Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Dec 29;15(3):464–482. doi: 10.1007/s11705-020-1983-0

The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review

Hiep Thuan Lu 1,2,3,, Wen Li 1, Ehsan Soroodan Miandoab 1, Shinji Kanehashi 4, Guoping Hu 1,5,
PMCID: PMC7772061  PMID: 33391844

Abstract

The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (⩽10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (⩾300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H2/CH4 selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology. graphic file with name 11705_2020_1983_Fig1_HTML.jpg

Keywords: power to hydrogen, membrane technology, hydrogen, energy

Acknowledgements

The authors acknowledge the support of Early Career Researcher Grants Scheme awarded by the University of Melbourne entitled ‘Production of High Purity Hydrogen from Mixed Pipeline Gases’ and Future Fuel Cooperative Research Centre (CRC) ‘Novel Separation Technology development for hydrogen and future fuels systems’.

Contributor Information

Hiep Thuan Lu, Email: H.lu@latrobe.edu.au.

Guoping Hu, Email: guoping.hu@unimelb.edu.au.

References

  • 1.BP. BP Energy Outlook: 2019 edition. 2019
  • 2.International Energy Agency. World Energy Outlook 2013. Flagship report. 2013
  • 3.International Energy Agency. Oil 2020. Fuel Report. 2020
  • 4.United Nations. Paris Agreement—United Nations Framework Convention on Climate Change. 2015
  • 5.Pour N, Webley P A, Cook P J. Opportunities for application of BECCS in the Australian power sector. Applied Energy. 2018;224:615–635. [Google Scholar]
  • 6.Kemper J. Biomass and carbon dioxide capture and storage: a review. International Journal of Greenhouse Gas Control. 2015;40:401–430. [Google Scholar]
  • 7.Rubin E, Meyer L, Coninck H D, Abanades J C, Akai M, Benson S, Caldeira K, Cook P, Davidson O, Doctor R, et al. IPCC special report on carbon dioxide capture and storage. Carbon Dioxide Capture and Storage. 2005
  • 8.Global CCS Institute. The Global Status of CCS. 2017
  • 9.Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy. International Journal of Hydrogen Energy. 2012;37(2):1184–1203. [Google Scholar]
  • 10.Mohn K. The gravity of status quo: a review of IEA’s world energy outlook. Economics of Energy & Environmental Policy, 2020, 9 (1), DOI: 10.5547/2160-5890.8.2.kmoh
  • 11.International Energy Agency. Market Report Series: Renewables 2018: Analysis and Forecasts to 2023. 2018
  • 12.Pecher A, Kofoed J P. Handbook of Ocean Wave Energy. London: Springer Nature; 2017. p. 20. [Google Scholar]
  • 13.International Energy Agency. Global Energy & CO2 Status Report 2019. Flagship Report. 2019
  • 14.Robinius M, Raje T, Nykamp S, Rott T, Müller M, Grube T, Katzenbach B, Küppers S, Stolten D. Power-to-gas: electrolyzers as an alternative to network expansion—an example from a distribution system operator. Applied Energy. 2018;210:182–197. [Google Scholar]
  • 15.Maroufmashat A, Fowler M. Transition of future energy system infrastructure through power-to-gas pathways. Energies. 2017;10(8):1089. [Google Scholar]
  • 16.Kreuter W, Hofmann H. Electrolysis: the important energy transformer in a world of sustainable energy. International Journal of Hydrogen Energy. 1998;23(8):661–666. [Google Scholar]
  • 17.Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE. 2011;100(2):410–426. [Google Scholar]
  • 18.Laguna Bercero M. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. Journal of Power Sources. 2012;203:4–16. [Google Scholar]
  • 19.Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T. Renewable power-to-gas: a technological and economic review. Renewable Energy. 2016;85:1371–1390. [Google Scholar]
  • 20.Ehteshami S M M, Chan S H. The role of hydrogen and fuel cells to store renewable energy in the future energy network—potentials and challenges. Energy Policy. 2014;73:103–109. [Google Scholar]
  • 21.International Energy Agency. The Future of Hydrogen. Technology Report. 2019
  • 22.Sato S, Nagai K. Polymer membranes with hydrogen-selective and hydrogen-rejective properties. Membrane. 2005;30(1):20–28. [Google Scholar]
  • 23.Liemberger W, Groß M, Miltner M, Harasek M. Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas. Journal of Cleaner Production. 2017;167:896–907. [Google Scholar]
  • 24.Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy. 2013;38(5):2039–2061. [Google Scholar]
  • 25.Sinigaglia T, Lewiski F, Santos M E, Mairesse Siluk J C. Production, storage, fuel stations of hydrogen and its utilization in automotive applications: a review. International Journal of Hydrogen Energy. 2017;42(39):24597–24611. [Google Scholar]
  • 26.Demir M E, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios. International Journal of Hydrogen Energy. 2018;43(22):10420–10430. [Google Scholar]
  • 27.Saadi F H, Lewis N S, McFarland E W. Relative costs of transporting electrical and chemical energy. Energy & Environmental Science. 2018;11(3):469–475. [Google Scholar]
  • 28.van der Zwaan B C C, Schoots K, Rivera Tinoco R, Verbong G P J. The cost of pipelining climate change mitigation: an overview of the economics of CH4, CO2 and H2 transportation. Applied Energy. 2011;88(11):3821–3831. [Google Scholar]
  • 29.Dodds P E, Staffell I, Hawkes A D, Li F, Grünewald P, McDowall W, Ekins P. Hydrogen and fuel cell technologies for heating: a review. International Journal of Hydrogen Energy. 2015;40(5):2065–2083. [Google Scholar]
  • 30.Melaina M W, Antonia O, Penev M. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues. Technical Report NREL/TP-5600-51995. 2013
  • 31.SNAM . Global Gas Report 2018. Washington D.C.: International Gas Union; 2018. [Google Scholar]
  • 32.Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode. International Journal of Hydrogen Energy. 2007;32(2):268–286. [Google Scholar]
  • 33.Schmura E, Klingenberg M, Paster M, Gruber J. Existing Natural Gas Pipeline Materials and Associated Operational Characteristics. DOE Hydrogen Program-FY 2005 Progress Report. 2005
  • 34.Al Rafea K. Utilizing ‘power-to-gas’ technology for storing energy and to optimize the synergy between environmental obligations and economical requirements. Ontario: University of Waterloo; 2017. p. 13. [Google Scholar]
  • 35.Altfeld K, Pinchbeck D. Admissible hydrogen concentrations in natural gas systems. Gas Energy. 2013;2103(03):1–2. [Google Scholar]
  • 36.Penev M, Melaina M, Bush B, Muratori M, Warner E, Chen Y. Low-Carbon Natural Gas for Transportation: Well-to-Wheels Emissions and Potential Market Assessment in California. Technical Report NREL/TP-6A50-66538. 2016
  • 37.Jemena Gas Networks (NSW) Limited. Western Sydney Green Gas Project-Environmental Impact Statement. 2019
  • 38.Karim G A, Wierzba I, Al Alousi Y. Methane-hydrogen mixtures as fuels. International Journal of Hydrogen Energy. 1996;21(7):625–631. [Google Scholar]
  • 39.Todd D M. Proceedings of the 2000 Gasification Technologies Conference. Schenectady, NY: GE Power Systems; 2000. Gas turbine improvements enhance IGCC viability; pp. 8–11. [Google Scholar]
  • 40.Adhikari S, Fernando S. Hydrogen membrane separation techniques. Industrial & Engineering Chemistry Research. 2006;45(3):875–881. [Google Scholar]
  • 41.Lu H T. The impact of impurities on the performance of cellulose triacetate membranes for CO2 separation. Parkville: The University of Melbourne; 2018. pp. 3–47. [Google Scholar]
  • 42.Baker R W. Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research. 2002;41(6):1393–1411. [Google Scholar]
  • 43.Ghosal K, Freeman B D. Gas separation using polymer membranes: an overview. Polymers for Advanced Technologies. 1994;5(11):673–697. [Google Scholar]
  • 44.Merkel T C, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. Journal of Membrane Science. 2010;359(1–2):126–139. [Google Scholar]
  • 45.Kentish S E, Scholes C A, Stevens G W. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering. 2008;1(1):52–66. [Google Scholar]
  • 46.Chen G, Buck F, Kistner I, Widenmeyer M, Schiestel T, Schulz A, Walker M, Weidenkaff A. A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal. 2020;392:123699. [Google Scholar]
  • 47.Bogaerts A, Neyts E C. Plasma technology: an emerging technology for energy storage. ACS Energy Letters. 2018;3(4):1013–1027. [Google Scholar]
  • 48.Barelli L, Bidini G, Gallorini F, Servili S. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy. 2008;33(4):554–570. [Google Scholar]
  • 49.Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science. 2015;495:130–168. [Google Scholar]
  • 50.Zornoza B, Casado C, Navajas A. Chapter 11 Advances in Hydrogen Separation and Purification with Membrane Technology. Amsterdam: Elsevier; 2013. pp. 245–268. [Google Scholar]
  • 51.Ockwig N W, Nenoff T M. Membranes for hydrogen separation. Chemical Reviews. 2007;107(10):4078–4110. doi: 10.1021/cr0501792. [DOI] [PubMed] [Google Scholar]
  • 52.Koros W J, Fleming G. Membrane-based gas separation. Journal of Membrane Science. 1993;83(1):1–80. [Google Scholar]
  • 53.Hu G, Jiang K, Wang R, Li G. Chapter 7. Technological assessment of CO2 capture and EOR/EGR/ECBM-based storage. In: Cheung F M, Hong Y, editors. Green Finance, Sustainable Development, and the Belt and Road Initiative. London: Taylor & Francis; 2021. [Google Scholar]
  • 54.Uhlhorn R, Keizer K, Burggraaf A. Gas and surface diffusion in modified γ-alumina systems. Journal of Membrane Science. 1989;46(2–3):225–241. [Google Scholar]
  • 55.Paul D. 1.04-Fundamentals of Transport Phenomena in Polymer Membranes. In: Drioli E, Giorno L, editors. Comprehensive Membrane Science and Engineering. Oxford: Elsevier; 2010. pp. 75–90. [Google Scholar]
  • 56.Boutilier M S, Sun C, O’Hern S C, Au H, Hadjiconstantinou N G, Karnik R. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano. 2014;8(1):841–849. doi: 10.1021/nn405537u. [DOI] [PubMed] [Google Scholar]
  • 57.Lin H, Freeman B D. Gas solubility, diffusivity and permeability in poly(ethylene oxide) Journal of Membrane Science. 2004;239(1):105–117. [Google Scholar]
  • 58.Roa F, Way J D. Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladiumcopper membranes. Industrial & Engineering Chemistry Research. 2003;42(23):5827–5835. [Google Scholar]
  • 59.Baker R W, Lokhandwala K. Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research. 2008;47(7):2109–2121. [Google Scholar]
  • 60.Lu G, Da Costa J D, Duke M, Giessler S, Socolow R, Williams R, Kreutz T. Inorganic membranes for hydrogen production and purification: a critical review and perspective. Journal of Colloid and Interface Science. 2007;314(2):589–603. doi: 10.1016/j.jcis.2007.05.067. [DOI] [PubMed] [Google Scholar]
  • 61.Yun S, Ted Oyama S. Correlations in palladium membranes for hydrogen separation: a review. Journal of Membrane Science. 2011;375(1–2):28–45. [Google Scholar]
  • 62.Kamakoti P, Morreale B D, Ciocco M V, Howard B H, Killmeyer R P, Cugini A V, Sholl D S. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science. 2005;307(5709):569–573. doi: 10.1126/science.1107041. [DOI] [PubMed] [Google Scholar]
  • 63.O’Brien C P, Howard B H, Miller J B, Morreale B D, Gellman A J. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 °C. Journal of Membrane Science. 2010;349(1–2):380–384. [Google Scholar]
  • 64.Kuraoka K, Zhao H, Yazawa T. Pore-filled palladium-glass composite membranes for hydrogen separation by novel electro-less plating technique. Journal of Materials Science. 2004;39(5):1879–1881. [Google Scholar]
  • 65.Itoh N, Akiha T, Sato T. Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity. Catalysis Today. 2005;104(2–4):231–237. [Google Scholar]
  • 66.Burggraaf A J. Important Characteristics of Inorganic Membranes. Amsterdam: Elsevier; 1996. pp. 21–34. [Google Scholar]
  • 67.Collins J P, Way J D. Hydrogen selective membrane. US Patent, 5652020, 1997-07-29
  • 68.Yan S, Maeda H, Kusakabe K, Morooka S. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation. Industrial & Engineering Chemistry Research. 1994;33(3):616–622. [Google Scholar]
  • 69.Yun S, Ko J H, Oyama S T. Ultrathin palladium membranes prepared by a novel electric field assisted activation. Journal of Membrane Science. 2011;369(1–2):482–489. [Google Scholar]
  • 70.Tong J, Shirai R, Kashima Y, Matsumura Y. Preparation of a pinhole-free PdAg membrane on a porous metal support for pure hydrogen separation. Journal of Membrane Science. 2005;260(1–2):84–89. [Google Scholar]
  • 71.Shi Z, Wu S, Szpunar J A, Roshd M. An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science. 2006;280(1–2):705–711. [Google Scholar]
  • 72.Okazaki J, Tanaka D A P, Tanco M A L, Wakui Y, Mizukami F, Suzuki T M. Hydrogen permeability study of the thin PdAg alloy membranes in the temperature range across the αβ phase transition. Journal of Membrane Science. 2006;282(1–2):370–374. [Google Scholar]
  • 73.Harris J R. Coated diffusion membrane and its use. US Patent, 4536196, 1985-08-20
  • 74.Peters T A, Kaleta T, Stange M, Bredesen R. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. Journal of Membrane Science. 2011;383(1–2):124–134. [Google Scholar]
  • 75.Peters T A, Kaleta T, Stange M, Bredesen R. Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures. Catalysis Today. 2012;193(1):8–19. [Google Scholar]
  • 76.Nair B K R, Choi J, Harold M P. Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes. Journal of Membrane Science. 2007;288(1–2):67–84. [Google Scholar]
  • 77.Gade S K, Thoen P M, Way J D. Unsupported palladium alloy foil membranes fabricated by electroless plating. Journal of Membrane Science. 2008;316(1–2):112–118. [Google Scholar]
  • 78.Sanz R, Calles J A, Alique D, Furones L, Ordóñez S, Marín P, Corengia P, Fernandez E. Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane. International Journal of Hydrogen Energy. 2011;36(24):15783–15793. [Google Scholar]
  • 79.Roa F, Block M J, Way J D. The influence of alloy composition on the H2 flux of composite Pd-Cu membranes. Desalination. 2002;147(1–3):411–416. [Google Scholar]
  • 80.Lukyanov B N, Andreev D V, Parmon V N. Catalytic reactors with hydrogen membrane separation. Chemical Engineering Journal. 2009;154(1–3):258–266. [Google Scholar]
  • 81.Emerson S, Magdefrau N, She Y, Thibaud Erkey C. Advanced Palladium Membrane Scale-up for Hydrogen Separation. Technical Report DEFE0004967. 2012
  • 82.De Falco M, Iaquaniello G, Palo E, Cucchiella B, Palma V, Ciambelli P. Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor. In: Handbook of Membrane Reactors. Cambridge: Wood-head Publishing, 2013, 456–486
  • 83.Rosensteel W A, Ricote S, Sullivan N P. Hydrogen permeation through dense BaCe0.8Y0.2O3δCe0.8Y0.2O2δ composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy. 2016;41(4):2598–2606. [Google Scholar]
  • 84.Elangovan S, Nair B, Small T, Heck B, Bay I, Timper M, Hartvigsen J, Wilson M. Ceramic membrane devices for ultra-high purity hydrogen production: mixed conducting membrane development. New York: Springer; 2009. pp. 67–81. [Google Scholar]
  • 85.Phair J, Badwal S. Review of proton conductors for hydrogen separation. Ionics. 2006;12(2):103–115. [Google Scholar]
  • 86.Tao Z, Yan L, Qiao J, Wang B, Zhang L, Zhang J. A review of advanced proton-conducting materials for hydrogen separation. Progress in Materials Science. 2015;74:1–50. [Google Scholar]
  • 87.Fontaine M L, Norby T, Larring Y, Grande T, Bredesen R. Oxygen and hydrogen separation membranes based on dense ceramic conductors. Membrane Science and Technology. 2008;13:401–458. [Google Scholar]
  • 88.Cardoso S P, Azenha I S, Lin Z, Portugal I, Rodrigues A E, Silva C M. Inorganic membranes for hydrogen separation. Separation and Purification Reviews. 2018;47(3):229–266. [Google Scholar]
  • 89.Lundin S T B, Patki N S, Fuerst T F, Ricote S, Wolden C A, Way J D. Dense Inorganic Membranes for Hydrogen Separation. New Jersey: World Scientific Publishing; 2017. [Google Scholar]
  • 90.Meulenberg W, Ivanova M, Serra J, Roitsch S. Proton-Conducting Ceramic Membranes for Solid Oxide Fuel Cells and Hydrogen (H2) Processing. Amsterdam: Elsevier; 2011. pp. 541–567. [Google Scholar]
  • 91.Tan X, Tan X, Yang N, Meng B, Zhang K, Liu S. High performance BaCe0.8Y0.2O3−α (BCY) hollow fibre membranes for hydrogen permeation. Ceramics International. 2014;40(2):3131–3138. [Google Scholar]
  • 92.Hung I M, Chiang Y J, Jang J S C, Lin J C, Lee S W, Chang J K, Hsi C S. The proton conduction and hydrogen permeation characteristic of Sr(Ce0.6Zr0.4)0.85Y0.15O3−δ ceramic separation membrane. Journal of the European Ceramic Society. 2015;35(1):163–170. [Google Scholar]
  • 93.Mather G C, Poulidi D, Thursfield A, Pascual M J, Jurado J R, Metcalfe I S. Hydrogen-permeation characteristics of a SrCeO3-based ceramic separation membrane: thermal, ageing and surface-modification effects. Solid State Ionics. 2010;181(3–4):230–235. [Google Scholar]
  • 94.Omata T, Otsuka Yao Matsuo S. Infrared absorption spectra of high temperature proton conducting Ca2+-doped La2Zr2O7. Journal of the Electrochemical Society. 2001;148(12):475–482. [Google Scholar]
  • 95.Hamakawa S, Li L, Li A, Iglesia E. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3−α thin films. Solid State Ionics. 2002;148(1–2):71–81. [Google Scholar]
  • 96.Tong J, Su L, Haraya K, Suda H. Thin and defect-free Pd-based composite membrane without any interlayer and substrate penetration by a combined organic and inorganic process. Chemical Communications. 2006;10:1142–1144. doi: 10.1039/b513613j. [DOI] [PubMed] [Google Scholar]
  • 97.Escolástico S, Somacescu S, Serra J M. Tailoring mixed ionicelectronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO1125−δ. Journal of Materials Chemistry. A, Materials for Energy and Sustainability. 2015;3(2):719–731. [Google Scholar]
  • 98.Chen Y, Cheng S, Chen L, Wei Y, Ashman P J, Wang H. Niobium and molybdenum co-doped La5.5WO1125−δ membrane with improved hydrogen permeability. Journal of Membrane Science. 2016;510:155–163. [Google Scholar]
  • 99.Zhu Z, Sun W, Wang Z, Cao J, Dong Y, Liu W. A high stability NiLa0.5Ce0.5O2−δ asymmetrical metalceramic membrane for hydrogen separation and generation. Journal of Power Sources. 2015;281:417–424. [Google Scholar]
  • 100.Balachandran U, Lee T, Chen L, Song S, Picciolo J, Dorris S. Hydrogen separation by dense cermet membranes. Fuel. 2006;85(2):150–155. [Google Scholar]
  • 101.Meng X, Song J, Yang N, Meng B, Tan X, Ma Z F, Li K. NiBaCe0.95Tb0.05O3−δ cermet membranes for hydrogen permeation. Journal of Membrane Science. 2012;401:300–305. [Google Scholar]
  • 102.Rebollo E, Mortalò C, Escolástico S, Boldrini S, Barison S, Serra J M, Fabrizio M. Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y-or Gd-doped ceria. Energy & Environmental Science. 2015;8(1–2):3675–3686. [Google Scholar]
  • 103.Chiu W V, Park I S, Shqau K, White J C, Schillo M C, Ho W S W, Dutta P K, Verweij H. Post-synthesis defect abatement of inorganic membranes for gas separation. Journal of Membrane Science. 2011;377(1):182–190. [Google Scholar]
  • 104.Xu S, Zhang X, Cheng D, Chen F, Ren X. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering. 2018;12(4):780–789. [Google Scholar]
  • 105.Ye Z, Zhang H, Zhang Y, Tang Y. Seedinduced synthesis of functional MFI zeolite materials: method development, crystallization mechanisms and catalytic properties. Frontiers of Chemical Science and Engineering, 2019: 1–16
  • 106.Huang A, Wang N, Caro J. Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Microporous and Mesoporous Materials. 2012;164:294–301. [Google Scholar]
  • 107.Huang A, Wang N, Caro J. Seeding-free synthesis of dense zeolite FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina supports. Journal of Membrane Science. 2012;389:272–279. [Google Scholar]
  • 108.Tang Z, Dong J, Nenoff T M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir. 2009;25(9):4848–4852. doi: 10.1021/la900474y. [DOI] [PubMed] [Google Scholar]
  • 109.Shafie A H, An W, Hosseinzadeh H A, Sawada J A, Kuznicki S M. Natural zeolite-based cement composite membranes for H2/CO2 separation. Separation and Purification Technology. 2012;88:24–28. [Google Scholar]
  • 110.Prabhu A K, Oyama S T. Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases. Journal of Membrane Science. 2000;176(2):233–248. [Google Scholar]
  • 111.Tsuru T. Development of metal-doped silica membranes for increased hydrothermal stability and their applications to membrane reactors for steam reforming of methane. Journal of the Japan Petroleum Institute. 2011;54(5):277–286. [Google Scholar]
  • 112.Fan J, Ohya H, Suga T, Ohashi H, Yamashita K, Tsuchiya S, Aihara M, Takeuchi T, Negishi Y. High flux zirconia composite membrane for hydrogen separation at elevated temperature. Journal of Membrane Science. 2000;170(1):113–125. [Google Scholar]
  • 113.Koresh J E, Soffer A. The carbon molecular sieve membranes: general properties and the permeability of CH4/H2 mixture. Separation Science and Technology. 1987;22(2–3):973–982. [Google Scholar]
  • 114.Vieira-Linhares A M, Seaton N A. Non-equilibrium molecular dynamics simulation of gas separation in a microporous carbon membrane. Chemical Engineering Science. 2003;58(18):4129–4136. [Google Scholar]
  • 115.Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation: a review. Carbon. 2004;42(2):241–259. [Google Scholar]
  • 116.Jiang D E, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Letters. 2009;9(12):4019–4024. doi: 10.1021/nl9021946. [DOI] [PubMed] [Google Scholar]
  • 117.Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews. 2012;112(7):4124–4155. doi: 10.1021/cr200434v. [DOI] [PubMed] [Google Scholar]
  • 118.Lu P, Liu Y, Zhou T, Wang Q, Li Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science. 2018;567:89–103. [Google Scholar]
  • 119.Liu Y, Wang N, Caro J. In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability. 2014;2(16):5716–5723. [Google Scholar]
  • 120.Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem. 2015;8(21):3582–3586. doi: 10.1002/cssc.201500977. [DOI] [PubMed] [Google Scholar]
  • 121.Ranjan R, Tsapatsis M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chemistry of Materials. 2009;21(20):4920–4924. [Google Scholar]
  • 122.Huang A, Dou W, Caro J R. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society. 2010;132(44):15562–15564. doi: 10.1021/ja108774v. [DOI] [PubMed] [Google Scholar]
  • 123.Zhang F, Zou X, Gao X, Fan S, Sun F, Ren H, Zhu G. Hydrogen selective NH2-MIL-53 (Al) MOF membranes with high permeability. Advanced Functional Materials. 2012;22(17):3583–3590. [Google Scholar]
  • 124.Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J, Koros W J, Jones C W, Nair S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science. 2014;345(6192):72–75. doi: 10.1126/science.1251181. [DOI] [PubMed] [Google Scholar]
  • 125.Sutrisna P D, Savitri E, Himma N F, Prasetya N, Wenten I G. Current perspectives and mini review on zeolitic imidazolate framework-8 (ZIF-8) membranes on organic substrates. IOP Conference Series. Materials Science and Engineering. 2019;703(1):012045. [Google Scholar]
  • 126.Dong J, Lin Y, Liu W. Multicomponent hydrogen/hydrocarbon separation by MFI-type zeolite membranes. AIChE Journal. 2000;46(10):1957–1966. [Google Scholar]
  • 127.Poshusta J C, Tuan V A, Falconer J L, Noble R D. Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial & Engineering Chemistry Research. 1998;37(10):3924–3929. [Google Scholar]
  • 128.Liu B S, Au C T. A La2NiO4-zeolite membrane reactor for the CO2 reforming of methane to syngas. Catalysis Letters. 2001;77(1–3):67–74. [Google Scholar]
  • 129.Lee D, Zhang L, Oyama S, Niu S, Saraf R F. Synthesis, characterization and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. Journal of Membrane Science. 2004;231(1–2):117–126. [Google Scholar]
  • 130.Moon J H, Bae J H, Bae Y S, Chung J T, Lee C H. Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane. Journal of Membrane Science. 2008;318(1–2):45–55. [Google Scholar]
  • 131.Gu Y, Oyama S T. Ultrathin, hydrogen-selective silica membranes deposited on alumina-graded structures prepared from size-controlled boehmite sols. Journal of Membrane Science. 2007;306(1–2):216–227. [Google Scholar]
  • 132.Jones C W, Koros W J. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon. 1994;32(8):1419–1425. [Google Scholar]
  • 133.Petersen J, Matsuda M, Haraya K. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. Journal of Membrane Science. 1997;131(1–2):85–94. [Google Scholar]
  • 134.Wei W, Hu H, You L, Chen G. Preparation of carbon molecular sieve membrane from phenol-formaldehyde Novolac resin. Carbon. 2002;40(3):465–467. [Google Scholar]
  • 135.Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science. 1997;134(2):245–253. [Google Scholar]
  • 136.Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber. Journal of Membrane Science. 1999;160(2):179–186. [Google Scholar]
  • 137.Kita H, Yoshino M, Tanaka K, Okamoto K. Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communications. 1997;11:1051–1052. [Google Scholar]
  • 138.Guo H, Zhu G, Hewitt I J, Qiu S. “Twin copper source” growth of metalorganic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society. 2009;131(5):1646–1647. doi: 10.1021/ja8074874. [DOI] [PubMed] [Google Scholar]
  • 139.Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J R. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society. 2009;131(44):16000–16001. doi: 10.1021/ja907359t. [DOI] [PubMed] [Google Scholar]
  • 140.Huang A, Chen Y, Wang N, Hu Z, Jiang J, Caro J. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chemical Communications. 2012;48(89):10981–10983. doi: 10.1039/c2cc35691k. [DOI] [PubMed] [Google Scholar]
  • 141.Lee D J, Li Q, Kim H, Lee K. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous and Mesoporous Materials. 2012;163:169–177. [Google Scholar]
  • 142.Sanders D F, Smith Z P, Guo R, Robeson L M, McGrath J E, Paul D R, Freeman B D. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer. 2013;54(18):4729–4761. [Google Scholar]
  • 143.Ekiner O, Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation—spinning and properties. Journal of Membrane Science. 1990;53(3):259–273. [Google Scholar]
  • 144.Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science. 1991;62(2):165–185. [Google Scholar]
  • 145.Robeson L M. The upper bound revisited. Journal of Membrane Science. 2008;320(1–2):390–400. [Google Scholar]
  • 146.Esposito E, Mazzei I, Monteleone M, Fuoco A, Carta M, McKeown N, Malpass E, Jansen J. Highly permeable matrimid®/PIM-EA (H2)-TB blend membrane for gas separation. Polymers. 2018;11(1):46. doi: 10.3390/polym11010046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.McKeown N B, Budd P M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chemical Society Reviews. 2006;35(8):675–683. doi: 10.1039/b600349d. [DOI] [PubMed] [Google Scholar]
  • 148.Li F Y, Xiao Y, Chung T S, Kawi S. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules. 2012;45(3):1427–1437. [Google Scholar]
  • 149.Kim S, Lee Y M. Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science. 2015;43:1–32. [Google Scholar]
  • 150.Park H B, Jung C H, Lee Y M, Hill A J, Pas S J, Mudie S T, Van Wagner E, Freeman B D, Cookson D J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science. 2007;318(5848):254–258. doi: 10.1126/science.1146744. [DOI] [PubMed] [Google Scholar]
  • 151.Han S H, Lee J E, Lee K J, Park H B, Lee Y M. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. Journal of Membrane Science. 2010;357(1–2):143–151. [Google Scholar]
  • 152.Han S H, Misdan N, Kim S, Doherty C M, Hill A J, Lee Y M. Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors. Macromolecules. 2010;43(18):7657–7667. [Google Scholar]
  • 153.Yeong Y F, Wang H, Pallathadka Pramoda K, Chung T S. Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties. Journal of Membrane Science. 2012;397:51–65. [Google Scholar]
  • 154.Zornoza B, Téllez C, Coronas J, Esekhile O, Koros W J. Mixed matrix membranes based on 6FDA polyimide with silica and zeolite microsphere dispersed phases. AIChE Journal. 2015;61(12):4481–4490. [Google Scholar]
  • 155.Safak Boroglu M, Yumru A B. Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Separation and Purification Technology. 2017;173:269–279. [Google Scholar]
  • 156.Kim E, Kim H, Kim D, Kim J, Lee P. Preparation of mixed matrix membranes containing ZIF-8 and UiO-66 for multicomponent light gas separation. Crystals. 2019;9(1):15. [Google Scholar]
  • 157.Weng T H, Tseng H H, Wey M Y. Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. International Journal of Hydrogen Energy. 2009;34(20):8707–8715. [Google Scholar]
  • 158.Xie K, Fu Q, Xu C, Lu H, Zhao Q, Curtain R, Gu D, Webley P A, Qiao G G. Continuous assembly of a polymer on a metalorganic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy & Environmental Science. 2018;11(3):544–550. [Google Scholar]
  • 159.Hu G, Chen C, Lu H T, Wu Y, Liu C, Tao L, Men Y, He G, Li G. A review of technical advances, barriers and solutions in the power to gas (P2G) roadmap. Engineering, 2020, (in press)
  • 160.APA Group. Gas Specification for Roma-Brisbane Pipeline. 2010
  • 161.De Wild P, Nyqvist R, De Bruijn F, Stobbe E. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications. Journal of Power Sources. 2006;159(2):995–1004. [Google Scholar]
  • 162.Golebiowska M, Roth M, Firlej L, Kuchta B, Wexler C. The reversibility of the adsorption of methanemethyl mercaptan mixtures in nanoporous carbon. Carbon. 2012;50(1):225–234. [Google Scholar]
  • 163.Farrauto R J. Introduction to solid polymer membrane fuel cells and reforming natural gas for production of hydrogen. Applied Catalysis B: Environmental. 2005;56(1–2):3–7. [Google Scholar]
  • 164.Peters T A, Stange M, Veenstra P, Nijmeijer A, Bredesen R. The performance of PdAg alloy membrane films under exposure to trace amounts of H2S. Journal of Membrane Science. 2016;499:105–115. [Google Scholar]
  • 165.De Nooijer N, Sanchez J D, Melendez J, Fernandez E, Pacheco Tanaka D A, Van Sint Annaland M, Gallucci F. Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes. International Journal of Hydrogen Energy. 2020;45(12):7303–7312. [Google Scholar]
  • 166.Fotou G, Lin Y, Pratsinis S E. Hydrothermal stability of pure and modified microporous silica membranes. Journal of Materials Science. 1995;30(11):2803–2808. [Google Scholar]
  • 167.Uhlmann D, Smart S, Diniz Da Costa J C H. 2S stability and separation performance of cobalt oxide silica membranes. Journal of Membrane Science. 2011;380(1–2):48–54. [Google Scholar]
  • 168.de Vos R M, Maier W F, Verweij H. Hydrophobic silica membranes for gas separation. Journal of Membrane Science. 1999;158(1–2):277–288. [Google Scholar]
  • 169.Wei Q, Ding Y L, Nie Z R, Liu X G, Li Q Y. Wettability, pore structure and performance of perfluorodecyl-modified silica membranes. Journal of Membrane Science. 2014;466:114–122. [Google Scholar]
  • 170.Glass R W, Ross R A. Surface studies of the adsorption of sulfur-containing gases at 423.deg.K on porus adsorbents. II. Adsorption of hydrogen sulfide, methanethiol, ethanethiol and dimethyl sulfide on gamma.-alumina. Journal of Physical Chemistry. 1973;77(21):2576–2578. [Google Scholar]
  • 171.Akamatsu K, Nakane M, Sugawara T, Hattori T, Nakao S. Development of a membrane reactor for decomposing hydrogen sulfide into hydrogen using a high-performance amorphous silica membrane. Journal of Membrane Science. 2008;325(1):16–19. [Google Scholar]
  • 172.Schell W, Wensley C, Chen M, Venugopal K, Miller B, Stuart J. Recent advances in cellulosic membranes for gas separation and pervaporation. Gas Separation & Purification. 1989;3(4):162–169. [Google Scholar]
  • 173.Lu H, Kanehashi S, Scholes C, Kentish S. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening. Journal of Membrane Science. 2017;539:432–440. [Google Scholar]
  • 174.Plaisance C P, Dooley K M. Zeolite and metal oxide catalysts for the production of dimethyl sulfide and methanethiol. Catalysis Letters. 2009;128(3–4):449–458. [Google Scholar]
  • 175.Walker S B, Mukherjee U, Fowler M, Elkamel A. Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative. International Journal of Hydrogen Energy. 2016;41(19):7717–7731. [Google Scholar]
  • 176.Lubitz W, Tumas W. Hydrogen: an overview. Chemical Reviews. 2007;107(10):3900–3903. doi: 10.1021/cr050200z. [DOI] [PubMed] [Google Scholar]
  • 177.Iulianelli A, Drioli E. Membrane engineering: latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology. 2020;206:106464. [Google Scholar]
  • 178.Coker D, Freeman B, Fleming G. Modeling multicomponent gas separation using hollowfiber membrane contactors. AIChE Journal. American Institute of Chemical Engineers. 1998;44(6):1289–1302. [Google Scholar]
  • 179.Kundu P K, Chakma A, Feng X. Simulation of binary gas separation with asymmetric hollow fibre membranes and case studies of air separation. Canadian Journal of Chemical Engineering. 2012;90(5):1253–1268. [Google Scholar]
  • 180.Soroodan Miandoab E, Kentish S E, Scholes C A. Non-ideal modelling of polymeric hollow-fibre membrane systems: pre-combustion CO2 capture case study. Journal of Membrane Science. 2020;595:117470. [Google Scholar]
  • 181.Franz J, Scherer V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. Journal of Membrane Science. 2010;359(1–2):173–183. [Google Scholar]
  • 182.Basile A, Dalena F, Tong J, Veziroğlu T N. Hydrogen Production, Separation and Purification for Energy. London: The Insititution of Engineering and Technology; 2017. [Google Scholar]
  • 183.Liemberger W, Halmschlager D, Miltner M, Harasek M. Efficient extraction of hydrogen transported as co-stream in the natural gas grid—the importance of process design. Applied Energy. 2019;233–234:747–763. [Google Scholar]

Articles from Frontiers of Chemical Science and Engineering are provided here courtesy of Nature Publishing Group

RESOURCES