Skip to main content
Structural Dynamics logoLink to Structural Dynamics
editorial
. 2020 Dec 28;7(6):060401. doi: 10.1063/4.0000063

Launching Structural Dynamics

Majed Chergui 1,a)
PMCID: PMC7771997  PMID: 33415180

Since the birth of femtosecond optical spectroscopy at the end of the 1980s, the awareness was high that in order to be able to follow the actual atomic-level structural changes of a system over time, femtosecond spectroscopy needed to be pushed into the short-wavelength range, i.e., x-rays or electrons. Huge efforts were deployed in this respect since the early 2000s, using table-top sources of ultrashort x-ray to extreme Ultraviolet (EUV) pulses1–5 or synchrotron-based ones.6–13 A turning point came with the launch of the first hard x-ray free electron laser (XFEL), the Linear Coherent Light Source (LCLS) in 2010 in Stanford (USA),14 followed by the hard x-ray SPring-8 Angstrom Compact free-electron LAser (SACLA)15 in 2011 in Japan and the extreme-UV Free Electron laser Radiation for Multidisciplinary Investigations (FERMI) in 2012 in Trieste (Italy).16 The latter remains the sole machine operating in a seeded mode, i.e., a true free electron laser. In late 2017, three new hard and soft X-ray machines came into operation: the European XFEL in Hamburg,17 the Swiss Free electron laser (SwissFEL)18,19 at the Paul-Scherer-Institut in Villigen, and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) in South Korea.20 All these developments led to a flurry of scientific breakthroughs in chemistry, biology, and condensed matter physics,21–26 which are still on-going. In parallel, major achievements in time-resolved structural studies were taking place using electron-based methods, such as electron scattering and diffraction, electron microscopy, and electron energy loss spectroscopy (EELS).27–29

With this background in mind, in 2013 when the late Judith Flippen-Anderson,30 who served as the American Crystallographic Association (ACA) representative on the American Institute of Physics (AIP) Publishing Board of Managers, contacted me to ask if I would consider leading a new journal to fit this research area, I immediately accepted. The journal would be called Structural Dynamics (SDY) and would be co-published by the ACA and AIP Publishing. My spontaneous positive response was further strengthened by the latitude AIP Publishing gave me to help develop the editorial strategy of the journal and to choose the associate editors and editorial advisory board.

I took office as Editor-in-Chief (EiC) in January 2014 after I had assembled a board of associate editors consisting of the top scientists in the field, keeping a balance between areas of research and between experiment and theory. They did a superb job, and I am very grateful to them for their constant support and commitment. I also assembled a prestigious advisory editorial board consisting of 26 members, also chosen among the top names in the field of structural dynamics, taken in its broadest sense. I thank them warmly for their constant support and their help to represent the journal in the community. I would particularly like to thank John Helliwell and the late Ahmed Zewail31–34 who actively supported the journal in its effort to gather a community of authors.

Despite the initial momentum to start a journal in the field of ultrafast structural dynamics, the editors encountered some challenges since SDY was yet to be an established, open access journal in the community. However, through the years, the editorial and publishing staff worked in collaboration to actively promote the journal through various strategic efforts including attending key conferences, organizing community-driven special topics, and targeted commissioning. I am very thankful to the editors and AIP Publishing staff for all their efforts. As a result, the journal has successfully published 12 Special Issues on a variety of topics, including an issue in tribute to Ahmed H. Zewail, issues dedicated to the International Conference on Ultrafast Structural Dynamics and, since 2017, the Transactions from the American Crystallographic Association's Annual Meeting. The journal received its first Journal Impact Factor (JIF) of 3.667 in 2015 and has held steady through 2020 with a JIF of 3.217, which places SDY in the top quartile ranking of the Physics, Atomic, Molecular, and Chemical category by Clarivate Analytics. Interest and readership have continued to grow as evidenced by the increase in downloads and citations. Year-to-date, the journal has already received over 130 000 downloads, its highest annual total yet, and the number of citations has increased 600% since 2016.

I am proud that the journal has now evolved into an established forum for the community of ultrafast EUV to x-ray and electron scientists. After seven years as Editor-in-Chief, I am delighted to pass the torch to my colleague George Philips who will take on the reins of Editor-in-Chief in January 2021. George has been an associate editor since SDY was first launched and has been an intricate member of the editorial team working through challenges and celebrating successes. I have every confidence that George will be a strong leader for SDY bringing in new editorial ideas and strategies to lead the journal for many years to come.

One of the greatest rewards I had as the Editor-in-Chief was the collaboration and outstanding support of the staff at AIP Publishing and the ACA. Without them, none of this would have been possible. Their commitment and their flexibility to solve problems have been crucial to this adventure. I thank them wholeheartedly, and I will miss them all. Finally, I would once again like to thank the associate editors and the members of the advisory board for their many suggestions on how to improve the journal and their constant help and support. Last but not least, a warm thank you to all the authors for the wonderful papers and exciting results they published in Structural Dynamics. They made the journal.

References

  • 1. Cao J. S. and Wilson K. R., “ Ultrafast x-ray diffraction theory,” J. Phys. Chem. A 102(47), 9523–9530 (1998). 10.1021/jp982054p [DOI] [Google Scholar]
  • 2. Cavalleri A., Siders C. W., Brown F. L. H., Leitner D. M., Toth C., Squier J. A., Barty C. P. J., Wilson K. R., Sokolowski-Tinten K., von Hoegen M. H., von der Linde D., and Kammler M., “ Anharmonic lattice dynamics in germanium measured with ultrafast x-ray diffraction,” Phys. Rev. Lett. 85(3), 586–589 (2000). 10.1103/PhysRevLett.85.586 [DOI] [PubMed] [Google Scholar]
  • 3. Cavalleri A. and Schoenlein R. W., “ Femtosecond x-rays and structural dynamics in condensed matter,” Top. Appl. Phys. 92, 309–337 (2004). 10.1007/b13749 [DOI] [Google Scholar]
  • 4. Sokolowski-Tinten K., Blome C., Blums J., Cavalleri A., Dietrich C., Tarasevitch A., Uschmann I., Förster E., Kammler M., Horn-von-Hoegen M., and von der Linde D., “ Femtosecond x-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422(6929), 287–289 (2003). 10.1038/nature01490 [DOI] [PubMed] [Google Scholar]
  • 5. Elsaesser T. and Woerner M., “ Photoinduced structural dynamics of polar solids studied by femtosecond x-ray diffraction,” Acta Crystallogr., Sect. A 66, 168–178 (2010). 10.1107/S0108767309048181 [DOI] [PubMed] [Google Scholar]
  • 6. Heimann P. A., Lindenberg A. M., Kang I., Johnson S., Missalla T., Chang Z., Falcone R. W., Schoenlein R. W., Glover T. E., and Padmore H. A., “ Ultrafast x-ray diffraction of laser-irradiated crystals,” Nucl. Instrum. Methods Phys. Res., Sect. A 467, 986–989 (2001). 10.1016/S0168-9002(01)00547-2 [DOI] [Google Scholar]
  • 7. Chen L. X., “ Probing transient molecular structures with time-resolved pump/probe XAFS using synchrotron x-ray sources,” J. Electron. Spectrosc. 119(2–3), 161–174 (2001). 10.1016/S0368-2048(01)00289-4 [DOI] [Google Scholar]
  • 8. Johnson S. L., Heimann P. A., Lindenberg A. M., Jeschke H. O., Garcia M. E., Chang Z., Lee R. W., Rehr J. J., and Falcone R. W., “ Properties of liquid silicon observed by time-resolved x-ray absorption spectroscopy,” Phys. Rev. Lett 91(15), 157403 (2003). 10.1103/PhysRevLett.91.157403 [DOI] [PubMed] [Google Scholar]
  • 9. Lindenberg A. M., Kang I., Johnson S. L., Missalla T., Heimann P. A., Chang Z., Larsson J., Bucksbaum P. H., Kapteyn H. C., Padmore H. A., Lee R. W., Wark J. S., and Falcone R. W., “ Time-resolved x-ray diffraction from coherent phonons during a laser-induced phase transition,” Phys. Rev. Lett. 84(1), 111–114 (2000). 10.1103/PhysRevLett.84.111 [DOI] [PubMed] [Google Scholar]
  • 10. Saes M., van Mourik F., Gawelda W., Kaiser M., Chergui M., Bressler C., Grolimund D., Abela R., Glover T. E., Heimann P. A., Schoenlein R. W., Johnson S. L., Lindenberg A. M., and Falcone R. W., “ A setup for ultrafast time-resolved x-ray absorption spectroscopy,” Rev. Sci. Instrum. 75(1), 24–30 (2004). 10.1063/1.1633003 [DOI] [Google Scholar]
  • 11. Bressler C. and Chergui M., “ Ultrafast x-ray absorption spectroscopy,” Chem. Rev. 104(4), 1781–1812 (2004). 10.1021/cr0206667 [DOI] [PubMed] [Google Scholar]
  • 12. Chen L. X., “ Taking snapshots of photoexcited molecules in disordered media by using pulsed synchrotron x-rays,” Angew Chem., Int. Ed. 43(22), 2886–2905 (2004). 10.1002/anie.200300596 [DOI] [PubMed] [Google Scholar]
  • 13. Bressler C., Abela R., and Chergui M., “ Exploiting EXAFS and XANES for time-resolved molecular structures in liquids,” Z. Kristallogr. 223(4–5), 307–321 (2008). 10.1524/zkri.2008.0030 [DOI] [Google Scholar]
  • 14. Emma P., Akre R., Arthur J., Bionta R., B ostedt C., Bozek J., Brachmann A., Bucksbaum P., Coffee R., Decker F. J., Ding Y., Dowell D., Edstrom S., Fisher A., Frisch J., Gilevich S., Hastings J., Hays G., Hering P., Huang Z., Iverson R., Loos H., Messerschmidt M., Miahnahri A., Moeller S., Nuhn H. D., Pile G., Ratner D., Rzepiela J., Schultz D., Smith T., Stefan P., Tompkins H., Turner J., Welch J., White W., Wu J., Yocky G., and Galayda J., “ First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics 4(9), 641–647 (2010). 10.1038/nphoton.2010.176 [DOI] [Google Scholar]
  • 15. Ishikawa T., Aoyagi H., Asaka T., Asano Y., Azumi N., Bizen T., Ego H., Fukami K., Fukui T., Furukawa Y., Goto S., Hanaki H., Hara T., Hasegawa T., Hatsui T., Higashiya A., Hirono T., Hosoda N., Ishii M., Inagaki T., Inubushi Y., Itoga T., Joti Y., Kago M., Kameshima T., Kimura H., Kirihara Y., Kiyomichi A., Kobayashi T., Kondo C., Kudo T., Maesaka H., Marechal X. M., Masuda T., Matsubara S., Matsumoto T., Matsushita T., Matsui S., Nagasono M., Nariyama N., Ohashi H., Ohata T., Ohshima T., Ono S., Otake Y., Saji C., Sakurai T., Sato T., Sawada K., Seike T., Shirasawa K., Sugimoto T., Suzuki S., Takahashi S., Takebe H., Takeshita K., Tamasaku K., Tanaka H., Tanaka R., Tanaka T., Togashi T., Togawa K., Tokuhisa A., Tomizawa H., Tono K., Wu S. K., Yabashi M., Yamaga M., Yamashita A., Yanagida K., Zhang C., Shintake T., Kitamura H., and Kumagai N. A., “ Compact x-ray free-electron laser emitting in the sub-angstrom region,” Nat. Photonics 6(8), 540–544 (2012). 10.1038/nphoton.2012.141 [DOI] [Google Scholar]
  • 16. Allaria E., Appio R., Badano L., Barletta W. A., Bassanese S., Biedron S. G., Borga A., Busetto E., Castronovo D., Cinquegrana P., Cleva S., Cocco D., Cornacchia M., Craievich P., Cudin I., D'Auria G., Dal Forno M., Danailov M. B., De Monte R., De Ninno G., Delgiusto P., Demidovich A., Di Mitri S., Diviacco B., Fabris A., Fabris R., Fawley W., Ferianis M., Ferrari E., Ferry S., Froehlich L., Furlan P., Gaio G., Gelmetti F., Giannessi L., Giannini M., Gobessi R., Ivanov R., Karantzoulis E., Lonza M., Lutman A., Mahieu B., Milloch M., Milton S. V., Musardo M., Nikolov I., Noe S., Parmigiani F., Penco G., Petronio M., Pivetta L., Predonzani M., Rossi F., Rumiz L., Salom A., Scafuri C., Serpico C., Sigalotti P., Spampinati S., Spezzani C., Svandrlik M., Svetina C., Tazzari S., Trovo M., Umer R., Vascotto A., Veronese M., Visintini R., Zaccaria M., Zangrando D., and Zangrando M., “ Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet,” Nat. Photonics 6(10), 699–704 (2012). 10.1038/nphoton.2012.233 [DOI] [Google Scholar]
  • 17. Tschentscher T., Bressler C., Grünert J., Madsen A., Mancuso A. P., Meyer M., Scherz A., Sinn H., and Zastrau U., “ Photon beam transport and scientific instruments at the European XFEL,” Appl. Sci. 7(6), 592 (2017). 10.3390/app7060592 [DOI] [Google Scholar]
  • 18. Milne C. J., Schietinger T., Aiba M., Alarcon A., Alex J., Anghel A., Arsov V., Beard C., Beaud P., and Bettoni S., “ SwissFEL: The swiss x-ray free electron laser,” Appl. Sci. 7(7), 720 (2017). 10.3390/app7070720 [DOI] [Google Scholar]
  • 19. Prat E., Abela R., Aiba M., Alarcon A., Alex J., Arbelo Y., Arrell C., Arsov V., Bacellar C., Beard C., Beaud P., Bettoni S., Biffiger R., Bopp M., Braun H.-H., Calvi M., Cassar A., Celcer T., Chergui M., Chevtsov P., Cirelli C., Citterio A., Craievich P., Divall M. C., Dax A., Dehler M., Deng Y., Dietrich A., Dijkstal P., Dinapoli R., Dordevic S., Ebner S., Engeler D., Erny C., Esposito V., Ferrari E., Flechsig U., Follath R., Frei F., Ganter R., Garvey T., Geng Z., Gobbo A., Gough C., Hauff A., Hauri C. P., Hiller N., Hunziker S., Huppert M., Ingold G., Ischebeck R., Janousch M., Johnson P. J. M., Johnson S. L., Juranić P., Jurcevic M., Kaiser M., Kalt R., Keil B., Kiselev D., Kittel C., Knopp G., Koprek W., Laznovsky M., Lemke H. T., Sancho D. L., Löhl F., Malyzhenkov A., Mancini G. F., Mankowsky R., Marcellini F., Marinkovic G., Martiel I., Märki F., Milne C. J., Mozzanica A., Nass K., Orlandi G. L., Loch C. O., Paraliev M., Patterson B., Patthey L., Pedrini B., Pedrozzi M., Pradervand C., Radi P., Raguin J.-Y., Redford S., Rehanek J., Reiche S., Rivkin L., Romann A., Sala L., Sander M., Schietinger T., Schilcher T., Schlott V., Schmidt T., Seidel M., Stadler M., Stingelin L., Svetina C., Treyer D. M., Trisorio A., Vicario C., Voulot D., Wrulich A., Zerdane S., and Zimoch E., “ A compact and cost-effective hard x-ray free-electron laser driven by a high-brightness and low-energy electron beam,” Nat. Photonics 14(12), 748–754 (2020). 10.1038/s41566-020-00712-8 [DOI] [Google Scholar]
  • 20. Ko I. S., Kang H.-S., Heo H., Kim C., Kim G., Min C.-K., Yang H., Baek S. Y., Choi H.-J., Mun G., Park B. R., Suh Y. J., Shin D. C., Hu J., Hong J., Jung S., Kim S.-H., Kim K.-H., Na D., Park S. S., Park Y. J., Jung Y. G., Jeong S. H., Lee H. G., Lee S., Lee S., Oh B., Suh H. S., Han J.-H., Kim M. H., Jung N.-S., Kim Y.-C., Lee M.-S., Lee B.-H., Sung C.-W., Mok I.-S., Yang J.-M., Parc Y. W., Lee W.-W., Lee C.-S., Shin H., Kim J. H., Kim Y., Lee J. H., Park S.-Y., Kim J., Park J., Eom I., Rah S., Kim S., Nam K. H., Park J., Park J., Kim S., Kwon S., An R., Park S. H., Kim K. S., Hyun H., Kim S. N., Kim S., Yu C. J., Kim B.-S., Kang T.-H., Kim K.-W., Kim S.-H., Lee H.-S., Lee H.-S., Park K.-H., Koo T.-Y., Kim D.-E., and Lee K. B., “ Construction and commissioning of PAL-XFEL facility,” Appl. Sci. 7(5), 479 (2017). 10.3390/app7050479 [DOI] [Google Scholar]
  • 21. Bostedt C., Boutet S., Fritz D. M., Huang Z., Lee H. J., Lemke H. T., Robert A., Schlotter W. F., Turner J. J., and Williams G. J., “ Linac coherent light source: The first five years,” Rev. Mod. Phys. 8888(1), 015007 (2016). 10.1103/RevModPhys.88.015007 [DOI] [Google Scholar]
  • 22. Gessner O. and Gühr M., “ Monitoring ultrafast chemical dynamics by time-domain x-ray photo- and Auger-electron spectroscopy,” Acc. Chem. Res. 49(1), 138–145 (2016). 10.1021/acs.accounts.5b00361 [DOI] [PubMed] [Google Scholar]
  • 23. Zhang W. and Gaffney K. J., “ Mechanistic studies of photoinduced spin crossover and electron transfer in inorganic complexes,” Acc. Chem. Res. 48(4), 1140–1148 (2015). 10.1021/ar500407p [DOI] [PubMed] [Google Scholar]
  • 24. Abela R., Beaud P., Van Bokhoven J. A., Chergui M., Feurer T., Haase J., Ingold G., Johnson S. L., Knopp G., and Lemke H., “ Perspective: Opportunities for ultrafast science at SwissFEL,” Struct. Dyn. 4(6), 061602 (2017). 10.1063/1.4997222 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Chergui M., “ Emerging photon technologies for chemical dynamics,” Faraday Discuss. 171(0), 11–40 (2014). 10.1039/C4FD00157E [DOI] [PubMed] [Google Scholar]
  • 26. Geneaux R., Marroux H. J. B., Guggenmos A., Neumark D. M., and Leone S. R., “ Transient absorption spectroscopy using high harmonic generation: A review of ultrafast x-ray dynamics in molecules and solids,” Philos. Trans. R. Soc. A 2019, 377–20170463 (2145). 10.1098/rsta.2017.0463 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Zewail A. H. and Thomas J. M., 4D Electron Microscopy: Imaging in Space and Time ( World Scientific, 2010). [Google Scholar]
  • 28. Shorokhov D. and Zewail A. H., “ Perspective: 4D ultrafast electron Microscopy—evolutions and revolutions,” J. Chem. Phys. 144(8), 080901 (2016). 10.1063/1.4941375 [DOI] [PubMed] [Google Scholar]
  • 29. Ischenko A. A., Weber P. M., and Miller R. J. D., “ Capturing chemistry in action with electrons: Realization of atomically resolved reaction dynamics,” Chem. Rev. 117(16), 11066–11124 (2017). 10.1021/acs.chemrev.6b00770 [DOI] [PubMed] [Google Scholar]
  • 30. Chergui M., “ Editorial: In Memoriam-Judith Flippen-Anderson (1941–2018),” Struct Dyn. 5(4), 040401 (2018). 10.1063/1.5049131 [DOI] [Google Scholar]
  • 31. Chergui M., “ In memoriam: Ahmed Hassan Zewail (1946–2016),” Struct. Dyn. 3(4), 040401 (2016). 10.1063/1.4961968 [DOI] [Google Scholar]
  • 32. Chergui M. and Zhong D. P., “ A legacy in chemistry,” Chem 4(10), 2242–2249 (2018). 10.1016/j.chempr.2018.09.006 [DOI] [Google Scholar]
  • 33. Chergui M. and Thomas J. M., “ From structure to structural dynamics: Ahmed Zewail's legacy,” Struct. Dyn. 4(4), 043802 (2017). 10.1063/1.4998243 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Chergui M., Personal and Scientific Reminiscences: Tributes to Ahmed Zewail ( World Scientific, New Jersey, 2018). [Google Scholar]

Articles from Structural Dynamics are provided here courtesy of American Institute of Physics

RESOURCES