Abstract
In this article we probe the proposed holographic duality between deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with CFT parameters.
Keywords: AdS-CFT Correspondence, Conformal Field Theory
Footnotes
ArXiv ePrint: 2005.01693
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Yi Li, Email: liyi@fudan.edu.cn.
Yang Zhou, Email: yang_zhou@fudan.edu.cn.
References
- [1].Smirnov FA, Zamolodchikov AB. On space of integrable quantum field theories. Nucl. Phys. B. 2017;915:363. doi: 10.1016/j.nuclphysb.2016.12.014. [DOI] [Google Scholar]
- [2].Conti R, Iannella L, Negro S, Tateo R. Generalised Born-Infeld models, Lax operators and theperturbation. JHEP. 2018;11:007. doi: 10.1007/JHEP11(2018)007. [DOI] [Google Scholar]
- [3].A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, -deformed 2D Quantum Field Theories, JHEP10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
- [4].Dubovsky S, Gorbenko V, Mirbabayi M. Asymptotic fragility, near AdS2holography and. JHEP. 2017;09:136. doi: 10.1007/JHEP09(2017)136. [DOI] [Google Scholar]
- [5].A.B. Zamolodchikov, Expectation value of composite fieldin two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
- [6].S. Datta and Y. Jiang, deformed partition functions, JHEP08 (2018) 106 [arXiv:1806.07426] [INSPIRE].
- [7].Aharony O, Datta S, Giveon A, Jiang Y, Kutasov D. Modular invariance and uniqueness ofdeformed CFT. JHEP. 2019;01:086. doi: 10.1007/JHEP01(2019)086. [DOI] [Google Scholar]
- [8].Cardy J. Thedeformation of quantum field theory as random geometry. JHEP. 2018;10:186. doi: 10.1007/JHEP10(2018)186. [DOI] [Google Scholar]
- [9].S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, partition function from topological gravity, JHEP09 (2018) 158 [arXiv:1805.07386] [INSPIRE].
- [10].J. Cardy, deformation of correlation functions, JHEP12 (2019) 160 [arXiv:1907.03394] [INSPIRE].
- [11].He S, Shu H. Correlation functions, entanglement and chaos in the–deformed CFTs. JHEP. 2020;02:088. doi: 10.1007/JHEP02(2020)088. [DOI] [Google Scholar]
- [12].S. He and Y. Sun, Correlation functions of CFTs on a torus with adeformation, Phys. Rev. D102 (2020) 026023 [arXiv:2004.07486] [INSPIRE].
- [13].Jiang Y. Expectation value ofoperator in curved spacetimes. JHEP. 2020;02:094. doi: 10.1007/JHEP02(2020)094. [DOI] [Google Scholar]
- [14].T.D. Brennan, C. Ferko, E. Martinec and S. Sethi, Defining theDeformation on AdS2, arXiv:2005.00431 [INSPIRE].
- [15].A.J. Tolley, deformations, massive gravity and non-critical strings, JHEP06 (2020) 050 [arXiv:1911.06142] [INSPIRE].
- [16].E.A. Mazenc, V. Shyam and R.M. Soni, ADeformation for Curved Spacetimes from 3d Gravity, arXiv:1912.09179 [INSPIRE].
- [17].McGough L, Mezei M, Verlinde H. Moving the CFT into the bulk with. JHEP. 2018;04:010. doi: 10.1007/JHEP04(2018)010. [DOI] [Google Scholar]
- [18].Donnelly W, Shyam V. Entanglement entropy anddeformation. Phys. Rev. Lett. 2018;121:131602. doi: 10.1103/PhysRevLett.121.131602. [DOI] [PubMed] [Google Scholar]
- [19].B. Chen, L. Chen and P.-X. Hao, Entanglement entropy in-deformed CFT, Phys. Rev. D98 (2018) 086025 [arXiv:1807.08293] [INSPIRE].
- [20].Banerjee A, Bhattacharyya A, Chakraborty S. Entanglement Entropy fordeformed CFT in general dimensions. Nucl. Phys. B. 2019;948:114775. doi: 10.1016/j.nuclphysb.2019.114775. [DOI] [Google Scholar]
- [21].Jeong H-S, Kim K-Y, Nishida M. Entanglement and Rényi entropy of multiple intervals in-deformed CFT and holography. Phys. Rev. D. 2019;100:106015. doi: 10.1103/PhysRevD.100.106015. [DOI] [Google Scholar]
- [22].Grieninger S. Entanglement entropy anddeformations beyond antipodal points from holography. JHEP. 2019;11:171. doi: 10.1007/JHEP11(2019)171. [DOI] [Google Scholar]
- [23].A. Lewkowycz, J. Liu, E. Silverstein and G. Torroba, and EE, with implications for (A)dS subregion encodings, JHEP04 (2020) 152 [arXiv:1909.13808] [INSPIRE].
- [24].Geng H. Some Information Theoretic Aspects of De-Sitter Holography. JHEP. 2020;02:005. doi: 10.1007/JHEP02(2020)005. [DOI] [Google Scholar]
- [25].Donnelly W, LePage E, Li Y-Y, Pereira A, Shyam V. Quantum corrections to finite radius holography and holographic entanglement entropy. JHEP. 2020;05:006. doi: 10.1007/JHEP05(2020)006. [DOI] [Google Scholar]
- [26].G. Bonelli, N. Doroud and M. Zhu, -deformations in closed form, JHEP06 (2018) 149 [arXiv:1804.10967] [INSPIRE].
- [27].M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE].
- [28].Hartman T, Kruthoff J, Shaghoulian E, Tajdini A. Holography at finite cutoff with a T2deformation. JHEP. 2019;03:004. doi: 10.1007/JHEP03(2019)004. [DOI] [Google Scholar]
- [29].Caputa P, Datta S, Shyam V. Sphere partition functions & cut-off AdS. JHEP. 2019;05:112. doi: 10.1007/JHEP05(2019)112. [DOI] [Google Scholar]
- [30].D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, in AdS2and Quantum Mechanics, Phys. Rev. D101 (2020) 026011 [arXiv:1907.04873] [INSPIRE].
- [31].D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, Hamiltonian deformations in quantum mechanics,, and the SYK model, Phys. Rev. D102 (2020) 046019 [arXiv:1912.06132] [INSPIRE].
- [32].L.V. Iliesiu, J. Kruthoff, G.J. Turiaci and H. Verlinde, JT gravity at finite cutoff, arXiv:2004.07242 [INSPIRE].
- [33].G. Jafari, A. Naseh and H. Zolfi, Path Integral Optimization forDeformation, Phys. Rev. D101 (2020) 026007 [arXiv:1909.02357] [INSPIRE].
- [34].Kraus P, Liu J, Marolf D. Cutoff AdS3versus thedeformation. JHEP. 2018;07:027. doi: 10.1007/JHEP07(2018)027. [DOI] [Google Scholar]
- [35].Heemskerk I, Polchinski J. Holographic and Wilsonian Renormalization Groups. JHEP. 2011;06:031. doi: 10.1007/JHEP06(2011)031. [DOI] [Google Scholar]
- [36].Faulkner T, Liu H, Rangamani M. Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm. JHEP. 2011;08:051. [Google Scholar]
- [37].M. Guica and R. Monten, and the mirage of a bulk cutoff, arXiv:1906.11251 [INSPIRE].
- [38].Aharony O, Vaknin T. The TT*deformation at large central charge. JHEP. 2018;05:166. [Google Scholar]
- [39].Y. Jiang, Lectures on solvable irrelevant deformations of 2d quantum field theory, arXiv:1904.13376 [INSPIRE].
- [40].B. Allen and T. Jacobson, Vector Two Point Functions in Maximally Symmetric Spaces, Commun. Math. Phys.103 (1986) 669 [INSPIRE].
- [41].Osborn H, Shore GM. Correlation functions of the energy momentum tensor on spaces of constant curvature. Nucl. Phys. B. 2000;571:287. doi: 10.1016/S0550-3213(99)00775-0. [DOI] [Google Scholar]
- [42].Skenderis K, Solodukhin SN. Quantum effective action from the AdS/CFT correspondence. Phys. Lett. B. 2000;472:316. doi: 10.1016/S0370-2693(99)01467-7. [DOI] [Google Scholar]
- [43].Henningson M, Skenderis K. The Holographic Weyl anomaly. JHEP. 1998;07:023. doi: 10.1088/1126-6708/1998/07/023. [DOI] [Google Scholar]
- [44].de Haro S, Solodukhin SN, Skenderis K. Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 2001;217:595. doi: 10.1007/s002200100381. [DOI] [Google Scholar]
