberger D. R.; Goldberg T. E. (2007) Intra-Dimensional/Extra-Dimensional Set-Shifting Performance in Schizophrenia: Impact of Distractors. Schizophr. Res. 89 (1–3), 339–349. 10.1016/j.schres.2006.08.014. [DOI] [PubMed] [Google Scholar]
  294. Garner J. P.; Thogerson C. M.; Würbel H.; Murray J. D.; Mench J. A. (2006) Animal Neuropsychology: Validation of the Intra-Dimensional Extra-Dimensional Set Shifting Task for Mice. Behav. Brain Res. 173 (1), 53–61. 10.1016/j.bbr.2006.06.002. [DOI] [PubMed] [Google Scholar]
  295. Young J. W.; Amitai N.; Geyer M. A. (2012) Behavioral Animal Models to Assess Pro-Cognitive Treatments for Schizophrenia. Handb. Exp. Pharmacol. 213, 39–79. 10.1007/978-3-642-25758-2_3. [DOI] [PubMed] [Google Scholar]
  296. Potter W. Z. (2015) Optimizing Early “Go/No Go” Decisions in CNS Drug Development. Expert Rev. Clin. Pharmacol. 8 (2), 155–157. 10.1586/17512433.2015.991715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Chudasama Y.; Robbins T. W. (2003) Dissociable Contributions of the Orbitofrontal and Infralimbic Cortex to Pavlovian Autoshaping and Discrimination Reversal Learning: Further Evidence for the Functional Heterogeneity of the Rodent Frontal Cortex. J. Neurosci. 23 (25), 8771–8780. 10.1523/JNEUROSCI.23-25-08771.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Graybeal C.; Feyder M.; Schulman E.; Saksida L. M.; Bussey T. J.; Brigman J. L.; Holmes A. (2011) Paradoxical Reversal Learning Enhancement by Stress or Prefrontal Cortical Damage: Rescue with BDNF. Nat. Neurosci. 14 (12), 1507–1509. 10.1038/nn.2954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Brigman J. L.; Ihne J.; Saksida L. M.; Bussey T. J.; Holmes A. (2009) Effects of Subchronic Phencyclidine (PCP) Treatment on Social Behaviors, and Operant Discrimination and Reversal Learning in C57BL/6J Mice. Front. Behav. Neurosci. 3, 2. 10.3389/neuro.08.002.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Fellini L.; Kumar G.; Gibbs S.; Steckler T.; Talpos J. (2014) Re-Evaluating the PCP Challenge as a Pre-Clinical Model of Impaired Cognitive Flexibility in Schizophrenia. Eur. Neuropsychopharmacol. 24 (11), 1836–1849. 10.1016/j.euroneuro.2014.08.012. [DOI] [PubMed] [Google Scholar]
  301. Lins B. R.; Hurtubise J. L.; Roebuck A. J.; Marks W. N.; Zabder N. K.; Scott G. A.; Greba Q.; Dawicki W.; Zhang X.; Rudulier C. D. (2018) Prospective Analysis of the Effects of Maternal Immune Activation on Rat Cytokines during Pregnancy and Behavior of the Male Offspring Relevant to Schizophrenia. eNeuro 5 (4), ENEURO.0249-18.2018. 10.1523/ENEURO.0249-18.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Mcallister K. A. L; Mar A. C.; Theobald D. E.; Saksida L. M.; Bussey T. J. (2015) Comparing the Effects of Subchronic Phencyclidine and Medial Prefrontal Cortex Dysfunction on Cognitive Tests Relevant to Schizophrenia. Psychopharmacology; Heidelberg 232 (21–22), 3883–3897. 10.1007/s00213-015-4018-7. [DOI] [PubMed] [Google Scholar]
  303. Dickson P. E.; Calton M. A.; Mittleman G. (2014) Performance of C57BL/6J and DBA/2J Mice on a Touchscreen-Based Attentional Set-Shifting Task. Behav. Brain Res. 261, 158–170. 10.1016/j.bbr.2013.12.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Nilsson M.; Hansson S.; Carlsson A.; Carlsson M. L. (2007) Differential Effects of the N-Methyl-d-Aspartate Receptor Antagonist MK-801 on Different Stages of Object Recognition Memory in Mice. Neuroscience 149 (1), 123–130. 10.1016/j.neuroscience.2007.07.019. [DOI] [PubMed] [Google Scholar]
  305. Winters B. D.; Bussey T. J. (2005) Glutamate Receptors in Perirhinal Cortex Mediate Encoding, Retrieval, and Consolidation of Object Recognition Memory. J. Neurosci. 25 (17), 4243–4251. 10.1523/JNEUROSCI.0480-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Bussey T. J.; Barch D. M.; Baxter M. G. (2013) Testing Long-Term Memory in Animal Models of Schizophrenia: Suggestions from CNTRICS. Neurosci. Biobehav. Rev. 37 (9), 2141–2148. 10.1016/j.neubiorev.2013.06.005. [DOI] [PubMed] [Google Scholar]
  307. Montaldi D.; Mayes A. R. (2010) The Role of Recollection and Familiarity in the Functional Differentiation of the Medial Temporal Lobes. Hippocampus 20 (11), 1291–1314. 10.1002/hipo.20853. [DOI] [PubMed] [Google Scholar]
  308. Winters B. D.; Forwood S. E.; Cowell R. A.; Saksida L. M.; Bussey T. J. (2004) Double Dissociation between the Effects of Peri-Postrhinal Cortex and Hippocampal Lesions on Tests of Object Recognition and Spatial Memory: Heterogeneity of Function within the Temporal Lobe. J. Neurosci. 24 (26), 5901–5908. 10.1523/JNEUROSCI.1346-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Libby L. A.; Yonelinas A. P.; Ranganath C.; Ragland J. D. (2013) Recollection and Familiarity in Schizophrenia: A Quantitative Review. Biol. Psychiatry 73 (10), 944–950. 10.1016/j.biopsych.2012.10.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  310. Bartko S. J.; Vendrell I.; Saksida L. M.; Bussey T. J. (2011) A Computer-Automated Touchscreen Paired-Associates Learning (PAL) Task for Mice: Impairments Following Administration of Scopolamine or Dicyclomine and Improvements Following Donepezil. Psychopharmacology 214 (2), 537–548. 10.1007/s00213-010-2050-1. [DOI] [PubMed] [Google Scholar]
  311. Clelland C.; Choi M.; Romberg C.; Clemenson G.; Fragniere A.; Tyers P.; Jessberger S.; Saksida L.; Barker R.; Gage F.; Bussey T. (2009) A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation. Science 325 (5937), 210–213. 10.1126/science.1173215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Talpos J. C.; Winters B. D.; Dias R.; Saksida L. M.; Bussey T. J. (2009) A Novel Touchscreen-Automated Paired-Associate Learning (PAL) Task Sensitive to Pharmacological Manipulation of the Hippocampus: A Translational Rodent Model of Cognitive Impairments in Neurodegenerative Disease. Psychopharmacology 205 (1), 157–168. 10.1007/s00213-009-1526-3. [DOI] [PubMed] [Google Scholar]
  313. Barnett J. H.; Sahakian B. J.; Werners U.; Hill K. E.; Brazil R.; Gallagher O.; Bullmore E. T.; Jones P. B. (2005) Visuospatial Learning and Executive Function Are Independently Impaired in First-Episode Psychosis. Psychol. Med. 35 (7), 1031–1041. 10.1017/S0033291704004301. [DOI] [PubMed] [Google Scholar]
  314. Prouteau A.; Verdoux H.; Briand C.; Alain L.; Lalonde P.; Nicole L.; Reinharz D.; Stip E. (2004) Self-Assessed Cognitive Dysfunction and Objective Performance in Outpatients with Schizophrenia Participating in a Rehabilitation Program. Schizophrenia Research 69 (1), 85–91. 10.1016/j.schres.2003.08.011. [DOI] [PubMed] [Google Scholar]
  315. Prouteau A.; Verdoux H.; Briand C.; Lesage A.; Lalonde P.; Nicole L.; Reinharz D.; Stip E. (2005) Cognitive Predictors of Psychosocial Functioning Outcome in Schizophrenia: A Follow-up Study of Subjects Participating in a Rehabilitation Program. Schizophrenia Research 77 (2), 343–353. 10.1016/j.schres.2005.03.001. [DOI] [PubMed] [Google Scholar]
  316. Kim C. H.; Heath C. J.; Kent B. A.; Bussey T. J.; Saksida L. M. (2015) The Role of the Dorsal Hippocampus in Two Versions of the Touchscreen Automated Paired Associates Learning (PAL) Task for Mice. Psychopharmacology (Berl) 232 (21–22), 3899–3910. 10.1007/s00213-015-3949-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Saunders A.; Macosko E.; Wysoker A.; Goldman M.; Krienen F.; de Rivera H.; Bien E.; Baum M.; Bortolin S.; Wang S.; et al. (2018) Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell 174 (4), 1015–1030. 10.1016/j.cell.2018.07.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Sugino K.; Clark E.; Schulmann A.; Shima Y.; Wang L.; Hunt D. L.; Hooks B. M.; Tränkner D.; Chandrashekar J.; Picard S.; Lemire A. L.; Spruston N.; Hantman A. W.; Nelson S. B. (2019) Mapping the Transcriptional Diversity of Genetically and Anatomically Defined Cell Populations in the Mouse Brain. eLife 8, e38619 10.7554/eLife.38619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Noguchi S.; Arakawa T.; Fukuda S.; Furuno M.; Hasegawa A.; Hori F.; Ishikawa-Kato S.; Kaida K.; Kaiho A.; Kanamori-Katayama M.; Kawashima T.; Kojima M.; Kubosaki A.; Manabe R.; et al. (2017) FANTOM5 CAGE Profiles of Human and Mouse Samples. Sci. Data 4 (1), 170112. 10.1038/sdata.2017.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. Aguet F.; Brown A. A.; Castel S. E.; Davis J. R.; He Y.; Jo B.; Mohammadi P.; Park Y.; Parsana P.; Segrè A.; et al. (2017) Genetic Effects on Gene Expression across Human Tissues. Nature 550 (7675), 204–213. 10.1038/nature24277. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from ACS Pharmacology & Translational Science are provided here courtesy of American Chemical Society

RESOURCES