Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2020 Nov 4;52(6):1117–1123. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2020.06.022

固化方式对树脂水门汀氧阻聚层形成的影响

Curing method affecting the formation of oxygen inhibition layer on the surface of resin cement

Wen-xin CHEN 1, Xu-dong BAO 1,*, Lin YUE 1
PMCID: PMC7745274  PMID: 33331324

Abstract

Objective

To explore the conversion of resin monomer, the change of inorganic component and the influencing factors on the oxygen inhibition layer formed on the cured surface of resin cement.

Methods

Three kinds of resin cement were divided into three groups: (1) light-cured group: RelyX Veneer, NX3 (light-cured), Variolink N; (2) dual-cured group: RelyX U200 Automix, NX3 (dual-cured), Multilink Speed; (3) chemically-cured group, and the above 3 types of dual-cured resin cement cured without illumination could be used as chemically-cured resin cement. Each sample was provided with and without oxygen exposure of two matching surfaces, cured respectively, and the variables of light intensity and illumination time were set in the light-cured group and the dual-cured group. Scanning electron microscopy was used to observe the samples' surface morphology. Energy dispersive spectrometer was used to analyze the samples' composition of surface elements. Confocal Raman spectroscopy was used to measure the monomer conversion of resin cement and to obtain the thickness of the oxygen inhibition layer.

Results

(1) On the surface of cured resin cement, the weight percentage of oxygen element in the aerobic side was higher than that in the anaerobic side (P < 0.05), and the weight percentage of inorganic element was lower than that in the anaerobic side (P < 0.05). (2) The surface monomer conversion of the cured resin cement on the aerobic surface was significantly lower than that on the anaerobic surface (P < 0.05), and the surface monomer conversion on the aerobic surface and the anaerobic surface was the lowest in the chemically-cured group (P < 0.05), the dual-cured group was the highest (P < 0.05), and the light-cured group was between them. With the increase of light intensity or illumination time, the surface monomer conversion increased (P < 0.05). (3) The thickness of the oxygen inhibition layer was the thickest in the chemically-cured group [(40.27±2.81) μm](P < 0.05), the thinnest in the dual-cured group [(21.87±5.42) μm](P < 0.05) and light-cured group [(23.73±3.84) μm] was between them. With the increase of light intensity or illumination time, the thickness of the oxygen inhibition layer of resin cement decreased (P < 0.05).

Conclusion

When resin cement is exposed to oxygen, it will form an oxygen inhibition layer, its surface's inorganic filler is less, the surface monomer conversion is lower. The surface monomer conversion and the thickness of oxygen inhibition layer are affected by curing mode and illumination factors.

Keywords: Resin cement, Oxygen inhibition layer, Monomer conversion


临床上修复体粘接时,会发现刚聚合的树脂水门汀表面有一层黏软的物质,容易被擦掉。Bergmann等[1]通过体外实验证实临床冠边缘的树脂水门汀表面会形成黏软的氧阻聚层,擦去后修复体边缘质量较差。既往对复合树脂的研究显示,当树脂基材料暴露于氧气中固化,表面会形成氧阻聚层[2],其内单体转化不全,可产生残留未反应的单体和光引发剂[3]。树脂水门汀与复合树脂同属树脂基材料,且二者组成成分类似[4],但目前尚未见树脂水门汀氧阻聚层特点的报道,本研究旨在探究树脂水门汀固化表面形成的氧阻聚层内树脂单体的转化规律、氧阻聚层表征的变化及其影响因素。

1. 材料与方法

1.1. 材料选择和分组

根据固化方式将树脂水门汀分为3组:(1)光固化组:RelyX Veneer(Veneer,3M,德国)、NX3(NX3光固化型,Kerr,美国)、Variolink N(Variolink N,IvoclarVivadent, 列支敦士登); (2)双重固化组:RelyX U200 Automix(U200 Automix,3M,德国)、NX3(NX3双重固化型,Kerr,美国)、Multilink Speed(Multilink Speed,IvoclarVivadent, 列支敦士登); (3)化学固化组:按说明书,上述3种双重固化组树脂水门汀不进行光照,自行暗固化,即为化学固化树脂水门汀。

1.2. 固化后树脂水门汀表面形貌的扫描电镜观察和表面化学元素测定

1.2.1. 试样制备

在一片载玻片上放置树脂水门汀糊剂,载玻片表面两侧分别放置厚度0.1 mm的盖玻片,一侧与树脂水门汀接触,为试样的无氧侧, 另一侧远离树脂水门汀,为试样的有氧侧(图 1)。将一片聚四氟乙烯膜紧贴树脂水门汀,压于两侧盖玻片上(图 2)。每一材料制备10个平行样本,光固化组及双重固化组的光照强度设置为1 200 mW/cm2,光照时间设置为20 s,光照距离为0.5 cm。化学固化组进行暗固化6 min以上。固化后试样于室温下置于密闭暗盒24 h以上。

图 1.

图 1

试样俯视图

Overhead view of the sample

图 2.

试样侧面观

Side view of the sample

PTFE, polytetia fluoroethylene.

图 2

1.2.2. 扫描电镜观测

1.2.2.1. 试样准备

每种树脂水门汀材料取5个,表面喷铂, 在距边缘10 μm以内的区域每间隔100 μm定一个点,共选3个点, 另取每种树脂水门汀材料5个,表面喷碳,选点同上。

1.2.2.2. 扫描电镜下表面形貌

用冷场发射扫描电镜(SU-8010, Hitachi, 日本)分别观察喷铂试样有氧侧与无氧侧的表面形貌,随机记录3个点的图像。根据明暗的反差,评估表面衬度[5],衬度为图像上不同区域间存在的明暗程度的差异。

1.2.2.3. 表面元素测定

用能谱分析仪(PHI Quantera SXM, ULVAC-PHI, 日本)对喷碳试样观察区进行元素分析,获得主要元素成分及其质量百分比。

1.3. 单体转化率测定和氧阻聚层厚度计算

1.3.1. 试样制备

将各树脂水门汀糊剂放入直径8 mm,高0.2 mm的圆柱形透明塑料模具中,每种材料设有氧面和无氧面,有氧面用载玻片压平,取下载玻片使材料表面暴露于空气中,无氧面操作同前,用载玻片压平后取下载玻片,表面再盖上聚四氟乙烯膜。固化方法同前,有氧面光固化组和双重固化组中设置光照强度和光照时间的变量,光照强度分别为800、1 000、1 200 mW/cm2,光照时间分别为10、20、40、60 s; 测试材料为RelyX Veneer和RelyX U200 Automix,固化后树脂水门汀室温下放置于密闭暗盒24 h以上,无氧面取下上覆聚四氟乙烯膜,备用。所有试验样本量均为5。

1.3.2. 共聚焦显微拉曼光谱仪检测单体转化率

在测试暗室中,先取未固化的各个树脂水门汀糊剂,分别放于上述模具中,用载玻片压平材料表面,后取下载玻片,在每个样本表面选择3个点,间隔约为3 mm,即刻用共聚焦显微拉曼光谱仪(confocal Raman micro-spectroscopy,Horiba,法国,曝光30 s、功率10 mW、放大倍率50倍、激光波长514 nm)分别聚焦于3个检测点进行未固化材料表面的检测分析,读取光谱图作为上述待检试样光谱图的参照基准。

以同样方法在试样表面定3个点,并用共聚焦显微拉曼光谱仪在相同参数条件下检测。在光谱图上可获得碳碳双键峰(波数1 638 cm-1)和芳香双键峰(波数1 608 cm-1)的峰高值,根据公式计算出每一位点的单体转化率ConvRaman= (1-Acured/Auncured)×100%, 其中Acured为固化后树脂水门汀光谱中碳碳双键(波数1638 cm-1)峰高值与芳香双键(波数1 608 cm-1)峰高值的比值,Auncured为未固化树脂水门汀的碳碳双键(波数1 638 cm-1)峰高值与芳香双键(波数1 608 cm-1)峰高值的比值(图 3)。激光从表面位点垂直向下,每隔4 μm聚焦一次,检查固化试样直至60 μm处,从视窗中可读取各测试深度下的光谱图。同样用公式计算出各测试深度的单体转化率。各试样通过每个检测点获得由材料表面(0 μm)至其内部60 μm的16个单体转化率值,通过计算可以得到3组各测试深度下树脂水门汀的单体转化率。

图 3.

图 3

树脂水门汀的拉曼光谱图示例

An example of Raman spectra of resin cement

1.4. 统计学分析

使用SPSS24.0软件,对通过能谱分析仪得到的有氧侧和无氧侧主要元素质量百分比进行统计学分析,计量资料以均数±标准差表示。采用配对样本t检验来检验有氧侧和无氧侧主要元素质量百分比和各材料有、无氧面表面单体转化率的差异,P<0.05认为差异有统计学意义。

用单因素方差分析(One-Way ANOVA)检验每个试样各深度位点的3组单体转化率间的差异,对检验有差异的结果采用Post-hoc test(LSD)法进行两两比较,检验水准均为双侧α=0.05,寻找并记录单体转化率停止继续增长的点(P>0.05),以此深度作为氧阻聚层厚度。

各固化方式及各光照条件下表面单体转化率及氧阻聚层厚度的差异用单因素方差分析(One-Way ANOVA)进行检验,而对检验有差异的结果采用Post-hoc test(LSD)法进行两两比较,检验水准均为双侧α=0.05。

2. 结果

2.1. 固化后树脂水门汀的表面形貌特点

固化后树脂水门汀无氧侧表面亮暗相间,成像衬度较强; 有氧侧表面呈模糊的膜状物覆盖状,衬度较弱。从固化方式来看,化学固化树脂水门汀无氧侧与有氧侧的成像衬度差异最大,双重固化树脂水门汀次之,光固化树脂水门汀无氧侧与有氧侧电子显微镜下所见成像衬度相近(图 4)。

图 4.

树脂水门汀固化表面的扫描电镜图(放大10000倍)

Scanning electron microscopy of cured surface of resin cement (×10000)

A, B, light-cured resin cement; A, variolink N, oxygen exposed side; B, variolink N, anaerobic side; C, D, dual-cured resin cement; C, multilink speed, oxygen exposed side; D, multilink speed, anaerobic side; E, F, chemically-cured resin cement; E, multilink speed, oxygen exposed side; F, multilink speed, anaerobic side.

图 4

2.2. 固化后树脂水门汀表面的元素分析

除RelyX Veneer和RelyX U200 Automix双重固化树脂水门汀外,光固化、双重固化、化学固化树脂水门汀均表现为有氧侧的氧元素质量百分比显著大于无氧侧(P < 0.05),其他无机成分质量百分比显示有氧侧的镱(Yb)元素质量百分比均显著小于无氧侧(P < 0.05),大多数树脂水门汀的硅(Si)、锆(Zr)、钡(Ba)、氟(F)元素也表现出了有氧侧的质量百分比显著小于无氧侧的特点(P < 0.05)。

光固化组的RelyX Veneer和双重固化组的RelyX U200 Automix,表现为有氧侧的氧元素与其他无机成分质量百分比和无氧侧的差异无统计学意义(P>0.05)。

2.3. 固化后树脂水门汀的单体转化率

2.3.1. 固化后树脂水门汀的表面单体转化率

固化后的各树脂水门汀有氧面表面单体转化率均显著小于无氧面(P < 0.05,表 1),且无论是在有氧面还是无氧面,表面单体转化率均为化学固化组最低(P < 0.05),其有氧面为44.82%±3.33%,无氧面为65.62%±2.86%;双重固化组最高(P < 0.05),其有氧面为54.34% ±4.28%,无氧面为74.01% ±3.29%;光固化组介于二者之间,其有氧面为49.68% ±3.20%,无氧面为68.91% ±4.30%。对于光固化及双重固化树脂水门汀,其表面单体转化率会随光照强度增加而增加(P < 0.05),光固化树脂水门汀光照时间为40 s及以上时,双重固化树脂水门汀光照时间为60 s及以上时,表面单体转化率不再随光照强度增加而变化(P>0.05)。光固化及双重固化树脂水门汀在光照强度为800 mW/cm2时,表面单体转化率随光照时间增加而增加(P < 0.05),但当光照强度增加到1 000 mW/cm2及以上时,表面单体转化率较高,同样不会随光照时间增加而改变(P>0.05,表 2表 3)。

表 1.

固化后树脂水门汀有氧面、无氧面表面单体转化率

Surface monomer conversion of cured resin cement on aerobic surface and anaerobic surface

Curing method Resin cement Aerobic surface/% Anaerobic surface/% t P
    n=5
Light-cured RelyX Veneer 48.80±1.31 72.96±1.94 21.332 < 0.001
NX3 49.36±3.96 68.69±3.68 7.589 < 0.001
Variolink N 51.25±2.44 65.07±3.14 7.021 < 0.001
Dual-cured RelyX U200 Automix 56.68±2.49 75.64±2.05 11.036 < 0.001
NX3 56.38±2.11 74.58±4.24 8.328 < 0.001
Multilink Speed 49.96±4.19 71.82±3.08 7.758 < 0.001
Chemically-cured RelyX U200 Automix 45.65±1.69 65.22±2.43 13.613 < 0.001
NX3 46.96±3.93 63.93±2.45 6.632 < 0.001
Multilink Speed 41.85±1.74 67.71±3.12 15.437 < 0.001
表 2.

光照强度及时间对光固化树脂水门汀表面单体转化率的影响

Effect of light intensity and illumination time on surface monomer conversion of light-cured resin cement  /%

Items 10 s 20 s 40 s 60 s F P
    n=5
800 mW/cm2 39.62±3.01 42.74±2.75 43.19±0.93 46.21±2.36 10.887 0.001
1 000 mW/cm2 47.80±5.16 48.95±1.85 47.46±1.48 47.97±2.28 0.356 0.786
1 200 mW/cm2 48.29±1.40 48.80±1.31 47.72±0.67 48.49±4.31 0.722 0.553
F 15.002 17.052 0.049 1.740
P < 0.001 < 0.001 0.952 0.217
表 3.

光照强度及时间对双重固化树脂水门汀表面单体转化率的影响

Effect of light intensity and illumination time on surface monomer conversion of dual-cured resin cement  /%

Items 10 s 20 s 40 s 60 s F P
    n=5
800 mW/cm2 51.28±1.87 52.36±1.11 52.08±2.74 58.06±1.79 12.523 < 0.001
1 000 mW/cm2 58.15±1.54 57.88±2.92 58.13±1.51 57.23±1.14 0.256 0.856
1 200 mW/cm2 57.81±1.96 56.68±2.49 59.95±1.66 59.88±3.68 1.970 0.159
F 34.699 7.937 20.345 1.527
P < 0.001 0.006 < 0.001 0.257

2.3.2. 固化后树脂水门汀深部的单体转化率变化

3种固化方式的树脂水门汀材料无氧面从表面到60 μm深时的单体转化率为60%~80%,各深度单体转化率之间的差异无统计学意义(P>0.05),树脂水门汀有氧面的单体转化率从表面至内部随深度增加而增加,表现为逐渐增长至转化维持稳定(图 5)。化学固化树脂水门汀的氧阻聚层厚度最大,为(40.00±4.00) μm; 双重固化树脂水门汀的氧阻聚层厚度最小,为(17.60±2.19) μm; 光固化树脂水门汀的氧阻聚层厚度介于二者之间,为(20.80±3.35) μm, 其中,光固化及双重固化树脂水门汀在光照时间为10、20、40 s时,氧阻聚层厚度会随光照强度增加而减小(P < 0.05),在光照时间为60 s时,氧阻聚层厚度较小,不会随光照强度增加而变化(P>0.05)。光固化及双重固化树脂水门汀的氧阻聚层厚度随光照时间增加而减小(P < 0.05),光固化树脂水门汀光照强度增加到1 200 mW/cm2时,双重固化树脂水门汀在光强为1 000 mW/cm2及以上时,氧阻聚层厚度不再随光照时间增加而改变(P>0.05,表 4表 5)。

图 5.

树脂水门汀的单体转化率

Monomer conversion of resin cement

A, anaerobic surface; B, aerobic surface.

图 5

表 4.

光照强度及时间对光固化树脂水门汀氧阻聚厚度的影响

Effect of light intensity and illumination time on oxygen inhibition layer thickness of light-cured resin cement  /μm

Items 10 s 20 s 40 s 60 s F P
    n=5
800 mW/cm2 31.20±1.79 26.40±2.19 26.40±3.58 19.20±1.79 8.917 < 0.001
1 000 mW/cm2 23.20±1.79 22.40±1.79 24.80±1.79 19.20±1.79 7.704 0.002
1 200 mW/cm2 21.60±2.19 20.80±3.35 20.80±1.79 17.60±2.19 2.622 0.086
F 35.429 6.167 6.500 1.143
P < 0.001 0.014 0.012 0.351
表 5.

光照强度及时间对双重固化树脂水门汀氧阻聚层厚度的影响

Effect of light intensity and illumination time on oxygen inhibition layer thickness of dual-cured resin cement  /μm

Items 10 s 20 s 40 s 60 s F P
    n=5
800 mW/cm2 26.40±2.19 24.80±1.79 23.2±1.79 19.2±3.35 8.524 < 0.001
1 000 mW/cm2 20.80±1.79 19.20±5.22 20.00±2.83 19.20±3.35 0.237 0.870
1 200 mW/cm2 20.00±2.83 17.60±2.19 17.60±2.19 17.60±2.19 0.471 0.636
F 11.400 6.091 7.400 1.286
P 0.002 0.015 0.008 0.313

3. 讨论

3.1. 树脂水门汀氧阻聚层表面形貌和无机成分特点

与以往对复合树脂氧阻聚层的研究结果相似[2, 6],本研究树脂水门汀在与氧接触情况下固化时表面也会产生氧阻聚层。无机成分分析结果显示氧阻聚层内氧元素含量相对聚合稳定部分更高,而填料含量较低,尤其是镱元素质量百分比显著较低。这是因为空气中的氧被自由基结合生成过氧化物贴附在材料表面[2, 7],使氧元素增高。本研究扫描电镜下的观察结果也证实了这一现象,无氧条件下固化后树脂水门汀表面衬度高,无机填料显现明显,有氧时衬度较低,表面呈膜状物覆盖,填料不显现,说明氧阻聚层表面无机填料少。氧元素和表面自由基的结合占据了微观空间,表面其他无机成分含量即相应减小,原子质量较大的镱元素更能体现这种趋势。填料的主要作用是增加材料的耐磨性[8]、刚性、硬度和强度[9],因而氧阻聚层填料减少会导致树脂水门汀表面强度和耐磨性均降低[10-11],边缘的氧阻聚层易被摩擦掉,使边缘适合性下降。同时,本研究结果显示氧阻聚层的表面单体转化率低,会导致其存在大量未反应单体,这可能是氧阻聚层在扫描电镜下有表面衬度弱、膜状物覆盖表现的原因。

3.2. 氧阻聚层的单体转化特点及氧阻聚层厚度

本研究有氧条件下树脂水门汀的表面单体转化率相较于无氧条件显著降低,说明氧抑制树脂水门汀表面的单体聚合。这是因为树脂水门汀的聚合反应是光引发体系或氧化还原体系产生自由基过程,自由基触发树脂单体聚合。而大气中的氧更容易和自由基结合形成稳定过氧化物抑制进一步的聚合反应[2, 7],故氧阻聚层的单体转化率低,并且氧阻聚层的单体转化率会由浅及深逐渐增加。研究显示甲基丙烯酸酯基树脂材料的表面受氧抑制聚合程度最高,表面的单体转化率最低[12-13], 因为越接近表层氧渗入越多,往深层氧结合逐渐减少,氧阻聚作用减弱。

各种固化方式相比,双重固化树脂水门汀表面单体转化率最高,氧阻聚层厚度最小,而化学固化树脂水门汀表面单体转化率最低,氧阻聚层厚度最大,说明树脂水门汀氧阻聚层的表面单体转化率、厚度和固化方式相关。Yamaji等[14]的研究表明光引发固化的体系中自由基起始速率与化学固化树脂相比要快得多,光引发体系可迅速引发树脂单体聚合反应,氧来不及与自由基结合,氧阻聚作用降低。因此,光固化树脂水门汀氧阻聚作用弱,单体转化率高; 而化学固化树脂水门汀依赖于氧化还原体系引发单体聚合,速度较慢,氧阻聚作用相对明显,单体转化率低; 双重固化树脂水门汀的固化同时具有氧化还原体系和光引发体系,可以更加快速并产生更多自由基促进聚合反应,因而单体转化率最高,氧阻聚作用最弱。学者们对甲基丙烯酸酯类树脂材料单体转化率的研究结果也显示[15-18],双重固化型的单体转化率相较于化学固化型更高。

本研究发现光固化及双重固化树脂水门汀的表面单体转化率还会随光照强度、光照时间的增加而增加,氧阻聚层厚度则随之相应减小。以往的研究认为,光照强度和光照时间的增加均会促进复合树脂的聚合[19-21],与本研究结果相符。树脂单体的聚合程度取决于光能大小(光照时间×光照强度),当光照强度较低时可提高光照时间来增加光能[22],从而激活树脂水门汀表面未反应的光引发剂, 并消耗未反应的单体使双键转换继续,进一步促进聚合反应,使表面单体转化率增加、氧阻聚作用降低,但当光强或光照时间增加到一定程度以后,即使光能继续增加,表面单体转化率不再增加,氧阻聚层厚度也不再减小。临床上希望在较短光照时间下获得最佳的固化结果,提高单体转化程度,减少氧阻聚层的形成,本研究结果提示光固化树脂水门汀在光强1 200 mW/cm2、光照时间10 s时,双重固化树脂水门汀在光强1 000 mW/cm2、光照时间10 s时,即可获得最大的表面单体转化率及最小的氧阻聚层厚度。也有研究表明固化灯过多的能量输出会产热[23-24],对牙髓产生不利影响。因此,临床上应根据不同的材料选择适宜的光照强度和时间。

结合树脂水门汀单体转化的特点,单体转化率低的氧阻聚层因固化不完全、表面黏度大[25],易被擦去从而降低修复体边缘适合性[1]。氧阻聚层内单体转化率随深度增加而增加,最表层部分可被擦去遗留表层下单体转化率稍高的部分,但其表面质量仍然较差。这符合Hyun-Hee等[26]的研究结果,即复合树脂在表面有氧阻聚层存在时,抛光后表面有凹坑状的表现,因此应尽量减少或抑制氧阻聚层的形成,在氧阻聚层产生后即使去除也不一定能获得良好的表面质量。

综上所述,树脂水门汀暴露于氧环境下会形成氧阻聚层,其表面无机填料少、表面单体转化率低; 较低的单体转化率会在表面下一定深度存在,该深度为氧阻聚层厚度。树脂水门汀氧阻聚层的表面单体转化率及氧阻聚层厚度受固化方式及光照因素影响。

References

  • 1.Bergmann P, Noack MJ, Roulet JF. Marginal adaptation with glass-ceramic inlays adhesively luted with glycerine gel. Quintessence Int. 1991;22(9):739–744. [PubMed] [Google Scholar]
  • 2.Gauthier MA, Stangel I, Ellis TH, et al. Oxygen inhibition in dental resins. J Dent Res. 2005;84(8):725. doi: 10.1177/154405910508400808. [DOI] [PubMed] [Google Scholar]
  • 3.Anirudhan TS, Rijith S. Synthesis and characterization of carboxyl terminated poly (methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium (Ⅵ) from aqueous media. J Environ Radioactiv. 2012;106(2):8–19. doi: 10.1016/j.jenvrad.2011.10.013. [DOI] [PubMed] [Google Scholar]
  • 4.赵信义.树脂基充填材料[M]//林红.口腔材料学. 2版.北京: 北京大学医学出版社, 2013: 143-144, 148-149.
  • 5.朱诚身.透射电镜和扫描电镜//朱诚身.聚合物结构分析[M]. 2版.北京: 科学出版社, 2010: 476-480.
  • 6.Schulz VG, Henrici G. Reaktionskinetik der polymerisationshemmung durch molekularen Sauerstoff. Macromol Chem Phys. 1957;24(1):437–454. [Google Scholar]
  • 7.Yatabe M, Seki H, Shirasu N, et al. Effect of the reducing agent on the oxygen-inhibited layer of the cross-linked reline material. J Oral Rehabil. 2001;28(2):180. doi: 10.1046/j.1365-2842.2001.00634.x. [DOI] [PubMed] [Google Scholar]
  • 8.林 娇, 高 诚辉, 郑 开魁, et al. 稀土增强树脂基摩擦材料的摩擦磨损性能研究. 润滑与密封. 2018;43(4):53–56. [Google Scholar]
  • 9.赵信义.树脂基复合材料[M]//赵信义.口腔材料学. 5版.北京: 人民卫生出版社, 2012: 84-99.
  • 10.Bijelic-Donova J, Garoushi S, Lassila LV, et al. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength. Eur J Oral Sci. 2015;123(1):53–60. doi: 10.1111/eos.12167. [DOI] [PubMed] [Google Scholar]
  • 11.Rahiotis C, Zinelis S, Elides T, et al. Setting characteristics of a resin infiltration system for incipient caries treatment. J Dent. 2015;43(6):715–719. doi: 10.1016/j.jdent.2015.03.010. [DOI] [PubMed] [Google Scholar]
  • 12.Courtecuisse F, Cerezo J, Croutxé-Barghorn C, et al. Depth characterization by confocal raman microscopy of oxygen inhibition in free radical photopolymerization of acrylates: Contribution of the thiol chemistry. J Polym Sci Pol Chem. 2013;51(3):635–643. [Google Scholar]
  • 13.Truffier-Boutry D, Place E, Devaux J, et al. Interfacial layer characterization in dental composite. J Oral Rehabil. 2010;30(1):74–77. doi: 10.1046/j.1365-2842.2003.01008.x. [DOI] [PubMed] [Google Scholar]
  • 14.Yamaji A, Koga K, Tsujimoto A, et al. Influence of oxygen-inhibited layer on dentin bond strength of chemical-cured resin composite. Eur J Oral Sci. 2013;121(5):497–503. doi: 10.1111/eos.12077. [DOI] [PubMed] [Google Scholar]
  • 15.Souza RO, Mutlu O, Mesquita AM, et al. Effect of different polymerization devices on the degree of conversion and the physical properties of an indirect resin composite. Acta Odontol Latinoam. 2010;23(2):129. [PubMed] [Google Scholar]
  • 16.Di Francescantonio M, Aguiac TR, Arrais CA, et al. Influence of viscosity and curing mode on degree of conversion of dual-cured resin cements. Eur J Dent. 2013;7(1):81–85. [PMC free article] [PubMed] [Google Scholar]
  • 17.Arrais CA, Giannini M, Rueggeberg FA. Kinetic analysis of monomer conversion in auto- and dual-polymerizing modes of commercial resin luting cements. J Prosthet Dent. 2009;101(2):128–136. doi: 10.1016/S0022-3913(09)60008-1. [DOI] [PubMed] [Google Scholar]
  • 18.Velazquez E, Vaidyanathan J, Vaidyanathan TK, et al. Effect of primer solvent and curing mode on dentin shear bond strength and interface morphology. Quintessence Int. 2003;34(7):548. [PubMed] [Google Scholar]
  • 19.Giorgi MC, Aguiar FH, Soares LE, et al. Does an additional UV LED improve the degree of conversion and Knoop Hardness of light-shade composite resins. Eur J Dent. 2012;6(4):396–401. [PMC free article] [PubMed] [Google Scholar]
  • 20.Rastelli AN, Jacomassi DP, Bagnato VS. Effect of power densities and irradiation times on the degree of conversion and temperature increase of a microhybrid dental composite resin. Laser Phys. 2008;18(9):1074–1079. [Google Scholar]
  • 21.Nicoleta I. Comparative effect of self- or dual-curing on polymerization kinetics and mechanical properties in a novel, dental-resin-based composite with alkaline filler. running title: resin-com-posites with alkaline fillers. Mater. 2018;11(1):108. doi: 10.3390/ma11010108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.中华口腔医学会牙体牙髓病学专业委员会 复合树脂直接粘接修复中光固化灯使用及操作规范的专家共识. 中华口腔医学杂志. 2018;53(9):579–584. [Google Scholar]
  • 23.Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater. 1999;15(4):275–281. doi: 10.1016/s0109-5641(99)00047-0. [DOI] [PubMed] [Google Scholar]
  • 24.Kim MJ, Kim RJ, Ferracane J, et al. Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities. Dent Mater. 2017;33(10):e373. doi: 10.1016/j.dental.2017.07.007. [DOI] [PubMed] [Google Scholar]
  • 25.Yatabe M, Yasuda N, Ai M, et al. Unpolymerized Layer on Autopolymerizing, Hard Reline Materials. Int J Prosthodont. 1999;12(2):129. [PubMed] [Google Scholar]
  • 26.Park HH, Lee IB. Effect of glycerin on the surface hardness of composites after curing. J Korean Acad Cons Dent. 2011;36(6):483–488. [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES