Skip to main content
Data in Brief logoLink to Data in Brief
. 2020 Dec 6;34:106576. doi: 10.1016/j.dib.2020.106576

Formulating multi diseases dataset for identifying, triaging and prioritizing patients to multi medical emergency levels: Simulated dataset accompanied with codes

Omar H Salman a,, Mohammed I Aal-Nouman b, Zahraa K Taha a, Muntadher Q Alsabah c, Yaseein S Hussein d, Zahraa A Abdelkareem e
PMCID: PMC7744952  PMID: 33354596

Abstract

This paper provides simulated datasets for triaging and prioritizing patients that are essentially required to support multi emergency levels. To this end, four types of input signals are presented, namely, electrocardiogram (ECG), blood pressure, and oxygen saturation (SpO2), where the latter is text. To obtain the aforementioned signals, the PhysioNet online library [1], is used, which is considered as one of the most reliable and relevant libraries in the healthcare services and bioinformatics sciences. In particular, this library contains collections of several databases and signals, where some of these signals are related to ECG, blood pressure, and SpO2 sensor. The simulated datasets, which are accompanied by codes, are presented in this paper. The contributions of our work, which are related to the presented dataset, can be summarized as follow. (1) The presented dataset is considered as an essential feature that is extracted from the signal records. Specifically, the dataset includes medical vital features such as: QRS width; ST elevation; peaks number; cycle interval from ECG signal; SpO2 level from SpO2 signal; high blood (systolic) pressure value; and low-pressure (diastolic) value from blood pressure signal. These essential features have been extracted based on our machine learning algorithms. In addition, new medical features are added based on medical doctors' recommendations, which are given as text-inputs, e.g., chest pain, shortness of breath, palpitation, and whether the patient at rest or not. All these features are considered to be significant symptoms for many diseases such as: heart attack or stroke; sleep apnea; heart failure; arrhythmia; and blood pressure chronic diseases. (2) The formulated dataset is considered in the doctor diagnostic procedures for identifying the patients' emergency level. (3) In the PhysioNet online library [1], the ECG, blood pressure, and SpO2 have been represented as signals. In contrast, we use some signal processing techniques to re-present the dataset by numeric values, which enable us to extract the essential features of the dataset in Excel sheet representations. (4) The dataset is re-organized and re-formatted to be presented in a useful structure feasible format. Specifically, the dataset is re-presented in terms of tables to illustrate the patient's profile and the type of diseases. (5) The presented dataset is utilized in the evaluation of medical monitoring and healthcare provisioning systems [2]. (6) Some simulated codes for feature extractions are also provided in this paper.

Keywords: E- health, Telemedicine, Healthcare, Sensor, Machine learning, ECG, Blood pressure, SpO2

Specifications Table

Subject Emergency medicine
Specific subject area Triaging, classifying, prioritizing patients, medical services in emergency departments (Eds), remote patients in telemedicine, and E-health monitoring systems.
Type of data Excel spread sheets, table.
How data has been obtained The ECG, blood pressure, and SpO2 signals have been collected and downloaded from the online library Physionet [1]. We have applied some signal processing algorithms in order to extract the essential features of the datasets. The algorithms have been implemented and simulated in a real-time software environment. The outcomes of the simulated data are organized, structured, formulated and presented as multi diseases dataset.
Data format Raw and analysed.
Parameters used in the data collection Parameters include medical essential features such as: QRS width; ST elevation; Peaks number and cycle interval from ECG signal; SpO2 level from SpO2 signal; high Blood (systolic) pressure value; and low-pressure (diastolic) value from blood pressure signal. In addition, text-inputs parameters are collected as input data, which are represented by chest pain, shortness of breath, palpitation and whether patient at rest or not.
Description of the collected data
Simulation Setup
The ECG, blood pressure, and SpO2 signals have been collected from the online library Physionet [1]. Each signal has more than 2000 elements. Each element in the signal has two values. The first value represents the time and the second represents voltage. The array of each signal has two columns where each column is represented by a value. The number of rows is defined by the number of elements in the signal, which starts from (0) and it ends at (n). A real time data processing algorithm is used to extract the required features. We have implemented our algorithms in different simulation environments.
The proposed algorithms are implemented using the JAVA software programming language. Moreover, cross-platform, Apache, MySQL, PHP, and Perl, known as (XAMMP), is used in this paper. Based on our simulation, the dataset is re-organized and re-formatted to be presented in a structure dataset format. In addition, the dataset is re-presented using tables. The dataset illustrates the patient's profile and the type of diseases.
Data source location We describe simulated data accompanied by codes. However, the required information for the database sources is provided in PhysioNet, which is a repository of freely available medical research data that is managed by the Massachusetts Institute of Technology (MIT) Laboratory for computational physiology [1].
City: Boston
Country: United States of America (USA)
Laboratory for computational physiology
MIT, E25–505
45 Carleton St.
Cambridge, MA 02139
Data accessibility The primary data sources are available in a public repository and given in
[1] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, H. E. Stanley, and P. C. Ivanov, “PhysioBank, PhysioToolkit, and PhysioNet: Component of a New Research Resource for Complex Physiologic Signals,” Circulation, vol. 101, pp. E215–20, 2000, Direct URL to data: https://physionet.org/
Simulated data accompanied with codes are presented in https://data.mendeley.com/datasets/22d2kcr2yp/1
Related research article [2] O. H. Salman, M. Aal-Nouman, Z. K. Taha, Reducing Waiting Time for Remote Patients in Telemedicine with Considering Treated Patients in Emergency Department Based on Body Sensors Technologies and Hybrid Computational Algorithms: Toward Scalable and Efficient Real Time Healthcare Monitoring System. DOI: 10.1016/j.jbi.2020.103592

Value of the Data

The effectiveness of the presented dataset can be summarized as follows:

  • The presented dataset contains some of the essential features of patients. In particular, these patients' features can be considered as significant symptoms indicators of many diseases such as: (a) Heart attack or stroke; (b) Sleep apnea; (d) Heart failure; (e) Arrhythmia; and (f) Blood pressure chronic diseases [3,4]. In addition, from the doctor diagnostics procedure point of view, these features can be considered as essential indicators of other sicknesses such as: (a) Adrenal gland tumours; (b) Thyroid problem; (c) Dementia; (d) Kidney disease; and (e) Peripheral arterial disease.

  • The presented dataset is very beneficial to the researchers in both academic and industrial sectors. In particular, the presented dataset would allow researchers to make a fast decision and reliable assessment for the patients at the emergency level [7]. Specifically, such kind of assessment can be effectively used to decide whether the patients need fast medical services or can wait for a certain period and then served. As such, healthcare institutes, e.g., hospitals, would be able to provide fast and more efficient healthcare, and thus, increase their productive services and manage their medical resources more effectively.

  • The presented dataset involves heterogeneous sources, which contain some medical sensors. i.e., ECG, SpO2 and blood pressure and text-inputs [5,7]. Such a combination of datasets provides valuable insights to the researchers in both academic and industrial business sectors. This particularly allows the researchers to design smart and intelligent healthcare systems, which are essential for the currently deployed Internet of Things (IoT) applications [8].

    The presented dataset is useful to a variety of research studies. For example, it can be used in triaging, classifying and prioritizing patients to multi emergency levels such as Risk, Urgent, Sick, Cold case and Normal.

1. Dataset description

The dataset presented in this paper includes ECG, blood pressure and SpO2 records and text-inputs. The dataset has been collected from PhysioNet databases [1]. However, the collected dataset is simulated, re-organized, re-structured in tables context to extract (1) some essential features from the signals, (2) database type, (3) signal record, (5) type of disease and (6) patients' profiles. All these details are presented in the attached appendixes with the following brief descriptions:

  • Table 1 outlines the description of ECG databases and signals records along with all the patients' profiles. Moreover, a sample of the ECG signal is presented in Fig. 1.

  • Table 2 shows the description of SpO2 database and signal records. In addition, SpO2 signal sample is showed in Fig. 2.

  • Table 3 presents the blood pressure signals and database description. A sample of the blood pressure signal is demonstrated in Fig. 3.

Table 1.

ECG databases and records that used in simulating algorithms.

Database Record (Signal) Record Description
Apnea-ECG data base (apnea-ecg) a01 Male.
Age: 51.
Height: 175 (cm).
Weight: 102 (Kg).
60 seconds (1 minute) length.
Data standard format.

Apnea-ECG data base (apnea-ecg) a03
Male.
Age: 54.
Height: 168 (cm).
Weight: 80 (Kg).
60 seconds (1 min) length.
Data standard format.

Apnea-ECG data base (apnea-ecg) b01 Female.
Age: 44.
Height: 170 (cm).
Weight: 63 (Kg).
60 seconds (1 min) length.
Data standard format.

Apnea-ECG data base (apnea-ecg) x15 Male.
Age: 63.
Height: 179 (cm).
Weight: 104 (Kg).
60 seconds (1 min) length.
Data standard format.

MIT-BIH Arrhythmia database (mitdb) In most records, the upper signal is a modified limb lead II (MLII), obtained by placing the electrodes on the chest. The lower signal is usually a modified lead V1 (occasionally V2 or V5, and in one instance V4); as for the upper signal, the electrodes are also placed on the chest. This configuration is routinely used by the BIH Arrhythmia Laboratory.
Normal QRS complexes are usually prominent in the upper signal.

MIT-BIH Arrhythmia database (mitdb) 100 Male.
Age: 69.
60 seconds (1 min) length.
Signal (V5).
Data standard format.
The patient uses these Medications: Aldomet and Indera.

MIT-BIH Arrhythmia database (mitdb) 101 Female.
Age: 75.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses this Medication: Diapres.

MIT-BIH Arrhythmia database (mitdb) 102 Female.
Age: 84.
60 seconds (1 min) length.
Signal (V5).
Data standard format.
The patient uses this Medication: Digoxin

MIT-BIH Arrhythmia database (mitdb) 103 Male.
Age: Not Recorded.
60 seconds (1 min) length.
Signal (V5).
Data standard format.
The patient uses these Medications: Diapres and Xyloprim.
MIT-BIH Arrhythmia database (mitdb) 105 Female.
Age: 73.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses these Medications: Digoxin, Nitropaste and Pronestyl.

MIT-BIH Arrhythmia database (mitdb) 106 Female.
Age: 24.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses this Medication: Inderal.

MIT-BIH Arrhythmia database (mitdb) 107 Male.
Age: 63.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses this Medication: Digoxin

MIT-BIH Arrhythmia database (mitdb) 109 Male.
Age: 64.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses this Medication: Quinidine.

MIT-BIH Arrhythmia database (mitdb) 111 Female.
Age: 47.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses these Medications: Digoxin and Lasix.

MIT-BIH Arrhythmia database (mitdb) 114 Female.
Age: 72.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses this Medication: Digoxin

MIT-BIH Arrhythmia database (mitdb) 115 Female.
Age: 39.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient does not use any Medication.

MIT-BIH Arrhythmia database (mitdb) 116 Male.
Age: 68.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient does not use any Medication.

MIT-BIH Arrhythmia database (mitdb) 118 Male.
Age: 69.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses these Medications: Digoxin and Norpace.
MIT-BIH Arrhythmia database (mitdb) 119 Female.
Age: 51.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses this Medication: Pronestyl.

MIT-BIH Arrhythmia database (mitdb) 121 Female.
Age: 83.
60 seconds (1 min) length.
Signal (MLII).
Data standard format.
The patient uses these Medications: Digoxin, Isordil and Nitropaste.

Long Term ST database (ltstdb) s20011 Male.
Age: 58.
60 seconds (1 min) length.
Signal (ML2).
Data standard format.
The diagnostic of the patient is: No Coronary artery disease.

Long Term ST database (ltstdb) s20051 Female.
Age: 87.
60 seconds (1 min) length.
Signal (ML2).
Data standard format.
The diagnostic of the patient is: Hypertension.

Long Term ST database (ltstdb) s20201 Female.
Age: 78.
60 seconds (1 min) length.
Signal (ML2).
Data standard format.
The diagnostic of the patient is: Syncope and seizure disorder.

Long Term ST database (ltstdb) s20272 Male.
Age: 61.
60 seconds (1 min) length.
Signal (ML2).
Data standard format.
The diagnostic of the patient is: Coronary artery disease.

The BIDMC Congestive Heart Failure Database
This database includes long-term ECG recordings from 15 subjects (11 men, aged 22 to 71, and 4 women, aged 54 to 63) with severe congestive heart failure (NYHA class 3–4).
This group of subjects was part of a larger study group receiving conventional medical therapy prior to receiving the oral inotropic agent, milrinone.
ECG signals sampled at 250 samples per second with 12-bit resolution over a range of ±10 millivolts.

The BIDMC Congestive Heart Failure Database
chf01 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.

The BIDMC Congestive Heart Failure Database
chf02 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.
The BIDMC Congestive Heart Failure Database
chf03 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.
The BIDMC Congestive Heart Failure Database
chf04 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.
The BIDMC Congestive Heart Failure Database
chf05 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.
The BIDMC Congestive Heart Failure Database chf06 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1)
The BIDMC Congestive Heart Failure Database
chf07 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.
The BIDMC Congestive Heart Failure Database
chf08 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.
The BIDMC Congestive Heart Failure Database
chf09 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.
The BIDMC Congestive Heart Failure Database
chf10 Gender: not Available
Age: Not available.
60 seconds (1 min) length.
Signal (ECG1).
Data standard format.

Fig. 1.

Fig 1

ECG Sample dataset for record a01 [1].

Table 2.

SpO2 database and records that used in simulating algorithms.

Database Records Descriptions for all the records
MIMIC Database Numerics 032n, 033n, 037n, 039n, 041n, 048n, 052n, 054n, 055n, 208n, 209n, 210n, 211n, 212n, 213n, 214n, 215n, 216n, 218n, 219n, 220n, 221n, 224n, 225n, 226n, 230n, 231n, 232n, 233n, 235n, 237n, 240n, 241n, 242n, 243n, 245n, 248n, 252n, 253n, 254n, 255n, 259n, 260n, 262n, 264n, 267n, 268n, 224n, 225n and 269n. 60 seconds (1 min) length.
Time standard Format.
Data standard format.
MIMIC Database is called Numerics because these measurements are those that typically appear in numeric form on the ICU monitors' screens: heart rate, blood pressure (mean, systolic, diastolic), respiration rate, oxygen saturation, etc. Since the data-gathering protocol was designed to have minimal impact on patient monitoring or care, the selection of measured variables varies among these records, according to the requirements of the ICU staff for appropriate care of the patients in each case.
The measurements in these records, sampled at intervals of 1.024 seconds (0.976563 Hz),

Fig. 2.

Fig 2

SpO2 Sample dataset for record 032n [1].

Table 3.

Blood Pressure database and records that used in simulating algorithms dataset for record 032n.

Database Records Descriptions for all the records
MIMIC Database Numerics 032n, 033n, 037n, 039n, 041n, 048n, 052n, 054n, 055n, 208n, 209n, 210n, 211n, 212n, 213n, 214n, 215n, 216n, 218n, 219n, 220n, 221n, 224n, 225n, 226n, 230n, 231n, 232n, 233n, 235n, 237n, 240n, 241n, 242n, 243n, 245n, 248n, 252n, 253n, 254n, 255n, 259n, 260n, 262n, 264n, 267n, 268n and 269n.
  • 60 seconds (1 min) length.

  • Time standard Format.

  • Data standard format.

  • MIMIC Database is called Numerics because these measurements are those that typically appear in numeric form on the ICU monitors' screens: heart rate, blood pressure (mean, systolic, diastolic), respiration rate, oxygen saturation, etc. Since the data-gathering protocol was designed to have minimal impact on patient monitoring or care, the selection of measured variables varies among these records, according to the requirements of the ICU staff for appropriate care of the patients in each case.

  • The measurements in these records, sampled at intervals of 1.024 seconds (0.976563 Hz),

Fig. 3.

Fig 3

Blood pressure sample dataset for record 032n [1].

These records have been used in our simulation for ECG, blood pressure and SpO2 signals to extract the vital features such as: QRS width; ST elevation; peaks number and cycle interval from ECG signal; SpO2 level from SpO2 signal; high and low blood pressure values from blood pressure signal.

The databases and signal records presented in [1] have been simulated and implemented using our machine learning algorithms. This allows us to extract the essential medical features that are important for healthcare research studies. The outcome of our algorithms is presented in Table 4 as numeric values.

Table 4.

Vital Features related to blood Pressure diseases extracted based on our simulating algorithms (* x means not addressed).

Simulated Dataset Descriptions
Record Spo2 level Heart Rates (HR) Ambulatory Blood PressureSystolic (ABP Sys) Ambulatory Blood PressureDiastolic (ABP Dias) Pulmonary Artery Pressure Systolic(PAP Sys) Pulmonary Artery Pressure Diastolic(PAP Dias) Non-invasive BP Systolic (NBP Sys)mHg Non-invasive BP Diastolic (NBP Dias)mHg
032n 0 88 x x x x x x
033n 94 53 37 54 x x x x
037n 0 122 82 53 x x x x
039n 98 127 120 73 x x x x
041n 95 88 95 49 27 15 x x
048n 97 85 164 92 x x x x
052n 99 85 167 78 x x x x
054n 96 93 163 75 x x x x
055n 100 101 114 78 34 22 x x
208n 93 x x x x x 116 96
209n 91 x x x x x 135 65
210n 92 x x x x x 101 54
221n 97 89 177 63 x x x x
212n 0 80 93 46 29 9 x x
213n 0 103 111 67 x x x x
214n 93 104 92 55 x x 150 51
215n 95 71 x x 78 29 181 62
216n 92 82 113 54 58 26 0 0
218n 94 70 96 57 x x 0 0
219n 94 73 126 61 x x 0 0
220n 0 94 141 56 x x x x
221n 99 76 182 80 x x x x
224n 94 x x x x x x x
225n 96 x x x x x x x
226n 97 133 151 81 x x x x
230n 97 72 112 54 59 29 0 0
231n 0 91 122 57 50 25 x x
232n 97 57 105 63 x x x x
233n x 74 x x x x 97 57
235n 95 97 154 92 x x 0 0
237n 97 78 129 76 38 23 0 0
240n 94 81 104 57 39 19 0 0
241n 0 78 140 70 27 36 0 0
242n 99 73 126 68 32 19 0 0
243n 0 112 74 47 35 20 x x
245n 0 80 105 49 77 35 x x
248n 94 114 140 60 43 21 x x
252n 92 60 122 64 x x 0 0
253n 92 68 129 68 52 25 0 0
254n 96 72 161 93 44 27 0 0
255n 0 97 x x 30 11 x x
259n 86 56 102 42 44 20 x x
260n 0 85 122 35 51 28 0 0
262n 0 70 103 60 41 25 x x
264n 0 102 0 0 48 17 0 0
267n 100 100 136 64 41 24 0 0
268n 0 99 128 66 63 30 0 0
269n 0 77 117 51 56 28 x x

Blood pressure and Spo2 datasets provide different values. According to medical guidelines, there are predefined ranges of values that represent the patient condition, which is known as " triage level". This triage level is used to evaluate the performance of the healthcare system, which is specifically focused on patient's medical assessment, e.g., monitoring the patients who have chronic heart diseases or chronic blood pressure diseases. The researchers would need to consider all the probabilities of blood pressure and Spo2 values in their simulation and implementation. Therefore, more analyses would be needed to the dataset records mentioned in [1], which is considered to be time and resources consuming. Hence, the dataset needs to be organized as presented in Table 1, Table 2, Table 3 to allow the researchers to use simplified numeric values in their research work. This essential task has been achieved in our paper so that we have done it on their behalf. Furthermore, we provide the researchers a dataset with different ranges of values that represent different triage levels.

Table 5 demonstrates the dataset with all the probabilities of low blood pressure value, (mHg)high blood pressure value (mHg) and SpO2 value. Moreover, we provide new heterogeneous sources, i.e., text sources. The context of the text-inputs is provided as medical questions. These questions are expressed based on doctors' recommendations. Also, these questions are considered in the doctor diagnostics procedure. The answer to each question considers the feature of each text source. The questions are addressed manually, and all probabilities for the different answers are also considered. These questions can be summarized as follows:

  • 1

    Chest pain. The answer is either (Yes) OR (No).

  • 2

    Shortness of breath. The answer is either (Yes) OR (No).

  • 3

    Palpitation. The answer is either (Yes) OR (No).

  • 4

    Patient at rest. The answer is either (Yes) OR (No).

Table 5.

Vital features related to doctor diagnostics procedure in emergency department and disease detection.

Patient number
Simulated Dataset Descriptions Chest pain Shortness of Breath Palpitation. Patient at rest SpO2 Value High Blood Pressure (Bp) Value (mHg) Low Blood Pressure (Bp) Value (mHg)
1. N N N N 97 12 23
2. Y N N N 97 12 23
3. N Y N N 97 12 23
4. Y Y N N 97 12 23
5. N N Y N 97 12 23
6. Y N Y N 97 12 23
7. N Y Y N 97 12 23
8. Y Y Y N 97 12 23
9. N N N Y 97 12 23
10. Y N N Y 97 12 23
11. N Y N Y 97 12 23
12. Y Y N Y 97 12 23
13. N N Y Y 97 12 23
14. Y N Y Y 97 12 23
15. N Y Y Y 97 12 23
16. Y Y Y Y 97 12 23
17. N N N N 92 12 23
18. Y N N N 92 12 23
19. N Y N N 92 12 23
20. Y Y N N 92 12 23
21. N N Y N 92 12 23
22. Y N Y N 92 12 23
23. N Y Y N 92 12 23
24. Y Y Y N 92 12 23
25. N N N Y 92 12 23
26. Y N N Y 92 12 23
27. N Y N Y 92 12 23
28. Y Y N Y 92 12 23
29. N N Y Y 92 12 23
30. Y N Y Y 92 12 23
31. N Y Y Y 92 12 23
32. Y Y Y Y 92 12 23
33. N N N N 97 10 15
34. Y N N N 97 10 15
35. N Y N N 97 10 15
36. Y Y N N 97 10 15
37. N N Y N 97 10 15
38. Y N Y N 97 10 15
39. N Y Y N 97 10 15
40. Y Y Y N 97 10 15
41. N N N Y 97 10 15
42. Y N N Y 97 10 15
43. N Y N Y 97 10 15
44. Y Y N Y 97 10 15
45. N N Y Y 97 10 15
46. Y N Y Y 97 10 15
47. N Y Y Y 97 10 15
48. Y Y Y Y 97 10 15
49. N N N N 92 10 15
50. Y N N N 92 10 15
51. N Y N N 92 10 15
52. Y Y N N 92 10 15
53. N N Y N 92 10 15
54. Y N Y N 92 10 15
55. N Y Y N 92 10 15
56. Y Y Y N 92 10 15
57. N N N Y 92 10 15
58. Y N N Y 92 10 15
59. N Y N Y 92 10 15
60. Y Y N Y 92 10 15
61. N N Y Y 92 10 15
62. Y N Y Y 92 10 15
63. N Y Y Y 92 10 15
64. Y Y Y Y 92 10 15
65. N N N N 97 8 12
66. Y N N N 97 8 12
67. N Y N N 97 8 12
68. Y Y N N 97 8 12
69. N N Y N 97 8 12
70. Y N Y N 97 8 12
71. N Y Y N 97 8 12
72. Y Y Y N 97 8 12
73. N N N Y 97 8 12
74. Y N N Y 97 8 12
75. N Y N Y 97 8 12
76. Y Y N Y 97 8 12
77. N N Y Y 97 8 12
78. Y N Y Y 97 8 12
79. N Y Y Y 97 8 12
80. Y Y Y Y 97 8 12
81. N N N N 92 8 12
82. Y N N N 92 8 12
83. N Y N N 92 8 12
84. Y Y N N 92 8 12
85. N N Y N 92 8 12
86. Y N Y N 92 8 12
87. N Y Y N 92 8 12
88. Y Y Y N 92 8 12
89. N N N Y 92 8 12
90. Y N N Y 92 8 12
91. N Y N Y 92 8 12
92. Y Y N Y 92 8 12
93. N N Y Y 92 8 12
94. Y N Y Y 92 8 12
95. N Y Y Y 92 8 12
96. Y Y Y Y 92 8 12
97. N N N N 80 8 12
98. Y N N N 80 8 12
99. N Y N N 80 8 12
100. Y Y N N 80 8 12
101. N N Y N 80 8 12
102. Y N Y N 80 8 12
103. N Y Y N 80 8 12
104. Y Y Y N 80 8 12
105. N N N Y 80 8 12
106. Y N N Y 80 8 12
107. N Y N Y 80 8 12
108. Y Y N Y 80 8 12
109. N N Y Y 80 8 12
110. Y N Y Y 80 8 12
111. N Y Y Y 80 8 12
112. Y Y Y Y 80 8 12
113. N N N N 80 10 15
114. Y N N N 80 10 15
115. N Y N N 80 10 15
116. Y Y N N 80 10 15
117. N N Y N 80 10 15
118. Y N Y N 80 10 15
119. N Y Y N 80 10 15
120. Y Y Y N 80 10 15
121. N N N Y 80 10 15
122. Y N N Y 80 10 15
123. N Y N Y 80 10 15
124. Y Y N Y 80 10 15
125. N N Y Y 80 10 15
126. Y N Y Y 80 10 15
127. N Y Y Y 80 10 15
128. Y Y Y Y 80 10 15
129. N N N N 80 12 23
130. Y N N N 80 12 23
131. N Y N N 80 12 23
132. Y Y N N 80 12 23
133. N N Y N 80 12 23
134. Y N Y N 80 12 23
135. N Y Y N 80 12 23
136. Y Y Y N 80 12 23
137. N N N Y 80 12 23
138. Y N N Y 80 12 23
139. N Y N Y 80 12 23
140. Y Y N Y 80 12 23
141. N N Y Y 80 12 23
142. Y N Y Y 80 12 23
143. N Y Y Y 80 12 23

According to the medical guidelines, four main ECG features, which are related to many chronic heart diseases, should be extracted. These features are presented as follows:

  • 1

    Rhythm, which indicates the sinus bradycardia, sinus tachycardia, atrial tachycardia, atrial flutter, and sick sinus syndrome [9].

  • 2

    QRS complex width, which indicates the activity of the bundle branch in the heart [9].

  • 3

    Peak-to-peak regularity.

  • 4

    ST elevation, which indicates acute myocardial infarction, Prinzmetal's angina, and left ventricular aneurysm [9].

In our evaluation, all the simulated ECG signals represent an abnormal ECG signal. Each signal represents a patient with a certain type of heart disease. We have extracted the four main ECG features and organized them as a new ECG dataset. The researchers can directly use this dataset in their future works. Moreover, to enrich our dataset, we have added our new ECG dataset in Table 5. This dataset becomes easy to access in case the researchers eager to use all the sources in one platform. In addition, we have added our simulation outcomes in terms of triage levels to the table. Our outcomes have already evaluated by medical doctors. Table 6 represents outcomes form our simulation of 580 patients including the formulation of 11 features dataset and variety records of ECG signals where the triage level is provided as output.

Table 6.

Outcomes form our simulation for 580 patients include formulation of 11 features dataset and variety records of ECG signals and the triage level as output.

p. no. ECG Records Spo2 H. Blood(mHg) L. Blood(mHg) Chest Pain Short-ness of Breath Palpitation. rest? Peaks QRS width Peak to Peak ST El. OutputTriage level
1 Sleep apnea Records 97 23 12 false false false false 67 0.06 Regular true Sick
2 97 23 12 false false false true 67 0.06 Regular true Sick
3 97 23 12 false false true false 67 0.06 Regular true Sick
4 97 23 12 false false true true 67 0.06 Regular true Sick
5 97 23 12 false true false false 67 0.06 Regular true Sick
6 97 23 12 false true false true 67 0.06 Regular true Sick
7 97 23 12 false true true false 67 0.06 Regular true Sick
8 97 23 12 false true true true 67 0.06 Regular true Urgent
9 97 23 12 true false false false 67 0.06 Regular true Sick
10 97 23 12 true false false true 67 0.06 Regular true Urgent
11 97 23 12 true false true false 67 0.06 Regular true Urgent
12 97 23 12 true false true true 67 0.06 Regular true Urgent
13 97 23 12 true true false false 67 0.06 Regular true Urgent
14 97 23 12 true true false true 67 0.06 Regular true Urgent
15 97 23 12 true true true false 67 0.06 Regular true risk
16 97 23 12 true true true true 67 0.06 Regular true risk
17 92 23 12 false false false false 67 0.06 Regular true Sick
18 92 23 12 false false false true 67 0.06 Regular true Sick
19 92 23 12 false false true false 67 0.06 Regular true Sick
20 92 23 12 false false true true 67 0.06 Regular true Urgent
21 92 23 12 false true false false 67 0.06 Regular true Sick
22 92 23 12 false true false true 67 0.06 Regular true Sick
23 92 23 12 false true true false 67 0.06 Regular true Urgent
24 92 23 12 false true true true 67 0.06 Regular true Urgent
25 92 23 12 true false false false 67 0.06 Regular true Urgent
26 92 23 12 true false false true 67 0.06 Regular true Urgent
27 92 23 12 true false true false 67 0.06 Regular true risk
28 92 23 12 true false true true 67 0.06 Regular true risk
29 92 23 12 true true false false 67 0.06 Regular true Urgent
30 92 23 12 true true false true 67 0.06 Regular true Urgent
31 92 23 12 true true true false 67 0.06 Regular true risk
32 92 23 12 true true true true 67 0.06 Regular true risk
33 97 15 10 false false false false 67 0.06 Regular true Sick
34 97 15 10 false false false true 67 0.06 Regular true Sick
35 97 15 10 false false true false 67 0.06 Regular true Sick
36 97 15 10 false false true true 67 0.06 Regular true Sick
37 97 15 10 false true false false 67 0.06 Regular true Sick
38 97 15 10 false true false true 67 0.06 Regular true Sick
39 97 15 10 false true true false 67 0.06 Regular true Sick
40 97 15 10 false true true true 67 0.06 Regular true Sick
41 97 15 10 true false false false 67 0.06 Regular true Sick
42 97 15 10 true false false true 67 0.06 Regular true Sick
43 97 15 10 true false true false 67 0.06 Regular true Urgent
44 97 15 10 true false true true 67 0.06 Regular true Urgent
45 97 15 10 true true false false 67 0.06 Regular true Sick
46 97 15 10 true true false true 67 0.06 Regular true Urgent
47 97 15 10 true true true false 67 0.06 Regular true Urgent
48 97 15 10 true true true true 67 0.06 Regular true Urgent
49 92 15 10 false false false false 67 0.06 Regular true Sick
50 92 15 10 false false false true 67 0.06 Regular true Sick
51 92 15 10 false false true false 67 0.06 Regular true Sick
52 92 15 10 false false true true 67 0.06 Regular true Sick
53 92 15 10 false true false false 67 0.06 Regular true Sick
54 92 15 10 false true false true 67 0.06 Regular true Sick
55 92 15 10 false true true false 67 0.06 Regular true Sick
56 92 15 10 false true true true 67 0.06 Regular true Urgent
57 92 15 10 true false false false 67 0.06 Regular true Sick
58 92 15 10 true false false true 67 0.06 Regular true Urgent
59 92 15 10 true false true false 67 0.06 Regular true Urgent
60 92 15 10 true false true true 67 0.06 Regular true Urgent
61 92 15 10 true true false false 67 0.06 Regular true Urgent
62 92 15 10 true true false true 67 0.06 Regular true Urgent
63 92 15 10 true true true false 67 0.06 Regular true risk
64 92 15 10 true true true true 67 0.06 Regular true risk
65 97 12 8 false false false false 67 0.06 Regular true Cold State
66 97 12 8 false false false true 67 0.06 Regular true Cold State
67 97 12 8 false false true false 67 0.06 Regular true Sick
68 97 12 8 false false true true 67 0.06 Regular true Sick
69 97 12 8 false true false false 67 0.06 Regular true Sick
70 97 12 8 false true false true 67 0.06 Regular true Sick
71 97 12 8 false true true false 67 0.06 Regular true Sick
72 97 12 8 false true true true 67 0.06 Regular true Sick
73 97 12 8 true false false false 67 0.06 Regular true Sick
74 97 12 8 true false false true 67 0.06 Regular true Sick
75 97 12 8 true false true false 67 0.06 Regular true Sick
76 97 12 8 true false true true 67 0.06 Regular true Urgent
77 97 12 8 true true false false 67 0.06 Regular true Sick
78 97 12 8 true true false true 67 0.06 Regular true Sick
79 97 12 8 true true true false 67 0.06 Regular true Urgent
80 97 12 8 true true true true 67 0.06 Regular true Urgent
81 92 12 8 false false false false 67 0.06 Regular true Sick
82 92 12 8 false false false true 67 0.06 Regular true Sick
83 92 12 8 false false true false 67 0.06 Regular true Sick
84 92 12 8 false false true true 67 0.06 Regular true Sick
85 92 12 8 false true false false 67 0.06 Regular true Sick
86 92 12 8 false true false true 67 0.06 Regular true Sick
87 92 12 8 false true true false 67 0.06 Regular true Sick
88 92 12 8 false true true true 67 0.06 Regular true Sick
89 92 12 8 true false false false 67 0.06 Regular true Sick
90 92 12 8 true false false true 67 0.06 Regular true Sick
91 92 12 8 true false true false 67 0.06 Regular true Urgent
92 92 12 8 true false true true 67 0.06 Regular true Urgent
93 92 12 8 true true false false 67 0.06 Regular true Sick
94 92 12 8 true true false true 67 0.06 Regular true Urgent
95 92 12 8 true true true false 67 0.06 Regular true Urgent
96 92 12 8 true true true true 67 0.06 Regular true Urgent
97 80 12 8 false false false false 67 0.06 Regular true Sick
98 80 12 8 false false false true 67 0.06 Regular true Sick
99 80 12 8 false false true false 67 0.06 Regular true Sick
100 80 12 8 false false true true 67 0.06 Regular true Sick
101 80 12 8 false true false false 67 0.06 Regular true Sick
102 80 12 8 false true false true 67 0.06 Regular true Sick
103 80 12 8 false true true false 67 0.06 Regular true Sick
104 80 12 8 false true true true 67 0.06 Regular true Urgent
105 80 12 8 true false false false 67 0.06 Regular true Sick
106 80 12 8 true false false true 67 0.06 Regular true Urgent
107 80 12 8 true false true false 67 0.06 Regular true Urgent
108 80 12 8 true false true true 67 0.06 Regular true Urgent
109 80 12 8 true true false false 67 0.06 Regular true Urgent
110 80 12 8 true true false true 67 0.06 Regular true Urgent
111 80 12 8 true true true false 67 0.06 Regular true risk
112 80 12 8 true true true true 67 0.06 Regular true risk
113 80 15 10 false false false false 67 0.06 Regular true Sick
114 80 15 10 false false false true 67 0.06 Regular true Sick
115 80 15 10 false false true false 67 0.06 Regular true Sick
116 80 15 10 false false true true 67 0.06 Regular true Urgent
117 80 15 10 false true false false 67 0.06 Regular true Sick
118 80 15 10 false true false true 67 0.06 Regular true Sick
119 80 15 10 false true true false 67 0.06 Regular true Urgent
120 80 15 10 false true true true 67 0.06 Regular true Urgent

121 Long Term ST Records 80 15 10 true false false false 67 0.06 Regular true Urgent
122 80 15 10 true false false true 67 0.06 Regular true Urgent
123 80 15 10 true false true false 67 0.06 Regular true risk
124 80 15 10 true false true true 67 0.06 Regular true risk
125 80 15 10 true true false false 67 0.06 Regular true Urgent
126 80 15 10 true true false true 67 0.06 Regular true Urgent
127 80 15 10 true true true false 67 0.06 Regular true risk
128 80 15 10 true true true true 67 0.06 Regular true risk
129 80 23 12 false false false false 67 0.06 Regular true Sick
130 80 23 12 false false false true 67 0.06 Regular true Sick
131 80 23 12 false false true false 67 0.06 Regular true Urgent
132 80 23 12 false false true true 67 0.06 Regular true Urgent
133 80 23 12 false true false false 67 0.06 Regular true Sick
134 80 23 12 false true false true 67 0.06 Regular true Urgent
135 80 23 12 false true true false 67 0.06 Regular true Urgent
136 80 23 12 false true true true 67 0.06 Regular true Urgent
137 80 23 12 true false false false 67 0.06 Regular true Urgent
138 80 23 12 true false false true 67 0.06 Regular true Urgent
139 80 23 12 true false true false 67 0.06 Regular true risk
140 80 23 12 true false true true 67 0.06 Regular true risk
141 80 23 12 true true false false 67 0.06 Regular true risk
142 80 23 12 true true false true 67 0.06 Regular true risk
143 80 23 12 true true true false 67 0.06 Regular true risk
144 80 23 12 true true true true 67 0.06 Regular true risk

145 Arrythmia Records 97 23 12 false false false false 54 0.5 Regular false Sick
146 97 23 12 false false false true 54 0.5 Regular false Sick
147 97 23 12 false false true false 54 0.5 Regular false Sick
148 97 23 12 false false true true 54 0.5 Regular false Sick
149 97 23 12 false true false false 54 0.5 Regular false Sick
150 97 23 12 false true false true 54 0.5 Regular false Sick
151 97 23 12 false true true false 54 0.5 Regular false Sick
152 97 23 12 false true true true 54 0.5 Regular false Sick
153 97 23 12 true false false false 54 0.5 Regular false Sick
154 97 23 12 true false false true 54 0.5 Regular false Sick
155 97 23 12 true false true false 54 0.5 Regular false Urgent
156 97 23 12 true false true true 54 0.5 Regular false Urgent
157 97 23 12 true true false false 54 0.5 Regular false Sick
158 97 23 12 true true false true 54 0.5 Regular false Urgent
159 97 23 12 true true true false 54 0.5 Regular false Urgent
160 97 23 12 true true true true 54 0.5 Regular false Urgent
161 92 23 12 false false false false 54 0.5 Regular false Sick
162 92 23 12 false false false true 54 0.5 Regular false Sick
163 92 23 12 false false true false 54 0.5 Regular false Sick
164 92 23 12 false false true true 54 0.5 Regular false Sick
165 92 23 12 false true false false 54 0.5 Regular false Sick
166 92 23 12 false true false true 54 0.5 Regular false Sick
167 92 23 12 false true true false 54 0.5 Regular false Sick
168 92 23 12 false true true true 54 0.5 Regular false Urgent
169 92 23 12 true false false false 54 0.5 Regular false Sick
170 92 23 12 true false false true 54 0.5 Regular false Urgent
171 92 23 12 true false true false 54 0.5 Regular false Urgent
172 92 23 12 true false true true 54 0.5 Regular false Urgent
173 92 23 12 true true false false 54 0.5 Regular false Urgent
174 92 23 12 true true false true 54 0.5 Regular false Urgent
175 92 23 12 true true true false 54 0.5 Regular false risk
176 92 23 12 true true true true 54 0.5 Regular false risk
177 97 15 10 false false false false 54 0.5 Regular false Cold State
178 97 15 10 false false false true 54 0.5 Regular false Cold State
179 97 15 10 false false true false 54 0.5 Regular false Sick
180 97 15 10 false false true true 54 0.5 Regular false Sick
181 97 15 10 false true false false 54 0.5 Regular false Sick
182 97 15 10 false true false true 54 0.5 Regular false Sick
183 97 15 10 false true true false 54 0.5 Regular false Sick
184 97 15 10 false true true true 54 0.5 Regular false Sick
185 97 15 10 true false false false 54 0.5 Regular false Sick
186 97 15 10 true false false true 54 0.5 Regular false Sick
187 97 15 10 true false true false 54 0.5 Regular false Sick
188 97 15 10 true false true true 54 0.5 Regular false Urgent
189 97 15 10 true true false false 54 0.5 Regular false Sick
190 97 15 10 true true false true 54 0.5 Regular false Sick
191 97 15 10 true true true false 54 0.5 Regular false Urgent
192 97 15 10 true true true true 54 0.5 Regular false Urgent
193 92 15 10 false false false false 54 0.5 Regular false Sick
194 92 15 10 false false false true 54 0.5 Regular false Sick
195 92 15 10 false false true false 54 0.5 Regular false Sick
196 92 15 10 false false true true 54 0.5 Regular false Sick
197 92 15 10 false true false false 54 0.5 Regular false Sick
198 92 15 10 false true false true 54 0.5 Regular false Sick
199 92 15 10 false true true false 54 0.5 Regular false Sick
200 92 15 10 false true true true 54 0.5 Regular false Sick
201 92 15 10 true false false false 54 0.5 Regular false Sick
202 92 15 10 true false false true 54 0.5 Regular false Sick
203 92 15 10 true false true false 54 0.5 Regular false Urgent
204 92 15 10 true false true true 54 0.5 Regular false Urgent
205 92 15 10 true true false false 54 0.5 Regular false Sick
206 92 15 10 true true false true 54 0.5 Regular false Urgent
207 92 15 10 true true true false 54 0.5 Regular false Urgent
208 92 15 10 true true true true 54 0.5 Regular false Urgent
209 97 12 8 false false false false 54 0.5 Regular false Cold State
210 97 12 8 false false false true 54 0.5 Regular false Cold State
211 97 12 8 false false true false 54 0.5 Regular false Sick
212 97 12 8 false false true true 54 0.5 Regular false Sick
213 97 12 8 false true false false 54 0.5 Regular false Cold State
214 97 12 8 false true false true 54 0.5 Regular false Cold State
215 97 12 8 false true true false 54 0.5 Regular false Sick
216 97 12 8 false true true true 54 0.5 Regular false Sick
217 97 12 8 true false false false 54 0.5 Regular false Sick
218 97 12 8 true false false true 54 0.5 Regular false Sick
219 97 12 8 true false true false 54 0.5 Regular false Sick
220 97 12 8 true false true true 54 0.5 Regular false Sick
221 97 12 8 true true false false 54 0.5 Regular false Sick
222 97 12 8 true true false true 54 0.5 Regular false Sick
223 97 12 8 true true true false 54 0.5 Regular false Sick
224 97 12 8 true true true true 54 0.5 Regular false Urgent
225 92 12 8 false false false false 54 0.5 Regular false Cold State
226 92 12 8 false false false true 54 0.5 Regular false Cold State
227 92 12 8 false false true false 54 0.5 Regular false Sick
228 92 12 8 false false true true 54 0.5 Regular false Sick
229 92 12 8 false true false false 54 0.5 Regular false Sick
230 92 12 8 false true false true 54 0.5 Regular false Sick
231 92 12 8 false true true false 54 0.5 Regular false Sick
232 92 12 8 false true true true 54 0.5 Regular false Sick
233 92 12 8 true false false false 54 0.5 Regular false Sick
234 92 12 8 true false false true 54 0.5 Regular false Sick
235 92 12 8 true false true false 54 0.5 Regular false Sick
236 92 12 8 true false true true 54 0.5 Regular false Urgent
237 92 12 8 true true false false 54 0.5 Regular false Sick
238 92 12 8 true true false true 54 0.5 Regular false Sick
239 92 12 8 true true true false 54 0.5 Regular false Urgent
240 92 12 8 true true true true 54 0.5 Regular false Urgent
241 80 12 8 false false false false 54 0.5 Regular false Sick
242 80 12 8 false false false true 54 0.5 Regular false Sick
243 80 12 8 false false true false 54 0.5 Regular false Sick
244 80 12 8 false false true true 54 0.5 Regular false Sick
245 80 12 8 false true false false 54 0.5 Regular false Sick
246 80 12 8 false true false true 54 0.5 Regular false Sick
247 80 12 8 false true true false 54 0.5 Regular false Sick
248 80 12 8 false true true true 54 0.5 Regular false Sick
249 80 12 8 true false false false 54 0.5 Regular false Sick
250 80 12 8 true false false true 54 0.5 Regular false Sick
251 80 12 8 true false true false 54 0.5 Regular false Urgent
252 80 12 8 true false true true 54 0.5 Regular false Urgent
253 80 12 8 true true false false 54 0.5 Regular false Sick
254 80 12 8 true true false true 54 0.5 Regular false Urgent
255 80 12 8 true true true false 54 0.5 Regular false Urgent
256 80 12 8 true true true true 54 0.5 Regular false Urgent
257 80 15 10 false false false false 54 0.5 Regular false Sick
258 80 15 10 false false false true 54 0.5 Regular false Sick
259 80 15 10 false false true false 54 0.5 Regular false Sick
260 80 15 10 false false true true 54 0.5 Regular false Sick
261 80 15 10 false true false false 54 0.5 Regular false Sick
262 80 15 10 false true false true 54 0.5 Regular false Sick
263 80 15 10 false true true false 54 0.5 Regular false Sick
264 80 15 10 false true true true 54 0.5 Regular false Urgent
265 80 15 10 true false false false 54 0.5 Regular false Sick
266 80 15 10 true false false true 54 0.5 Regular false Urgent
267 80 15 10 true false true false 54 0.5 Regular false Urgent
268 80 15 10 true false true true 54 0.5 Regular false Urgent
269 80 15 10 true true false false 54 0.5 Regular false Urgent
270 80 15 10 true true false true 54 0.5 Regular false Urgent
271 80 15 10 true true true false 54 0.5 Regular false risk
272 80 15 10 true true true true 54 0.5 Regular false risk
273 80 23 12 false false false false 54 0.5 Regular false Sick
274 80 23 12 false false false true 54 0.5 Regular false Sick
275 80 23 12 false false true false 54 0.5 Regular false Sick
276 80 23 12 false false true true 54 0.5 Regular false Urgent
277 80 23 12 false true false false 54 0.5 Regular false Sick
278 80 23 12 false true false true 54 0.5 Regular false Sick
279 80 23 12 false true true false 54 0.5 Regular false Urgent
280 80 23 12 false true true true 54 0.5 Regular false Urgent
281 80 23 12 true false false false 54 0.5 Regular false Urgent
282 80 23 12 true false false true 54 0.5 Regular false Urgent
283 80 23 12 true false true false 54 0.5 Regular false risk
284 80 23 12 true false true true 54 0.5 Regular false risk
285 80 23 12 true true false false 54 0.5 Regular false Urgent
286 80 23 12 true true false true 54 0.5 Regular false Urgent
287 80 23 12 true true true false 54 0.5 Regular false risk
288 80 23 12 true true true true 54 0.5 Regular false risk
289 97 23 12 false false false false 77 0.047 Regular true Sick
290 97 23 12 false false false true 77 0.047 Regular true Sick
291 97 23 12 false false true false 77 0.047 Regular true Sick
292 97 23 12 false false true true 77 0.047 Regular true Sick
293 97 23 12 false true false false 77 0.047 Regular true Sick
294 97 23 12 false true false true 77 0.047 Regular true Sick
295 97 23 12 false true true false 77 0.047 Regular true Urgent
296 97 23 12 false true true true 77 0.047 Regular true Urgent
297 97 23 12 true false false false 77 0.047 Regular true Urgent
298 97 23 12 true false false true 77 0.047 Regular true Urgent
299 97 23 12 true false true false 77 0.047 Regular true risk
300 97 23 12 true false true true 77 0.047 Regular true risk
301 97 23 12 true true false false 77 0.047 Regular true Urgent
302 97 23 12 true true false true 77 0.047 Regular true Urgent
303 97 23 12 true true true false 77 0.047 Regular true risk
304 97 23 12 true true true true 77 0.047 Regular true risk
305 92 23 12 false false false false 77 0.047 Regular true Sick
306 92 23 12 false false false true 77 0.047 Regular true Sick
307 92 23 12 false false true false 77 0.047 Regular true Urgent
308 92 23 12 false false true true 77 0.047 Regular true Urgent
309 92 23 12 false true false false 77 0.047 Regular true Sick
310 92 23 12 false true false true 77 0.047 Regular true Sick
311 92 23 12 false true true false 77 0.047 Regular true Urgent
312 92 23 12 false true true true 77 0.047 Regular true Urgent
313 92 23 12 true false false false 77 0.047 Regular true Urgent
314 92 23 12 true false false true 77 0.047 Regular true Urgent
315 92 23 12 true false true false 77 0.047 Regular true risk
316 92 23 12 true false true true 77 0.047 Regular true risk
317 92 23 12 true true false false 77 0.047 Regular true risk
318 92 23 12 true true false true 77 0.047 Regular true risk
319 92 23 12 true true true false 77 0.047 Regular true risk
320 92 23 12 true true true true 77 0.047 Regular true risk
321 97 15 10 false false false false 77 0.047 Regular true Sick
322 97 15 10 false false false true 77 0.047 Regular true Sick
323 97 15 10 false false true false 77 0.047 Regular true Sick
324 97 15 10 false false true true 77 0.047 Regular true Sick
325 97 15 10 false true false false 77 0.047 Regular true Sick
326 97 15 10 false true false true 77 0.047 Regular true Sick
327 97 15 10 false true true false 77 0.047 Regular true Sick
328 97 15 10 false true true true 77 0.047 Regular true Sick
329 97 15 10 true false false false 77 0.047 Regular true Sick
330 97 15 10 true false false true 77 0.047 Regular true Sick
331 97 15 10 true false true false 77 0.047 Regular true Urgent
332 97 15 10 true false true true 77 0.047 Regular true Urgent
333 97 15 10 true true false false 77 0.047 Regular true Urgent
334 97 15 10 true true false true 77 0.047 Regular true Urgent
335 97 15 10 true true true false 77 0.047 Regular true risk
336 97 15 10 true true true true 77 0.047 Regular true risk
337 92 15 10 false false false false 77 0.047 Regular true Sick
338 92 15 10 false false false true 77 0.047 Regular true Sick
339 92 15 10 false false true false 77 0.047 Regular true Sick
340 92 15 10 false false true true 77 0.047 Regular true Sick
341 92 15 10 false true false false 77 0.047 Regular true Sick
342 92 15 10 false true false true 77 0.047 Regular true Sick
343 92 15 10 false true true false 77 0.047 Regular true Urgent
344 92 15 10 false true true true 77 0.047 Regular true Urgent
345 92 15 10 true false false false 77 0.047 Regular true Urgent
346 92 15 10 true false false true 77 0.047 Regular true Urgent
347 92 15 10 true false true false 77 0.047 Regular true risk
348 92 15 10 true false true true 77 0.047 Regular true risk
349 92 15 10 true true false false 77 0.047 Regular true Urgent
350 92 15 10 true true false true 77 0.047 Regular true Urgent
351 92 15 10 true true true false 77 0.047 Regular true risk
352 92 15 10 true true true true 77 0.047 Regular true risk
353 97 12 8 false false false false 77 0.047 Regular true Cold State
354 97 12 8 false false false true 77 0.047 Regular true Sick
355 97 12 8 false false true false 77 0.047 Regular true Sick
356 97 12 8 false false true true 77 0.047 Regular true Sick
357 97 12 8 false true false false 77 0.047 Regular true Sick
358 97 12 8 false true false true 77 0.047 Regular true Sick
359 97 12 8 false true true false 77 0.047 Regular true Sick
360 97 12 8 false true true true 77 0.047 Regular true Sick
361 97 12 8 true false false false 77 0.047 Regular true Sick
362 97 12 8 true false false true 77 0.047 Regular true Sick
363 97 12 8 true false true false 77 0.047 Regular true Urgent
364 97 12 8 true false true true 77 0.047 Regular true Urgent
365 97 12 8 true true false false 77 0.047 Regular true Sick
366 97 12 8 true true false true 77 0.047 Regular true Sick
367 97 12 8 true true true false 77 0.047 Regular true Urgent
368 97 12 8 true true true true 77 0.047 Regular true Urgent
369 92 12 8 false false false false 77 0.047 Regular true Sick
370 92 12 8 false false false true 77 0.047 Regular true Sick
371 92 12 8 false false true false 77 0.047 Regular true Sick
372 92 12 8 false false true true 77 0.047 Regular true Sick
373 92 12 8 false true false false 77 0.047 Regular true Sick
374 92 12 8 false true false true 77 0.047 Regular true Sick
375 92 12 8 false true true false 77 0.047 Regular true Sick
376 92 12 8 false true true true 77 0.047 Regular true Sick
377 92 12 8 true false false false 77 0.047 Regular true Sick
378 92 12 8 true false false true 77 0.047 Regular true Sick
379 92 12 8 true false true false 77 0.047 Regular true Urgent
380 92 12 8 true false true true 77 0.047 Regular true Urgent
381 92 12 8 true true false false 77 0.047 Regular true Urgent
382 92 12 8 true true false true 77 0.047 Regular true Urgent
383 92 12 8 true true true false 77 0.047 Regular true risk
384 92 12 8 true true true true 77 0.047 Regular true risk
385 80 12 8 false false false false 77 0.047 Regular true Sick
386 80 12 8 false false false true 77 0.047 Regular true Sick
387 80 12 8 false false true false 77 0.047 Regular true Sick
388 80 12 8 false false true true 77 0.047 Regular true Sick
389 80 12 8 false true false false 77 0.047 Regular true Sick
390 80 12 8 false true false true 77 0.047 Regular true Sick
391 80 12 8 false true true false 77 0.047 Regular true Urgent
392 80 12 8 false true true true 77 0.047 Regular true Urgent
393 80 12 8 true false false false 77 0.047 Regular true Urgent
394 80 12 8 true false false true 77 0.047 Regular true Urgent
395 80 12 8 true false true false 77 0.047 Regular true risk
396 80 12 8 true false true true 77 0.047 Regular true risk
397 80 12 8 true true false false 77 0.047 Regular true Urgent
398 80 12 8 true true false true 77 0.047 Regular true Urgent
399 80 12 8 true true true false 77 0.047 Regular true risk
400 80 12 8 true true true true 77 0.047 Regular true risk
401 80 15 10 false false false false 77 0.047 Regular true Sick
402 80 15 10 false false false true 77 0.047 Regular true Sick
403 80 15 10 false false true false 77 0.047 Regular true Urgent
404 80 15 10 false false true true 77 0.047 Regular true Urgent
405 80 15 10 false true false false 77 0.047 Regular true Sick
406 80 15 10 false true false true 77 0.047 Regular true Sick
407 80 15 10 false true true false 77 0.047 Regular true Urgent
408 80 15 10 false true true true 77 0.047 Regular true Urgent
409 80 15 10 true false false false 77 0.047 Regular true Urgent
410 80 15 10 true false false true 77 0.047 Regular true Urgent
411 80 15 10 true false true false 77 0.047 Regular true risk
412 80 15 10 true false true true 77 0.047 Regular true risk
413 80 15 10 true true false false 77 0.047 Regular true risk
414 80 15 10 true true false true 77 0.047 Regular true risk
415 80 15 10 true true true false 77 0.047 Regular true risk
416 80 15 10 true true true true 77 0.047 Regular true risk
417 80 23 12 false false false false 77 0.047 Regular true Sick
418 80 23 12 false false false true 77 0.047 Regular true Sick
419 80 23 12 false false true false 77 0.047 Regular true Urgent
420 80 23 12 false false true true 77 0.047 Regular true Urgent
421 80 23 12 false true false false 77 0.047 Regular true Urgent
422 80 23 12 false true false true 77 0.047 Regular true Urgent
423 80 23 12 false true true false 77 0.047 Regular true risk
424 80 23 12 false true true true 77 0.047 Regular true risk
425 80 23 12 true false false false 77 0.047 Regular true risk
426 80 23 12 true false false true 77 0.047 Regular true risk
427 80 23 12 true false true false 77 0.047 Regular true risk
428 80 23 12 true false true true 77 0.047 Regular true risk
429 80 23 12 true true false false 77 0.047 Regular true risk
430 80 23 12 true true false true 77 0.047 Regular true risk
431 80 23 12 true true true false 77 0.047 Regular true risk
432 80 23 12 true true true true 77 0.047 Regular true risk

433 Heart failure records 97 23 12 false false false false 64 0.169 Regular false Cold State
434 97 23 12 false false false true 64 0.169 Regular false Cold State
435 97 23 12 false false true false 64 0.169 Regular false Sick
436 97 23 12 false false true true 64 0.169 Regular false Sick
437 97 23 12 false true false false 64 0.169 Regular false Sick
438 97 23 12 false true false true 64 0.169 Regular false Sick
439 97 23 12 false true true false 64 0.169 Regular false Sick
440 97 23 12 false true true true 64 0.169 Regular false Sick
441 97 23 12 true false false false 64 0.169 Regular false Sick
442 97 23 12 true false false true 64 0.169 Regular false Sick
443 97 23 12 true false true false 64 0.169 Regular false Sick
444 97 23 12 true false true true 64 0.169 Regular false Urgent
445 97 23 12 true true false false 64 0.169 Regular false Sick
446 97 23 12 true true false true 64 0.169 Regular false Sick
447 97 23 12 true true true false 64 0.169 Regular false Urgent
448 97 23 12 true true true true 64 0.169 Regular false Urgent
449 92 23 12 false false false false 64 0.169 Regular false Sick
450 92 23 12 false false false true 64 0.169 Regular false Sick
451 92 23 12 false false true false 64 0.169 Regular false Sick
452 92 23 12 false false true true 64 0.169 Regular false Sick
453 92 23 12 false true false false 64 0.169 Regular false Sick
454 92 23 12 false true false true 64 0.169 Regular false Sick
455 92 23 12 false true true false 64 0.169 Regular false Sick
456 92 23 12 false true true true 64 0.169 Regular false Sick
457 92 23 12 true false false false 64 0.169 Regular false Sick
458 92 23 12 true false false true 64 0.169 Regular false Sick
459 92 23 12 true false true false 64 0.169 Regular false Urgent
460 92 23 12 true false true true 64 0.169 Regular false Urgent
461 92 23 12 true true false false 64 0.169 Regular false Sick
462 92 23 12 true true false true 64 0.169 Regular false Urgent
463 92 23 12 true true true false 64 0.169 Regular false Urgent
464 92 23 12 true true true true 64 0.169 Regular false Urgent
465 97 15 10 false false false false 64 0.169 Regular false Cold State
466 97 15 10 false false false true 64 0.169 Regular false Cold State
467 97 15 10 false false true false 64 0.169 Regular false Sick
468 97 15 10 false false true true 64 0.169 Regular false Sick
469 97 15 10 false true false false 64 0.169 Regular false Cold State
470 97 15 10 false true false true 64 0.169 Regular false Cold State
471 97 15 10 false true true false 64 0.169 Regular false Sick
472 97 15 10 false true true true 64 0.169 Regular false Sick
473 97 15 10 true false false false 64 0.169 Regular false Sick
474 97 15 10 true false false true 64 0.169 Regular false Sick
475 97 15 10 true false true false 64 0.169 Regular false Sick
476 97 15 10 true false true true 64 0.169 Regular false Sick
477 97 15 10 true true false false 64 0.169 Regular false Sick
478 97 15 10 true true false true 64 0.169 Regular false Sick
479 97 15 10 true true true false 64 0.169 Regular false Sick
480 97 15 10 true true true true 64 0.169 Regular false Urgent
481 92 15 10 false false false false 64 0.169 Regular false Cold State
482 92 15 10 false false false true 64 0.169 Regular false Cold State
483 92 15 10 false false true false 64 0.169 Regular false Sick
484 92 15 10 false false true true 64 0.169 Regular false Sick
485 92 15 10 false true false false 64 0.169 Regular false Sick
486 92 15 10 false true false true 64 0.169 Regular false Sick
487 92 15 10 false true true false 64 0.169 Regular false Sick
488 92 15 10 false true true true 64 0.169 Regular false Sick
489 92 15 10 true false false false 64 0.169 Regular false Sick
490 92 15 10 true false false true 64 0.169 Regular false Sick
491 92 15 10 true false true false 64 0.169 Regular false Sick
492 92 15 10 true false true true 64 0.169 Regular false Urgent
493 92 15 10 true true false false 64 0.169 Regular false Sick
494 92 15 10 true true false true 64 0.169 Regular false Sick
495 92 15 10 true true true false 64 0.169 Regular false Urgent
496 92 15 10 true true true true 64 0.169 Regular false Urgent
497 97 12 8 false false false false 64 0.169 Regular false Cold State
498 97 12 8 false false false true 64 0.169 Regular false Cold State
499 97 12 8 false false true false 64 0.169 Regular false Cold State
500 97 12 8 false false true true 64 0.169 Regular false Cold State

501 Normal ECG 97 23 12 Y Y N N normal Regular Sick
502 97 23 12 Y Y N Y normal Regular Sick
503 97 23 12 Y Y Y N normal Regular Sick
504 97 23 12 Y Y Y Y normal Regular Sick
505 97 15 10 Y Y N N normal Regular Sick
506 97 15 10 Y Y N Y normal Regular Sick
507 97 15 10 Y Y Y N normal Regular Sick
508 97 15 10 Y Y Y Y normal Regular Sick
509 97 12 8 Y Y N N normal Regular Cold State
510 97 12 8 Y Y N Y normal Regular Sick
511 97 12 8 Y Y Y N normal Regular Sick
512 97 12 8 Y Y Y Y normal Regular Sick
513 97 12 8 N N Y Y normal Regular Cold State
514 97 12 8 N N Y N normal Regular Cold State
515 97 12 8 N N N Y normal Regular Normal
516 97 12 8 N N N N normal Regular Normal
517 97 12 8 Y N Y Y normal Regular Sick
518 97 12 8 Y N Y N normal Regular Sick
519 97 12 8 Y N N Y normal Regular Cold State
520 97 12 8 Y N N N normal Regular Cold State
521 97 12 8 N Y Y Y normal Regular Cold State
522 97 12 8 N Y N Y normal Regular Cold State
523 97 12 8 N Y Y N normal Regular Cold State
524 97 12 8 N Y N N normal Regular Cold State
525 97 15 8 Y N Y Y normal Regular Sick
526 97 15 8 Y N Y N normal Regular Sick
527 97 15 8 Y N N Y normal Regular Cold State
528 97 15 8 Y N N N normal Regular Cold State
529 97 15 8 N Y Y Y normal Regular Cold State
530 97 15 8 N Y N Y normal Regular Cold State
531 97 15 8 N Y Y N normal Regular Cold State
532 97 15 8 N Y N N normal Regular Cold State
533 97 12 10 Y N Y Y normal Regular Sick
534 97 12 10 Y N Y N normal Regular Sick
535 97 12 10 Y N N Y normal Regular Cold State
536 97 12 10 Y N N N normal Regular Cold State
537 97 12 10 Y Y Y Y normal Regular Sick
538 97 12 10 Y Y Y N normal Regular Sick
539 97 12 10 Y Y N Y normal Regular Cold State
540 97 12 10 Y Y N N normal Regular Cold State
541 97 12 10 N Y Y Y normal Regular Cold State
542 97 12 10 N Y N Y normal Regular Cold State
543 97 12 10 N Y Y N normal Regular Cold State
544 97 12 10 N Y N N normal Regular Cold State
545 97 12 8 Y N Y Y normal Regular Sick
546 97 12 8 Y N Y N normal Regular Sick
547 97 12 8 Y N N Y normal Regular Cold State
548 97 12 8 Y N N N normal Regular Cold State
549 97 12 8 Y Y Y Y normal Regular Sick
550 97 12 8 Y Y Y N normal Regular Sick
551 97 12 8 Y Y N Y normal Regular Cold State
552 97 12 8 Y Y N N normal Regular Cold State
553 Normal ECG with HR 110 97 12 8 N N N Y 110 Regular Normal
554 97 12 8 N N N Y 110 Regular Normal
555 97 12 8 N N N Y 110 Regular Normal
556 97 12 8 N N N Y 110 Regular Normal
557 97 12 8 N N N Y 110 Regular Normal
558 97 12 8 N N N Y 110 Regular Normal
559 97 12 8 N N N Y 110 Regular Normal
560 97 12 8 N N N Y 110 Regular Normal
561 97 12 8 N N N Y 110 Regular Normal
562 97 12 8 N N N Y 110 Regular Normal
563 97 12 8 N N N Y 110 Regular Normal
564 97 12 8 N N N Y 110 Regular Normal
565 97 12 8 N N N Y 110 Regular Normal
566 97 12 8 N N N Y 110 Regular Normal
567 97 12 8 N N N Y 110 Regular Normal
568 97 12 8 N N N Y 110 Regular Normal
569 97 12 8 N N N Y 110 Regular Normal
570 97 12 8 N N N Y 110 Regular Normal
571 97 12 8 N N N Y 110 Regular Normal
572 97 12 8 N N N Y 110 Regular Normal
573 92 12 8 N N N Y 110 Regular Sick
574 92 12 8 N N N Y 110 Regular Sick
575 92 12 8 N N N Y 110 Regular Sick
576 92 12 8 N N N Y 110 Regular Sick
577 92 12 8 N N N Y 110 Regular Sick
578 92 12 8 N N N Y 110 Regular Sick
579 92 12 8 N N N Y 110 Regular Sick
580 92 12 8 N N N Y 110 Regular Sick

Table 7 presents dataset used in our paper [7] to provide different packages of healthcare services in the telemedicine environment.

Table 7.

formulation of 10 patients’ dataset for evaluating healthcare services provisioning system in telemedicine environment.

Patient Alias Name ECGrecord name spo2 record Blood Pressure record (High) Blood Pressure record (Low) Patient index in MSHA simulation Spo2 value High Blood Pressure value (mHg) Low Blood Pressure value (mHg) Location Chest Pain Shortness of Breath. Palpitations rest? ECG Number of Peaks QRS width P-P Interval ST Elevation
Mrs. smith a01 259n 032n 209n 144 80 23 12 Home true true true true 67 0.06 0.065763 true
Ross 105 052n 048n 414n 363 97 12 8 Home true false true false 77 0.047 0.266642 true
Monica 103 0481n 032n 209n 160 97 23 12 Home true true true true 54 0.5 0.037372 false
Joey 105 210n 048n 33n 342 92 15 10 Home false true false true 77 0.047 0.266642 true
Sally 107 217n 032n 209n 436 97 23 12 Home false false true true 64 0.169 0.336318 false
James normal 048n 219n 219n 65 97 12 8 Home false false false false 67 0.06 0.065763 true
Rayan normal 052n 048n 414n 66 97 12 8 Home false false false true 67 0.06 0.065763 true
Chander normal 054n 219n 219n 515 97 12 8 Home N N N Y normal
Sarah normal 048n 048n 414n 516 97 12 8 Home N N N N normal
Pheby normal 052n 219n 219n 553 97 12 8 Home N N N Y 110 normal

2. Experimental design, materials and methods

2.1. Simulation setup

The software architecture of our algorithms is implemented using JAVA programming language. This is because JAVA has many benefits, such as: (a) real-time implementation, (b) parallel execution, (c) usage from anywhere by all interested parties, (d) ability to run JAVA-based applications on different platforms, (e) and compatibility to be used with different operating systems, e.g., Android, Windows, and Linux. The advantages of using JAVA have paved the way for the implementation of our algorithms in different hardware platforms. XAMMP has also been used. Specifically, XAMPP is a small and light Apache distribution tool that contains the most common web development technologies in a single package. XAMPP is a free/open-source software, and its name stands for (X) cross-platform for Web server, HTTP Apache Server, (M) MySQL database, (P) PHP scripts writing language, and (P) Perl programming language. In our paper, the dataset is re-organized and re-formatted in structure dataset format. The dataset is represented in terms of tables to illustrate the patient's profile and the type of diseases.

2.2. Computational analytic methods and codes

To extract the dataset mentioned in Table 4, Table 5, Table 6, advanced processing algorithms have been applied to the signals mentioned in Table 1, Table 2, Table 3. To this end, a multi-function data processing algorithm is proposed and implemented [7] in order to extract the essential features from each source individually. Each signal is represented by an array.

According to the extracted dataset, each element in the signal has two values. The first value represents time and the second represents voltage. The array of each signal has two columns (each column represents a value). The number of rows is defined by the number of elements in the signal, which starts from (0) and ends at (n). The array of text feature is 1 × 4 because there are four variables that represent four features. A real-time data processing algorithm have been utilized to extract ECG features. The ECG signal is represented by an array of two columns (time in (ms) and voltage in (mv)). These values have been used to extract the features. The ECG signal provides many cycles. One ECG cycle has many ECG features such as: Rythem; QRS; ST; and P-P.

For each cycle, the signal values in time are varied around the zero lines. These values are used to split the ECG cycle to Up and Down halves, then sorting the upper half based on voltage values. This is then applied to find the maximum point, which is represented by the R point. Accordingly, the upper half of the ECG cycle can be splatted into right and half. As such, by using certain functions to sort the values of the ECG cycle for each half (Up_Lift and Up_right) based on (t) value and (v) value, the location of Q and S points can be found. Moreover, the ST elevation can be determined based on the differences of (t) and (v) values using the subtraction functions. The SpO2 and blood pressure values have been calculated as mentioned in [6].

The proposed algorithm is presented as pseudo-codes to enable the researchers to implement it in any software platform. Moreover, the algorithm is implemented using Java code, which is provided in the attached appendix.

3. Ethics statement

The authors would like to point out that the primary data sources are available in a public repository and given in PhysioNet online library [1]. PhysioNet online library includes many types of medical raw datasets. PhysioNet online library gives the permission to all researchers around the world to download and use the raw datasets. However, our main contribution is presented in applying signal processing algorithms in order to extract the essential vital features from the raw datasets. Consequently, the essential raw dataset and the outcomes of the simulated data are organized, structured, formulated and presented as multi diseases dataset.

Finally, the authors would like to indicate that neither human subjects nor animal experiments are involved in this paper.

CRediT Author Statement

Omar H. Salman: Responsible for methodology, conceptualization, designing the algorithms, simulation and writing the original draft. Mohammed I. Aal-Nouman: his task was visualization and investigation the state-of-the-art related research works. Zahraa K. Taha: Responsible for software development, data curation, and writing the article. Muntadher Q. Alsabah: Responsible for proofreading the paper and improve the English writing of our manuscript. Yaseein S. Hussein: his task was to review the paper and provide some useful comments regarding the paper organization and development. Zahraa Adnan: Responsible for reviewing the dataset tables, gathering related information, and providing technical comments regarding the features’ extraction.

Declaration of Competing Interest

The authors would like to declare that there are no competing financial interests or personal relationships which have, or could be perceived to have, influenced the work presented in this paper.

References

  • 1.Goldberger A.L. Physiobank, physiotoolkit, and physionet: component of a new research resource for complex physiologic signals. Circulation. 2000;101:E215–E220. doi: 10.1161/01.CIR.101.23.e215. [DOI] [PubMed] [Google Scholar]
  • 2.Salman O.H., Taha Z.K., Aal-Nouman M. Reducing waiting time for remote patients in telemedicine with considering treated patients in emergency department based on body sensors technologies and hybrid computational algorithms: toward scalable and efficient real time healthcare monitoring syste. J. Biomed. Inform. 2020 doi: 10.1016/j.jbi.2020.103592. [DOI] [PubMed] [Google Scholar]
  • 3.Kalid N., Zaidan A.A., Zaidan B.B., Salman O.H., Hashim M., Muzammil H. Based real time remote health monitoring systems: a review on patients prioritization and related ‘big data’ using body sensors information and communication technology. J. Med. Syst. 2018;42(2) doi: 10.1007/s10916-017-0883-4. [DOI] [PubMed] [Google Scholar]
  • 4.Albahri O.S. Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: taxonomy, open challenges, motivation and recommendations. J. Med. Syst. 2018;42(5) doi: 10.1007/s10916-018-0943-4. [DOI] [PubMed] [Google Scholar]
  • 5.Kalid N. Based on real time remote health monitoring systems: a new approach for prioritization ‘large scales data’ patients with chronic heart diseases using body sensors and communication technology. J. Med. Syst. 2018;42(4) doi: 10.1007/s10916-018-0916-7. [DOI] [PubMed] [Google Scholar]
  • 6.Salman O.H., Zaidan A.A., Zaidan B.B., Naserkalid, Hashim M. Novel methodology for triage and prioritizing using ‘big data’ patients with chronic heart diseases through telemedicine environmental. Int. J. Inf. Technol. Decis. Mak. 2017;16(05):1211–1245. doi: 10.1142/s0219622017500225. [DOI] [Google Scholar]
  • 7.Salman O.H., Rasid M.F.A., Saripan M.I., Subramaniam S.K. Multi-sources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 2014;38(9):103. doi: 10.1007/s10916-014-0103-4. [DOI] [PubMed] [Google Scholar]
  • 8.M.F.A. Rasid, M.I. Saripan, S.K. Subramaniam, and O.H. Salman, “A system and method for providing services in telemedicine application,” PI 2013701135, 2013.
  • 9.Karvounis E.C., Tsipouras M.G. Detection of Fetal Heart Rate Through 3-D Phase Recordings. IEEE Trans. Biomed. Eng. 2009;56(5):1394–1406. doi: 10.1109/TBME.2009.2014691. [DOI] [PubMed] [Google Scholar]

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES