Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
letter
. 2020 Dec 17;59(1):e02226-20. doi: 10.1128/JCM.02226-20

Sensitive Recovery of Complete SARS-CoV-2 Genomes from Clinical Samples by Use of Swift Biosciences’ SARS-CoV-2 Multiplex Amplicon Sequencing Panel

Amin Addetia a, Michelle J Lin a, Vikas Peddu a, Pavitra Roychoudhury a,b, Keith R Jerome a,b, Alexander L Greninger a,b,
Editor: John P Dekkerc
PMCID: PMC7771467  PMID: 33046529

LETTER

Whole-genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a better understanding of the virus’s origin, transmission, and evolution (16). Multiplex amplicon sequencing for viral WGS is a preferred approach to library preparation since it is simple, sensitive, cost-effective, and scalable (7, 8). However, balancing multiplexed primers to achieve high sensitivity and even coverage can be difficult (8), and superlative analytical sensitivity is not assured. Here, we evaluated the Swift Biosciences’ single-tube SARS-CoV-2 multiplex amplicon sequencing panel for the recovery of genomes from low-viral-load samples (threshold cycle [CT] > 26 on a Hologic Panther Fusion system).

This work was approved by the University of Washington Institutional Review Board (proposal no. STUDY00000408). Libraries were constructed from double-stranded cDNA using Swift Biosciences’ Normalase amplicon SARS-CoV-2 panel. The resulting libraries were sequenced on 2× 300-bp MiSeq runs, and a median of 605,654 reads were obtained for each library. Genomes were assembled with a custom pipeline, TAYLOR (https://github.com/greninger-lab/covid_swift_pipeline). Briefly, sequence reads were trimmed using Trimmomatic v0.38, aligned to the Wuhan-Hu-1 genome (NCBI accession no. NC_045512.2) using BBMap v38.70 (https://sourceforge.net/projects/bbmap/), and trimmed of PCR primers using Primerclip (https://github.com/swiftbiosciences/primerclip). Consensus genomes were called bcftools v1.9.

The 61 samples sequenced had CT values ranging from 26.04 to 37.93. We recovered genomes from all samples with a CT of ≤32.16 and from a sample with a CT value of 36.77, equivalent to approximately 4.24 copies input (Fig. 1A) (911). For samples with a CT value between 32.01 and 34.00, we recovered genomes from 8/10 (80%) of the samples, and for samples with a CT value between 34.01 and 36.00, we recovered genomes from 4/10 (40%) of the samples. While we recovered genomes from just 3 of the samples with a CT value between 36.01 and 38.00, we were able to recover partial genomes for the other 7 samples (median genome covered, 36.0%; range, 4.9 to 73.7%).

FIG 1.

FIG 1

Evaluation of the Swift Biosciences’ SARS-CoV-2 multiplex amplicon sequencing panel. (A) Complete genomes were recovered from all samples with a CT value of ≤32.16 and a CT value as high as 36.77. Samples for which complete genomes (>95% genome coverage) were recovered are highlighted in purple. Partial genomes are highlighted in gold. (B) SARS-CoV-2 sequences were highly enriched in the sequencing libraries as measured by the percentage of reads mapping to the reference genome for SARS-CoV-2 (NCBI accession no. NC_045512.2). Complete genomes were recovered for samples highlighted in purple, while partial genomes were recovered for those highlighted in gold. (C) The genome coverage between nucleotides 201 and 29741 of the SARS-CoV-2 reference genome is even. The 5th and 95th percentiles of coverage at each position across the 41 samples with a mean depth of >100× are plotted in purple. A 250-nucleotide window moving average is represented in gold. (D) The 46 SARS-CoV-2 samples with complete genomes belong to both major SARS-CoV-2 lineages. A phylogenetic tree with the 46 SARS-CoV-2 genomes recovered in this report and 109 other global strains was constructed with FastTree version 2.1.1. Strains belonging to lineage A are highlighted in purple, while those belonging to lineage B are highlighted in gold. Those genomes sequenced in this report are circled in black. SNV, single nucleotide variation.

