Abstract
目的
检测抗α-1C微管蛋白(tubulin-α-1C)抗体在系统性硬化症(systemic sclerosis, SSc)患者血清中的表达,并探讨其潜在的临床意义。
方法
入组SSc患者62例、系统性红斑狼疮(systemic lupus erythematosus, SLE)患者38例、原发性干燥综合征(primary Sjögren's syndrome, pSS)患者24例和健康对照组(health control, HC)30例,收集血清,采用酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)分别检测各组血清中抗tubulin-α-1C抗体水平。同时,用标准实验室技术测定红细胞沉降率(erythrocyte sedimentation rate, ESR)、C反应蛋白(C-reactive protein, CRP)、免疫球蛋白A(Immunoglobulin A, IgA)、免疫球蛋白M(Immunoglobulin M, IgM)、免疫球蛋白G(Immunoglobulin G, IgG)、补体C3、补体C4、类风湿因子(rheumatoid factor, RF)、抗核抗体(antinuclear antibody, ANA)、抗着丝点抗体(anti-centromere antibodies, ACA)、抗心磷脂抗体(anticardiolipin, aCL)、抗双链DNA抗体(抗dsDNA抗体)、抗Sm抗体、抗RNP抗体、抗Scl-70抗体、抗Ro-52抗体、抗SSA抗体、抗SSB抗体、着丝点蛋白A(centromere protein A, CENP-A)、着丝点蛋白B(centromere protein B, CENP-B)等指标。记录雷诺现象和改良的Rodnan评分(modified Rodnan skin score, MRSS)等临床表现来评估SSc的疾病状态,分析抗tubulin-α-1C抗体与其他实验室指标和临床表现的关系。组间计量资料比较采用两独立样本t检验或Mann-Whitney U检验; 组间计数资料比较采用卡方检验; 采用绘制实验组工作曲线确定抗tubulin-α-1C抗体对诊断SSc最佳截断值并分析其诊断效能,相关性分析采用Spearman相关分析。
结果
SSc患者、SLE患者、pSS患者和正常对照组血清中抗tubulin-α-1C抗体水平分别为81.24±34.38、87.84±38.52、59.79±25.24、39.37±18.7,SSc患者血清抗tubulin-α-1C抗体水平显著高于pSS患者和正常对照组,P均小于0.001。SSc患者血清抗tubulin-α-1C抗体水平与SLE组差异没有统计学意义。Spearman相关性分析示抗tubulin-α-1C抗体与SSc炎症和疾病活性标志物ESR正相关(r=0.313,P=0.019),与MRSS正相关(r=0.636, P < 0.01)。根据正常对照组表达抗tubulin-α-1C抗体x±2s定义阳性阈值为76.77,将SSc患者分为抗tubulin-α-1C抗体阳性组和阴性组,抗tubulin-α-1C抗体阳性组出现雷诺现象的比例明显高于阴性组(71.4% vs. 37.5%, P=0.039);抗tubulin-α-1C抗体阳性组中抗Scl-70抗体、ACA抗体和aCL抗体的阳性率也显著高于阴性组(分别为37.9% vs. 15.2%,P=0.041; 34.5% vs. 12.1%, P=0.035; 13.8 vs. 0, P=0.027)。
结论
抗tubulin-α-1C抗体在SSc患者血清中异常升高,可能成为一种新的生物标志物用于SSc的临床诊断和风险预测。
Keywords: 系统性硬化症, 抗α-1C微管蛋白抗体, 自身抗体
Abstract
Objective
To detect the serum level of a novel autoantibody, anti-tubulin-α-1C, in patients with systemic sclerosis (SSc) and to investigate its clinical significance.
Methods
Anti-tubulin-α-1C antibody levels were determined by enzyme-linked immunosorbent assay (ELISA) in 62 patients with SSc, 38 systemic lupus erythematosus (SLE), 24 primary Sjögren's syndrome (pSS) patients, and 30 healthy controls (HCs). Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), immunoglobulin A(IgA), immunoglobulin M (IgM), immunoglobulin G (IgG), C3, C4, rheumatoid factor (RF), antinuclear antibody(ANA), anti-centromere antibodies(ACA), anticardiolipin (aCL), anti-dsDNA antibody, anti-Sm antibody, anti-RNP antibody, anti-Scl-70 antibody, anti-Ro52 antibody, anti-SSA antibody, anti-SSB antibody, centromere protein A(CENP-A), centromere protein B (CENP-B) were measured by standard laboratory techniques. Raynaud's phenomenon and modified Rodnan skin score(MRSS) were recorded to evaluate the disease status of SSc. Independent sample t test, Chi square test, Mann-Whitney U test, Spearman rank correlation were used for statistical analyses.
Results
The serum anti-tubulin-α-1C antibody concentration in SSc group was 81.24±34.38, the serum anti-tubulin-α-1C antibody concentration in SLE group was 87.84±38.52, the serum anti-tubulin-α-1C antibody concentration in pSS group was 59.79±25.24, and the serum anti-tubulin-α-1C antibody concentration in healthy group was 39.37±18.7. Multivariate analysis revealed that anti-tubulin-α-1C antibody levels were significantly increased in the SSc and SLE patients. The expression level of anti-tubulin-α-1C antibody in SSc was higher compared with the pSS group and the health control group (P < 0.01). Further analysis demonstrated that the elevated anti-tubulin-α-1C antibody were correlated with the SSc inflammation and disease activity markers ESR(r=0.313, P=0.019), The levels of anti-tubulin-α-1C antibody were also significantly correlated with MRSS(r=0.636, P < 0.01). The best cut-off value for the diagnose of SSc was 76.77 as mean+2SD value. The proportion of Raynaud's phenomenon was higher in the group of anti-tubulin-α-1C autoantibody-postive SSc patients than that in anti-tubulin-α-1C autoantibody negative group(71.4% vs. 37.5%, P=0.039). The proportions of anti-Scl-70 antibody, anti-CENP antibody and anti-cardiolipin antibody were higher in the group of anti-tubulin-α-1C autoantibody-postive SSc patients than in the anti-tubulin-α-1C autoantibody negative group (37.9% vs. 15.2%, 34.5% vs. 12.1%, 13.8 vs. 0, respectively, all P < 0.05).
Conclusion
Based on this explorative stu-dy, the level of anti-tubulin-α-1C antibody increased in the serum of the patients with SSc. There were correlations between anti-tubulin-α-1C autoantibody and clinical and laboratory indicators of the SSc patients. It may become a novel biomarker indicative of active SSc and could be applied in future clinical practice.
Keywords: Systemic sclerosis, Anti-tubulin-α-1C antibody, Autoantibodies
系统性硬化症(systemic sclerosis, SSc)是一种罕见的结缔组织病,以全身器官血管炎和纤维化为主,临床上主要表现为皮肤和内脏的硬化,SSc患病率约为1/10 000,是死亡率高的风湿病之一,肺间质纤维化和肺动脉高压是导致SSc死亡的主要并发症[1-2]。SSc发病机制复杂,多种细胞因子和自身抗体参与了SSc的发生、发展[3],其中一些已知的自身抗体,如抗着丝点抗体(anti-centromere antibodies, ACA)和抗Scl-70抗体等,在一定程度上对诊断和评价疾病有帮助,但这些抗体在自身免疫病中广泛存在,缺乏特异性,作用的机制尚不清楚[4]。SSc病情进展快,预后差,早期诊断和对症治疗至关重要。发现并确定特定的生物标志物,将有助于提高SSc的诊疗水平,尽早改善临床症状,及时缓解皮肤、脏器纤维化等并发症。
微管蛋白(tubulin)是细胞的一种骨架蛋白。微管蛋白超家族[5]包括6个不同的家族,即α, β, γ, δ, ε和ζ-微管蛋白。α和β-微管蛋白是微管的主要成分,而γ-微管蛋白在微管组装的成核中起主要作用。Tubulin-α-1C又称微管蛋白α-6[6],是α-微管蛋白家族成员之一,广泛表达于包括骨髓在内的27个组织中,tubulin-α-1C对维持细胞形态、物质运输和定位等起关键作用。早期抗tubulin抗体主要集中在神经精神疾病、感染和肿瘤中,在自身免疫病中的研究甚少。近年有研究发现,在系统性红斑狼疮(systemic lupus erythematosus, SLE)中抗tubulin-α-1C抗体升高,可能加重患者皮肤病变和血管炎症状,而在其他结缔组织病中,抗tubulin-α-1C抗体是否有同样的效应,没有进一步研究。本研究通过酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)检测了SSc患者、SLE患者、原发性干燥综合征(primary Sjögren's syndrome, pSS)患者和健康人外周血中抗tubulin-α-1C抗体的表达水平,分析抗tubulin-α-1C抗体与SSc临床及实验室指标的相关性,并探讨抗tubulin-α-1C抗体在SSc诊断中的临床意义。
1. 资料与方法
1.1. 研究对象
本研究纳入2014年1月至2018年11月就诊于北京大学人民医院风湿免疫科的住院SSc患者62例为实验组,平均年龄(54.8±13.11)岁,其中男性5例,女性57例,入选患者均符合2017年美国风湿病学会/欧洲风湿病联盟联合发布的《系统性硬化症诊疗指南》中SSc新诊疗标准[7],其临床及实验室资料完善,同时排除合并心血管病及其他自身免疫病。选取年龄性别相匹配SLE患者38例、pSS患者24例以及体检中心的健康人(health control, HC)30例作为对照组。
本研究获得北京大学人民医院医学伦理委员会的批准(2018PHB147-01), 研究对象包括患者和健康人均签署知情同意书。
1.2. 实验室和临床相关指标
记录患者临床和实验室指标,包括性别、年龄、病程、红细胞沉降率(erythrocyte sedimentation rate, ESR)、C反应蛋白(C-reactive protein, CRP)、免疫球蛋白A(immunoglobulin A, IgA)、免疫球蛋白M(immunoglobulin M, IgM)、免疫球蛋白G(immunoglobulin G, IgG)、补体C3、补体C4、类风湿因子(rheumatoid factor, RF)、抗核抗体(antinuclear antibody,ANA)、ACA、抗心磷脂抗体(anticardiolipin, aCL)、抗双链DNA抗体(抗dsDNA抗体)、抗Sm抗体、抗RNP抗体、抗Scl-70抗体、抗Ro-52抗体、抗SSA抗体、抗SSB抗体、着丝点蛋白A(centromere protein A, CENP-A)、着丝点蛋白B(centromere protein B, CENP-B)、雷诺现象等指标,用改良的Rodnan评分(modified Rodnan skin score, MRSS)评估SSc患者皮肤改变。检测前所有的血清样本均保存在-80 ℃冰箱。
1.3. 血清中抗tubulin-α-1C抗体检测
用ELISA方法检测血清中抗tubulin-α-1C抗体的浓度。首先,用浓度为10 mg/L的重组tubulin-α-1C蛋白(Origene公司, 北京)包被96孔板,放置在4 ℃过夜。用含0.05%(体积分数)吐温的磷酸缓冲盐溶液(phosphate buffer saline, PBS)洗4遍后,加入3% (体积分数)PBS稀释的牛血清白蛋白常温封闭3.5 h。血清用PBS 1 :100稀释后加入微孔板反应,加入酶标二抗, 洗涤后加TMB(3,3',5,5'-tetramethylben-zidine liquid substrate)显色液,室温避光反应10 min; 每孔加入2 mol/L硫酸终止,10 min内放入双波长酶标仪(检测滤光片450 nm, 参考滤光片630 nm)中读取光密度(D)值。所有样品均做复孔,每板设置空白对照,同时为减少板间差异,设置标准血清对照,标准血清由10份SSc患者血清混合组成,所得D值换算成arbitary units(AU)值:
AU值=[待测血清(D抗tubulin-α-1C-D空白)/标准血清(D抗tubulin-α-1C-D空白)] ×100。
1.4. 统计学分析
所有数据采用SPSS 16.0和GraphPad Prism 5软件处理,计量资料描述为均数±标准差,多组间比较先进行F检验,如果方差齐用LSD法两两比较,如果方差不齐用Dunett-t法进行比较; 两组间差异的比较采用两独立样本t检验或Mann-Whitney U检验; 计数资料用率或构成比描述,组间率或构成比的比较采用卡方检验或Fisher确切概率法,双变量采用Spearman相关性分析,P < 0.05为差异有统计学意义。
2. 结果
2.1. 抗tubulin-α-1C抗体在SSc、SLE、pSS及HC血清中的浓度比较
4组人群中抗tubulin-α-1C抗体AU值分别为SSc 81.24±34.38、SLE 87.84±38.52、pSS 59.79±25.24、HC 39.37±18.7,SSc患者血清中的抗tubulin-α-1C抗体浓度高于pSS患者和HC(F=9.890,P < 0.001),差异有统计学意义。SSc患者和SLE患者之间的差异无统计学意义(P=0.359)。根据正常对照组抗tubulin-α-1C抗体x±2s值定义阳性阈值为76.77,抗tubulin-α-1C抗体AU值大于76.77为阳性。根据阳性阈值界定,抗tubulin-α-1C抗体在SSc患者中的阳性率明显高于正常对照组(46.8% vs. 3.6%,P < 0.001)。
2.2. 分析抗tubulin-α-1C抗体对于诊断SSc价值
绘制受试者工作特征(receiver operating characteristic, ROC)曲线,曲线下面积(area under the curve, AUC)为0.805,对应的敏感性是43.55%~46.77%,特异性是86.54%。
2.3. SSc患者血清抗tubulin-α-1C抗体阳性组与阴性组间临床及实验室指标的分析
根据阳性阈值的设定将62例SSc患者分为抗tubulin-α-1C抗体阳性组(29例)和阴性组(33例),结果显示抗tubulin-α-1C抗体阳性组与抗tubulin-α-1C抗体阴性组间有多个实验室和临床指标存在明显差异,抗tubulin-α-1C抗体阳性组中抗Scl-70抗体、ACA、aCL的阳性率、ESR、雷诺现象明显高于抗tubulin-α-1C抗体阴性组,差异有统计学意义(P < 0.05)。CRP、免疫球蛋白(IgA、IgG、IgM)、补体(C3、C4)及RF等水平差异无统计学意义(表 1)。
表 1.
抗tubulin-α-1C抗体阳性组与阴性组间实验室指标的比较
Clinical and laboratory characteristics of SSc patients with the elevated and normal levels of serum anti-tubulin-α-1C
| Items | Anti-tubulin-α-1C(+)(n=29) | Anti-tubulin-α-1C(-)(n=33) | P |
| ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; ANA, antinuclear antibody; ACA, anti-centromere anti-bodies; CENP, centromere protein; aCL, anticardiolipin. * P<0.05, statistically significant result. | |||
| Female,n(%) | 26 (89.7) | 31 (93.9) | 0.537 |
| Age/years, x±s | 59.07±20.42 | 51.88±10.45 | 0.081 |
| ESR /(mm/h), M(Min, Max) | 21 (7-110) | 12 (2-55) | 0.033* |
| CRP/(mg/L),M(Min, Max) | 2.49 (0.54-73.90) | 2.95 (0.38-44.21) | 0.431 |
| C3/(g/L),x±s | 0.87±0.23 | 0.87±0.26 | 0.966 |
| C4/(g/L),x±s | 0.22±0.09 | 0.24±0.26 | 0.667 |
| RF/(IU/mL),M(Min, Max) | 20 (20-123) | 20 (18-3 710) | 0.781 |
| Anti-Ro52 positive,n(%) | 8 (27.6) | 16 (48.5) | 0.090 |
| Anti-RNP positive,n(%) | 7 (24.1) | 9 (27.3) | 0.780 |
| Anti-Scl-70 positive,n(%) | 11 (37.9) | 5 (15.2) | 0.041* |
| ANA positive,n(%) | 23 (79.3) | 20 (60.6) | 0.110 |
| ACA positive,n(%) | 10 (34.5) | 4 (12.1) | 0.035* |
| CENP A or B positive,n(%) | 6 (20.7) | 6 (18.2) | 0.803 |
| aCL positive,n(%) | 4 (13.8) | 0 | 0.043* |
| Anti-dsDNA positive,n(%) | 4 (13.79) | 1 (3.03) | 0.120 |
| IgA/(g/L), x±s | 3.37±2.89 | 2.52±1.80 | 0.164 |
| IgG/(g/L), x±s | 15.30±6.61 | 14.60±6.82 | 0.681 |
| IgM/(g/L), x±s | 1.17±0.81 | 0.99±0.70 | 0.350 |
| Raynaud's phenomenon,n(%) | 15 (71.4) | 6 (37.5) | 0.039* |
2.4. SSc患者血清抗tubulin-α-1C抗体水平与实验室和临床指标相关性分析
对SSc患者的临床和实验室指标进行相关性分析,显示血清中抗tubulin-α-1C抗体水平与疾病活动指标相关:ESR (r=0.313, P=0.019)、MRSS (r=0.636, P < 0.001),其他临床及实验室指标均无相关性(表 2)。
表 2.
血清抗tubulin-α-1C抗体与SSc患者其他临床和实验室指标间的相关性
Correlation of serum anti-tubulin-α-1C with clinical features of SSc patients
| Items | r | P |
| ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; aCL, anticardiolipin; MRSS, modified Rodnan skin score. *P<0.05, statistically significant result. | ||
| Age/years | 0.023 | 0.860 |
| Disease duration | 0.118 | 0.455 |
| ESR | 0.313 | 0.019* |
| CRP | -0.109 | 0.432 |
| IgA | 0.121 | 0.350 |
| IgG | 0.168 | 0.193 |
| IgM | 0.114 | 0.384 |
| C3 | -0.042 | 0.744 |
| C4 | 0.086 | 0.513 |
| RF | -0.079 | 0.541 |
| aCL | 0.330 | 0.106 |
| Anti-dsDNA | 0.146 | 0.477 |
| MRSS | 0.636 | < 0.001* |
3. 讨论
SSc以血管损伤、免疫功能失调及多器官纤维化为主要病理机制,最终导致皮肤及内脏器官过量纤维化,可导致严重的功能障碍和几乎所有内脏器官衰竭,严重影响患者的生活质量和生命安全。SSc的病因及发病机制十分复杂,目前研究主要包括遗传与环境因素、免疫的影响、胶原产生过度及成纤维细胞功能异常、血管功能异常等。微管蛋白是微管的基本单位,它构成细胞骨架的一部分,在细胞分裂过程中形成纺锤体纤维,有证据表明,抗微管蛋白抗体存在于包括人类在内的正常哺乳动物的血清中[8-12],但这些天然的抗微管蛋白自身抗体通常在体内含量很低[13],这些自身抗体异常升高常与其他器官特异性自身免疫性疾病有关,包括毒性弥漫性甲状腺肿(Graves病)、桥本甲状腺炎、脱髓鞘疾病等[14],患者自身的微管蛋白在炎症条件下从受损细胞中释放出来,可引发一系列自身免疫反应。抗tubulin-α抗体是针对微管蛋白分子成员之一tubulin-α的特异性自身抗体,早期仅在肺移植后的慢性同种异体排斥反应患者中观察到[8-9]。最新研究发现,在确诊的SLE患者血清中抗tubulin-α-1C抗体异常升高,并且升高的抗tubulin-α-1C抗体与SLE皮肤病变的发生率有关,包括皮疹和口腔溃疡[15]。
本研究中,我们测定和比较了SSc、SLE、pSS患者和健康对照者的血清抗tubulin-α-1C自身抗体水平。与pSS患者和健康对照组相比,抗tubulin-α-1C抗体在SSc患者血清中显著升高,但是和SLE区别不大。我们进一步揭示了这种新的自身抗体在SSc中的临床相关性,发现抗tubulin-α-1C抗体的升高与ESR和反映皮肤病变的MRSS有关。SSc炎症环境中存在大量受损或未清除的死亡细胞,细胞裂解释放出tubulin-α-1C,抗tubulin-α-1C抗体可能与释放的tubulin-α-1C形成免疫复合物,导致免疫复合物沉积,随后发生放大的炎症反应和组织破坏,促进胶原表达的细胞因子增多(如转化生长因子β、血小板源性生长因子等),增加胶原和其他结缔组织大分子物质合成,沉积在结缔组织中,引起组织纤维化,出现皮肤和内脏损害的表现。
除通过免疫复合物形成的致病作用外,抗tubulin-α-1C与细胞表面抗原的直接结合也可能引起炎症反应。以往的研究显示抗Kα-1微管蛋白与上皮细胞结合可导致转录因子5(TCF5)的表达增加,TCF5是一种转录因子,参与炎症反应基因的调控和纤维增生级联[16-17],诱导下游促炎效应因子如血管内皮生长因子的表达,释放大量的炎症细胞和免疫介质。这些免疫介质刺激纤维母细胞,产生大量胶原及细胞外基质,沉积在组织中,加重组织损伤(如肺间质纤维化),并损伤血管内皮细胞,造成血管腔狭窄及闭塞,在疾病的早期出现雷诺现象。然而,抗tubulin-α-1C在SSc血管炎中的确切发病机制是否遵循上述相同的机制仍有待实验研究,下一步的组织培养或动物模型研究将用于解决抗tubulin-α-1C在SSc血管炎发展中的作用。
本研究仅仅反映了抗tubulin-α-1C抗体在SSc中可能的临床意义,没有阐明具体的病理生理途径,进一步扩大样本并开展更深入的机制研究有可能为SSc的诊断及风险预测提供一个血清学标志的有益补充,并可能进一步揭示SSc发病机制中的重要环节。
Funding Statement
国家自然科学基金(81801617)
Supported by the National Natural Science Foundation of China (81801617)
References
- 1.Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390(10103):1685–1699. doi: 10.1016/S0140-6736(17)30933-9. [DOI] [PubMed] [Google Scholar]
- 2.Allanore Y, Simms R, Distler O, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002. doi: 10.1038/nrdp.2015.2. [DOI] [PubMed] [Google Scholar]
- 3.Orlandi M, Barsotti S, Lepri G, et al. One year in review 2018: systemic sclerosis. Clin Exp Rheumatol. 2018;113(4):3–23. [PubMed] [Google Scholar]
- 4.Pattanaik D, Brown M, Postlethwaite BC, et al. Pathogenesis of systemic sclerosiss. Front Immunol. 2015;6:272. doi: 10.3389/fimmu.2015.00272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Chaaban S, Brouhard GJ. A microtubule bestiary: Structural diversity in tubulin polymerss. Mol Biol Cell. 2017;28(22):2924–2931. doi: 10.1091/mbc.E16-05-0271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Roll-Mecak A. How cells exploit tubulin diversity to build functional cellular microtubule mosaicss. Curr Opin Cell Biol. 2019;56:102–108. doi: 10.1016/j.ceb.2018.10.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis. 2017;76(8):1327–1339. doi: 10.1136/annrheumdis-2016-209909. [DOI] [PubMed] [Google Scholar]
- 8.Avrameas S, Guilbert B, Dighiero G. Natural antibodies against tubulin, actin myoglobin, thyroglobulin, fetuin, albumin and transferrin are present in normal human sera, and monoclonal immunoglobulins from multiple myeloma and Waldenström's macroglobulinemia may express similar antibody specificities. Ann Immunol (Paris) 1981;132(2):231–236. doi: 10.1016/0769-2625(81)90031-3. [DOI] [PubMed] [Google Scholar]
- 9.Guilbert B, Dighiero G, Avrameas S. Naturally occurring anti-bodies against nine common antigens in human sera. Ⅰ. Detection, isolation and characterization. J Immunol. 1982;128(6):2779–2787. [PubMed] [Google Scholar]
- 10.Karsenti E, Guilbert B, Bornens M, et al. Anti-actin and anti-tubulin antibodies in the serum of non-immunized animals. Ann Immunol (Paris) 1977;128(1/2):195–200. [PubMed] [Google Scholar]
- 11.Kurki P, Virtanen I. The detection of human antibodies against cytoskeletal components. J Immunol Methods. 1984;67(2):209–223. doi: 10.1016/0022-1759(84)90462-9. [DOI] [PubMed] [Google Scholar]
- 12.Ludueña RF. A hypothesis on the origin and evolution of tubulin. Int Rev Cell Mol Biol. 2013;302:41–185. doi: 10.1016/B978-0-12-407699-0.00002-9. [DOI] [PubMed] [Google Scholar]
- 13.Burbelo PD, Gordon SM, Waldman M, et al. Autoantibodies are present before the clinical diagnosis of systemic sclerosis. PLoS One. 2019;14(3):e0214202. doi: 10.1371/journal.pone.0214202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Cheng Y, Zhao X, Chen Y, et al. Circulating immune comple-xome analysis identified anti-tubulin-α-1C as an inflammation associated autoantibody with promising diagnostic value for Behcet's disease. PLoS One. 2018;13(6):e0199047. doi: 10.1371/journal.pone.0199047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Zhao X, Cheng Y, Gan Y, et al. Anti-tubulin-α-1C autoantibody in systemic lupus erythematosus: a novel indicator of disease acti-vity and vasculitis manifestationse. Clin Rheumatol. 2018;37(5):1229–1237. doi: 10.1007/s10067-018-4024-3. [DOI] [PubMed] [Google Scholar]
- 16.Goers TA, Ramachandran S, Aloush A, et al. De novo production of K-alpha1 tubulin-specific antibodies: role in chronic lung allograft rejection. J Immunol. 2008;180(7):4487–4494. doi: 10.4049/jimmunol.180.7.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Hachem RR, Tiriveedhi V, Patterson GA, et al. Antibodies to K-α1 tubulin and collagen V are associated with chronic rejection after lung transplantation. Am J Transplant. 2012;12(8):2164–2171. doi: 10.1111/j.1600-6143.2012.04079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