The libraries produced with the Swift SARS-CoV-2 amplicon panel were highly enriched for SARS-CoV-2 reads. Samples with CT values ranging from 26.01 to 32.00 had a median on-target percentage of 98.5% (range, 93.1 to 99.0%) after removal of reads attributed to primer dimer formation (Fig. 1B). Among samples with CT values from 32.01 to 38.00, the median on-target percentage was 92.4% (range, 16.5 to 98.7) (Fig. 1B).

We also assessed the coverage distribution from samples with an average depth of >100×. The coverage across the genome for the 41 samples analyzed was highly even (Pielou’s evenness, 0.988) (Fig. 1C). To assess reproducibility, we performed 8 separate library preparations on a single sample. All 8 preparations yielded identical consensus sequences, demonstrating the high reproducibility of the Swift SARS-CoV-2 amplicon panel.

Lastly, we performed a phylogenetic analysis of the 46 strains with complete genomes and 109 randomly selected global SARS-CoV-2 strains. The 46 strains belonged to both major lineages defined by pangolin (https://github.com/cov-lineages/pangolin) (12) and reflected the genomic diversity currently circulating in the SARS-CoV-2 population (Fig. 1D).

In summary, the Swift SARS-CoV-2 amplicon panel is a simple, highly sensitive approach for recovering SARS-CoV-2 genomes. The panel has allowed for the study of genomic rearrangements and mutations that are uniquely associated with low-viral-load samples (13, 14).

Data availability.

Sequencing data are available under NCBI BioProject no. PRJNA610428 (Table 1). Code for assembling consensus FASTA genomes from FASTQ files is also available online (https://github.com/greninger-lab/covid_swift_pipeline).

TABLE 1.

Assembly and sequencing read accession numbers for strains sequenced in this studya

Strain GISAID accession no. SRA accession no.
WA-UW-4544 NA SRR12473512
WA-UW-4545 EPI_ISL_460621 SRR11939565
ID-UW-4550 EPI_ISL_460622 SRR11939564
WA-UW-4554 NA SRR12473511
WA-UW-4555 EPI_ISL_460623 SRR11939553
WA-UW-4562 EPI_ISL_460624 SRR11939542
WA-UW-4563 EPI_ISL_515271 SRR11939540
WA-UW-4569 EPI_ISL_515272 SRR11939539
WA-UW-4570 EPI_ISL_460625 SRR11939538
WA-UW-4572 EPI_ISL_497872 SRR11939537
WA-UW-4581 EPI_ISL_515273 SRR11939536
WA-UW-4585 EPI_ISL_515274 SRR11939535
WA-UW-4588 EPI_ISL_460626 SRR11939563
WA-UW-4589 EPI_ISL_515275 SRR11939562
WA-UW-4591 EPI_ISL_460627 SRR11939561
WA-UW-4592 EPI_ISL_515276 SRR11939560
ID-UW-4597 EPI_ISL_460628 SRR11939559
WA-UW-4599 EPI_ISL_515277 SRR11939558
ID-UW-4600 EPI_ISL_460629 SRR11939557
ID-UW-4601 EPI_ISL_515270 SRR11939556
WA-UW-4603 EPI_ISL_515278 SRR11939555
WA-UW-4607 EPI_ISL_513632 SRR12515115
WA-UW-4608 EPI_ISL_515279 SRR11939554
WA-UW-4610 EPI_ISL_515286 SRR12515114
WA-UW-4614 EPI_ISL_515280 SRR11939552
WA-UW-4615 EPI_ISL_515281 SRR11939551
WA-UW-4616 EPI_ISL_515282 SRR11939550
WA-UW-4618 EPI_ISL_515283 SRR11939549
WA-UW-4619 EPI_ISL_460630 SRR11939548
WA-UW-4620 EPI_ISL_515284 SRR11939547
WA-UW-4623 EPI_ISL_515285 SRR11939546
WA-UW-4627 EPI_ISL_513633 SRR12515113
WA-UW-4632 EPI_ISL_460631 SRR11939545
WA-UW-4633 EPI_ISL_460632 SRR11939544
WA-UW-4636 NA SRR12473505
WA-UW-4641 NA SRR12473504
WA-UW-4643 EPI_ISL_460633 SRR11939543
WA-UW-4646 EPI_ISL_460634 SRR11939541
WA-UW-4648 NA SRR12473503
WA-UW-4657 EPI_ISL_461399 SRR11940010
WA-UW-4660 EPI_ISL_513634 SRR11940009
WA-UW-4663 EPI_ISL_461400 SRR11939943
WA-UW-4664 EPI_ISL_513635 SRR11939932
WA-UW-4665 NA SRR12473502
WA-UW-4684 EPI_ISL_461401 SRR11939921
WA-UW-4687 NA SRR12473501
WA-UW-4698 EPI_ISL_461402 SRR11939974
WA-UW-4731 EPI_ISL_513636 SRR12515112
WA-UW-4735 NA SRR12473500
WA-UW-4738 NA SRR12473499
WA-UW-4750 NA SRR12473498
WA-UW-4758 EPI_ISL_513637 SRR11939963
WA-UW-4761 NA SRR12473510
WA-UW-4765 EPI_ISL_461403 SRR11939952
WA-UW-4881 NA SRR12473509
WA-UW-4884 NA SRR12473508
WA-UW-4888 NA SRR12473507
WA-UW-4898 EPI_ISL_513638 SRR12515111
WA-UW-4903 NA SRR12473506
WA-UW-4917 EPI_ISL_461404 SRR11939996
WA-UW-4931 EPI_ISL_461405 SRR11939985
a

Samples without a GISAID accession number were not considered complete genomes. NA, not applicable.

Supplementary Material

Supplemental file 1
JCM.02226-20-s0001.pdf (72.5KB, pdf)

ACKNOWLEDGMENT

Swift Biosciences provided reagent for optimization of this protocol but had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Footnotes

Supplemental material is available online only.

REFERENCES

  • 1.Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. 2020. The proximal origin of SARS-CoV-2. Nat Med 26:450–452. doi: 10.1038/s41591-020-0820-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Deng X, Gu W, Federman S, Du Plessis L, Pybus OG, Faria NR, Wang C, Yu G, Bushnell B, Pan C-Y, Guevara H, Sotomayor-Gonzalez A, Zorn K, Gopez A, Servellita V, Hsu E, Miller S, Bedford T, Greninger AL, Roychoudhury P, Starita LM, Famulare M, Chu HY, Shendure J, Jerome KR, Anderson C, Gangavarapu K, Zeller M, Spencer E, Andersen KG, MacCannell D, Paden CR, Li Y, Zhang J, Tong S, Armstrong G, Morrow S, Willis M, Matyas BT, Mase S, Kasirye O, Park M, Masinde G, Chan C, Yu AT, Chai SJ, Villarino E, Bonin B, Wadford DA, Chiu CY. 2020. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 369:582–587. doi: 10.1126/science.abb9263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Fauver JR, Petrone ME, Hodcroft EB, Shioda K, Ehrlich HY, Watts AG, Vogels CBF, Brito AF, Alpert T, Muyombwe A, Razeq J, Downing R, Cheemarla NR, Wyllie AL, Kalinich CC, Ott IM, Quick J, Loman NJ, Neugebauer KM, Greninger AL, Jerome KR, Roychoudhury P, Xie H, Shrestha L, Huang M-L, Pitzer VE, Iwasaki A, Omer SB, Khan K, Bogoch II, Martinello RA, Foxman EF, Landry ML, Neher RA, Ko AI, Grubaugh ND. 2020. Coast-to-coast spread of SARS-CoV-2 during the early epidemic in the United States. Cell 181:990–996.E5. doi: 10.1016/j.cell.2020.04.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, Cui J, Lu J. 2020. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 7:1012–1023. doi: 10.1093/nsr/nwaa036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM, de Silva TI, McDanal C, Perez LG, Tang H, Moon-Walker A, Whelan SP, LaBranche CC, Saphire EO, Montefiori DC, Angyal A, Brown RL, Carrilero L, Green LR, Groves DC, Johnson KJ, Keeley AJ, Lindsey BB, Parsons PJ, Raza M, Rowland-Jones S, Smith N, Tucker RM, Wang D, Wyles MD. 2020. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182:812–827.E19. doi: 10.1016/j.cell.2020.06.043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bedford T, Greninger AL, Roychoudhury P, Starita LM, Famulare M, Huang M-L, Nalla A, Pepper G, Reinhardt A, Xie H, Shrestha L, Nguyen TN, Adler A, Brandstetter E, Cho S, Giroux D, Han PD, Fay K, Frazar CD, Ilcisin M, Lacombe K, Lee J, Kiavand A, Richardson M, Sibley TR, Truong M, Wolf CR, Nickerson DA, Rieder MJ, Englund JA, Hadfield J, Hodcroft EB, Huddleston J, Moncla LH, Müller NF, Neher RA, Deng X, Gu W, Federman S, Chiu C, Duchin JS, Gautom R, Melly G, Hiatt B, Dykema P, Lindquist S, Queen K, Tao Y, Uehara A, Tong S, MacCannell D, Armstrong GL, Seattle Flu Study Investigators, et al. 2020. Cryptic transmission of SARS-CoV-2 in Washington state. Science. doi: 10.1126/science.abc0523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Tyson JR, James P, Stoddart D, Sparks N, Wickenhagen A, Hall G, Choi JH, Lapointe H, Kamelian K, Smith AD, Prystajecky N, Goodfellow I, Wilson SJ, Harrigan R, Snutch TP, Loman NJ, Quick J. 2020. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore. bioRxiv 10.1101/2020.09.04.283077. [DOI]
  • 8.Itokawa K, Sekizuka T, Hashino M, Tanaka R, Kuroda M. 2020. Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. PLoS One 15:e0239403. doi: 10.1371/journal.pone.0239403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lieberman JA, Pepper G, Naccache SN, Huang M-L, Jerome KR, Greninger AL. 2020. Comparison of commercially available and laboratory-developed assays for in vitro detection of SARS-CoV-2 in clinical laboratories. J Clin Microbiol 58:e00821-20. doi: 10.1128/JCM.00821-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Nalla AK, Casto AM, Huang M-LW, Perchetti GA, Sampoleo R, Shrestha L, Wei Y, Zhu H, Jerome KR, Greninger AL. 2020. Comparative performance of SARS-CoV-2 detection assays using seven different primer-probe sets and one assay kit. J Clin Microbiol 58:e00557-20. doi: 10.1128/JCM.00557-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Perchetti GA, Nalla AK, Huang M-L, Zhu H, Wei Y, Stensland L, Loprieno MA, Jerome KR, Greninger AL. 2020. Validation of SARS-CoV-2 detection across multiple specimen types. J Clin Virol 128:104438. doi: 10.1016/j.jcv.2020.104438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, Du Plessis L, Pybus OG. 15 July 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol doi: 10.1038/s41564-020-0770-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Addetia A, Xie H, Roychoudhury P, Shrestha L, Loprieno M, Huang M-L, Jerome KR, Greninger AL. 2020. Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates. J Clin Virol 129:104523. doi: 10.1016/j.jcv.2020.104523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Addetia A, Lieberman NAP, Phung Q, Xie H, Roychoudhury P, Shrestha L, Loprieno M, Huang M-L, Jerome KR, Greninger AL. 2020. SARS-CoV-2 ORF6 disrupts nucleocytoplasmic transport through interactions with Rae1 and Nup98. bioRxiv https://www.biorxiv.org/content/10.1101/2020.08.03.234559v1.full. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplemental file 1
JCM.02226-20-s0001.pdf (72.5KB, pdf)

Data Availability Statement

Sequencing data are available under NCBI BioProject no. PRJNA610428 (Table 1). Code for assembling consensus FASTA genomes from FASTQ files is also available online (https://github.com/greninger-lab/covid_swift_pipeline).

TABLE 1.

Assembly and sequencing read accession numbers for strains sequenced in this studya

Strain GISAID accession no. SRA accession no.
WA-UW-4544 NA SRR12473512
WA-UW-4545 EPI_ISL_460621 SRR11939565
ID-UW-4550 EPI_ISL_460622 SRR11939564
WA-UW-4554 NA SRR12473511
WA-UW-4555 EPI_ISL_460623 SRR11939553
WA-UW-4562 EPI_ISL_460624 SRR11939542
WA-UW-4563 EPI_ISL_515271 SRR11939540
WA-UW-4569 EPI_ISL_515272 SRR11939539
WA-UW-4570 EPI_ISL_460625 SRR11939538
WA-UW-4572 EPI_ISL_497872 SRR11939537
WA-UW-4581 EPI_ISL_515273 SRR11939536
WA-UW-4585 EPI_ISL_515274 SRR11939535
WA-UW-4588 EPI_ISL_460626 SRR11939563
WA-UW-4589 EPI_ISL_515275 SRR11939562
WA-UW-4591 EPI_ISL_460627 SRR11939561
WA-UW-4592 EPI_ISL_515276 SRR11939560
ID-UW-4597 EPI_ISL_460628 SRR11939559
WA-UW-4599 EPI_ISL_515277 SRR11939558
ID-UW-4600 EPI_ISL_460629 SRR11939557
ID-UW-4601 EPI_ISL_515270 SRR11939556
WA-UW-4603 EPI_ISL_515278 SRR11939555
WA-UW-4607 EPI_ISL_513632 SRR12515115
WA-UW-4608 EPI_ISL_515279 SRR11939554
WA-UW-4610 EPI_ISL_515286 SRR12515114
WA-UW-4614 EPI_ISL_515280 SRR11939552
WA-UW-4615 EPI_ISL_515281 SRR11939551
WA-UW-4616 EPI_ISL_515282 SRR11939550
WA-UW-4618 EPI_ISL_515283 SRR11939549
WA-UW-4619 EPI_ISL_460630 SRR11939548
WA-UW-4620 EPI_ISL_515284 SRR11939547
WA-UW-4623 EPI_ISL_515285 SRR11939546
WA-UW-4627 EPI_ISL_513633 SRR12515113
WA-UW-4632 EPI_ISL_460631 SRR11939545
WA-UW-4633 EPI_ISL_460632 SRR11939544
WA-UW-4636 NA SRR12473505
WA-UW-4641 NA SRR12473504
WA-UW-4643 EPI_ISL_460633 SRR11939543
WA-UW-4646 EPI_ISL_460634 SRR11939541
WA-UW-4648 NA SRR12473503
WA-UW-4657 EPI_ISL_461399 SRR11940010
WA-UW-4660 EPI_ISL_513634 SRR11940009
WA-UW-4663 EPI_ISL_461400 SRR11939943
WA-UW-4664 EPI_ISL_513635 SRR11939932
WA-UW-4665 NA SRR12473502
WA-UW-4684 EPI_ISL_461401 SRR11939921
WA-UW-4687 NA SRR12473501
WA-UW-4698 EPI_ISL_461402 SRR11939974
WA-UW-4731 EPI_ISL_513636 SRR12515112
WA-UW-4735 NA SRR12473500
WA-UW-4738 NA SRR12473499
WA-UW-4750 NA SRR12473498
WA-UW-4758 EPI_ISL_513637 SRR11939963
WA-UW-4761 NA SRR12473510
WA-UW-4765 EPI_ISL_461403 SRR11939952
WA-UW-4881 NA SRR12473509
WA-UW-4884 NA SRR12473508
WA-UW-4888 NA SRR12473507
WA-UW-4898 EPI_ISL_513638 SRR12515111
WA-UW-4903 NA SRR12473506
WA-UW-4917 EPI_ISL_461404 SRR11939996
WA-UW-4931 EPI_ISL_461405 SRR11939985
a

Samples without a GISAID accession number were not considered complete genomes. NA, not applicable.


Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES