Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Dec 30;27(12):1572–1587. doi: 10.1007/s12613-020-2202-1

Interactions of molten salts with cathode products in the FFC Cambridge Process

George Z Chen 1,2,
PMCID: PMC7772062

Abstract

Molten salts play multiple important roles in the electrolysis of solid metal compounds, particularly oxides and sulfides, for the extraction of metals or alloys. Some of these roles are positive in assisting the extraction of metals, such as dissolving the oxide or sulfide anions, and transporting them to the anode for discharging, and offering the high temperature to lower the kinetic barrier to break the metal-oxygen or metal-sulfur bond. However, molten salts also have unfavorable effects, including electronic conductivity and significant capability of dissolving oxygen and carbon dioxide gases. In addition, although molten salts are relatively simple in terms of composition, physical properties, and decomposition reactions at inert electrodes, in comparison with aqueous electrolytes, the high temperatures of molten salts may promote unwanted electrode-electrolyte interactions. This article reviews briefly and selectively the research and development of the Fray-Farthing-Chen (FFC) Cambridge Process in the past two decades, focusing on observations, understanding, and solutions of various interactions between molten salts and cathodes at different reduction states, including perovskitization, non-wetting of molten salts on pure metals, carbon contamination of products, formation of oxychlorides and calcium intermetallic compounds, and oxygen transfer from the air to the cathode product mediated by oxide anions in the molten salt.

Keywords: FFC Cambridge Process, molten salts, electrolysis, extraction, oxides, sulfides, metals, alloys, reaction mechanisms

Acknowledgements

This work was financially supported by the Darwin College Cambridge (Schlumberger Interdisciplinary Research Fellowship, 2000–2003), the Engineering and Physical Science Research Council of the UK (Nos. GR/J57650/02, GR/L08731/01, GR/S58447/01, EP/J000582/1, and EP/F026412/1), the Ministry of Education of China (2000–2003), the Natural Science Foundation of China (2002–2006), ZhejiangProvincial People’s Government, China(2015–2019), and 3315 Talents Program from Ningbo Municipal People’s Government, China (No. 2014A35001-1).

I would like to thank the editors of IJMMM for the invitation and patience in waiting for this manuscript, which has been written at a rather slow pace in the Covid-19 pandemic period following the UK policy of working from home. I fully appreciate the effort of the journal’s language editor for proof reading and style-conversion of some original texts in the manuscript, in line with the journal’s publishing tradition. I am sincerely grateful to my wife and children. Without their continuous understanding, support, and encouragement, pursuing my career in the research and development of the FFC Cambridge Process in the past two decades would have not been possible, particularly in the completion of this article in a locked down, uncertain, and depressing environment. I must express my great appreciation for the invaluable contribution from my past and present co-authors (whose names appear in the list of References) to the advancement of our understanding of the FFC Cambridge Process and of the relevant laboratory skills and equipment.

References

  • [1].D.J. Fray, T.W. Farthing, and Z. Chen, Removal of Oxygen from Metal Oxides and Solid Solutions by Electrolysis in a Fused Salt, International Patent, Appl. WO9964638, 1999.
  • [2].Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361. doi: 10.1038/35030069. [DOI] [PubMed] [Google Scholar]
  • [3].Flower HM. Materials Science: A moving oxygen story. Nature. 2000;407(6802):305. doi: 10.1038/35030266. [DOI] [PubMed] [Google Scholar]
  • [4].Science and Technology, Dr. Chen and the philosopher’s stone, The Economist, 21st September 2000. [2020-05-4] https://www.economist.com/science-and-technology/2000/09/21/dr-chen-and-the-philosophers-stone
  • [5].Faller K, Froes FHS. The use of titanium in family automobiles: Current trends. JOM. 2001;53(4):27. doi: 10.1007/s11837-001-0143-3. [DOI] [Google Scholar]
  • [6].Fray DJ, Chen GZ. Reduction of titanium and other metal oxides using electrodeoxidation. Mater. Sci. Technol. 2004;20(3):295. doi: 10.1179/026708304225012242. [DOI] [Google Scholar]
  • [7].G.Z. Chen and D.J. Fray, Understanding the electro-reduction of metal oxides in molten salts, [in] A.T. Tabereaux ed., Light Metals 2004, Wiley-TMS, 2004, p. 881.
  • [8].Wang DH, Jin XB, Chen GZ. Solid state reactions: An electrochemical approach in molten salts. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2008;104:189. doi: 10.1039/b703904m. [DOI] [Google Scholar]
  • [9].Xiao W, Wang DH. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem. Soc. Rev. 2014;43(10):3215. doi: 10.1039/c3cs60327j. [DOI] [PubMed] [Google Scholar]
  • [10].Fray DJ, Schwandt C. Aspects of the application of electrochemistry to the extraction of titanium and its applications. Mater. Trans. 2017;58(3):306. doi: 10.2320/matertrans.MK201619. [DOI] [Google Scholar]
  • [11].Hu D, Chen GZ. Advanced extractive electrometallurgy. In: Breitkopf C, Swider-Lyons K, editors. Springer Handbook of Electrochemical Energy. Berlin: Springer; 2017. p. 801. [Google Scholar]
  • [12].Chen GZ, Fray DJ. Invention and fundamentals of the FFC Cambridge Process. In: Fang ZZ, Froes HS, Zhang Y, editors. Extractive Metallurgy of Titanium: Conventional and Recent Advances in Extraction and Production of Titanium Metal. Oxford: Elsevier; 2020. p. 227. [Google Scholar]
  • [13].Metalysis, Technology, 2019 [2020-11-17]. http://www.metalysis.com/technology/.
  • [14].GLABAT, Development of Negative Electrode Materials, 2015 [2020-11-17]. http://www.glabat.com/article/content/view?id=23.
  • [15].Hu D, Xiao W, Chen GZ. Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts. Metall. Mater.Trans. B. 2013;44(2):272. doi: 10.1007/s11663-013-9800-5. [DOI] [Google Scholar]
  • [16].Schwandt C, Hamilton JA, Fray DJ, Crawford IA. The production of oxygen and metal from lunar regolith. Planetary Space Sci. 2012;74(1):49. doi: 10.1016/j.pss.2012.06.011. [DOI] [Google Scholar]
  • [17].B.A. Lomax, M. Conti, N. Khan, N.S. Bennett, A.Y. Ganin, and M.S. Symes, Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith, Planetary Space Sci., 180(2020), art. No. 104748.
  • [18].Siambun NJ, Mohamed H, Hu D, Jewell D, Beng YK, Chen GZ. Utilisation of carbon dioxide for electro-carburisation of mild steel in molten carbonate salts. J. Electrochem. Soc. 2011;158(11):H1117. doi: 10.1149/2.017111jes. [DOI] [Google Scholar]
  • [19].Tang DY, Yin HY, Mao XH, Xiao W, Wang DH. Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode. Electrochim. Acta. 2013;114:567. doi: 10.1016/j.electacta.2013.10.109. [DOI] [Google Scholar]
  • [20].W. Wang, B.M. Jiang, Z. Wang, and W. Xiao, In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions, Sci. Adv., 6(2020), No. 9, art. No. 9278. [DOI] [PMC free article] [PubMed]
  • [21].O. Al-Juboori, F. Sher, A. Hazafa, M.K. Khan, and G.Z. Chen, The effect of variable operating parameters for hydrocarbon fuel formation from CO2 by molten salts electrolysis, J. CO2Util., 40(2020), art. No. 101193.
  • [22].Peng C, Guan CZ, Lin J, Zhang SY, Bao HL, Wang Y, Xiao GP, Chen GZ, Wang JQ. A rechargeable high-temperature molten salt iron-oxygen battery. ChemSusChm. 2018;11(11):1880. doi: 10.1002/cssc.201800237. [DOI] [PubMed] [Google Scholar]
  • [23].Chen HL, Jin XB, Yu LP, Chen GZ. Influences of graphite anode area on electrolysis of solid metal oxides in molten salts. J. Solid State Electrochem. 2014;18(12):3317. doi: 10.1007/s10008-014-2645-2. [DOI] [Google Scholar]
  • [24].Chen GZ, Fray DJ. Cathodic refining in molten salts: Removal of oxygen, sulfur and selenium from static and flowing molten copper. J. Appl. Electrochem. 2001;31(2):155. doi: 10.1023/A:1004175605236. [DOI] [Google Scholar]
  • [25].Mohamedi M, Børresen B, Haarberg G, Tunold R. Anodic behavior of carbon electrodes in CaO-CaCl2 melts at 1123 K. J. Electrochem. Soc. 1999;146(4):1472. doi: 10.1149/1.1391789. [DOI] [Google Scholar]
  • [26].Chen GZ, Fray DJ. Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride. J. Electrochem. Soc. 2002;149(11):E455. doi: 10.1149/1.1513985. [DOI] [Google Scholar]
  • [27].Barnett R, Kilby KT, Fray DJ. Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge Process. Metall. Mater. Trans. B. 2009;40(2):150. doi: 10.1007/s11663-008-9219-6. [DOI] [Google Scholar]
  • [28].Hu LW, Song Y, Ge JB, Jiao SQ, Cheng J. Electrochemical metallurgy in CaCl2-CaO melts on the basis of TiO2RuO2 inert anode. J. Electrochem. Soc. 2016;163(3):E33. doi: 10.1149/2.0131603jes. [DOI] [Google Scholar]
  • [29].Ramanarayanan TA, Rapp RA. The diffusivity and solubility of oxygen in liquid tin and solid silver and the diffusivity. Metall. Trans. 1972;3(12):3239. doi: 10.1007/BF02661339. [DOI] [Google Scholar]
  • [30].Zou XL, Lu XG, Zhou ZF, Li CH. Direct electrosynthesis of Ti5Si3/TiC composites from their oxides/C precursors in molten calcium chloride. Electrochem. Commun. 2012;21:9. doi: 10.1016/j.elecom.2012.05.008. [DOI] [Google Scholar]
  • [31].Hu HB, Gao YM, Lao YG, Qin QW, Li GQ, Chen GZ. Yttria stabilized zirconia aided electrochemical investigation on ferric ions in mixed molten calcium and sodium chlorides. Mater. Metall. Trans. B. 2018;49(5):2794. doi: 10.1007/s11663-018-1371-z. [DOI] [Google Scholar]
  • [32].Wang T, Gao HP, Jin XB, Chen HL, Peng JJ, Chen GZ. Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl. Electrochem. Commum. 2011;13(12):1492. doi: 10.1016/j.elecom.2011.10.005. [DOI] [Google Scholar]
  • [33].Wu CH, Tan MS, Ye GZ, Fray DJ, Jin XB. High-efficiency preparation of titanium through electrolysis of carbosulfurized titanium dioxide. ACS Sustainable Chem. Eng. 2019;7(9):8340. doi: 10.1021/acssuschemeng.8b06801. [DOI] [Google Scholar]
  • [34].Li W, Yuan YT, Jin XB, Chen HL, Chen GZ. Environmental and energy gains from using molten magnesium-sodium-potassium chlorides for electro-metallisation of refractory metal oxides. Prog. Nat. Sci. 2015;25(6):650. doi: 10.1016/j.pnsc.2015.11.002. [DOI] [Google Scholar]
  • [35].Yuan YT, Li W, Chen HL, Wang ZY, Jin XB, Chen GZ. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode. Faraday Discuss. 2016;190:85. doi: 10.1039/C5FD00231A. [DOI] [PubMed] [Google Scholar]
  • [36].Sadoway D. Inert anodes for the Hall-Heroult cell: The ultimate materials challenge. JOM. 2001;53(3):34. doi: 10.1007/s11837-001-0206-5. [DOI] [Google Scholar]
  • [37].Yin HY, Gao LL, Zhu H, Mao XH, Gan FX, Wang DH. On the development of metallic inert anode for molten CaCl2-CaO system. Electrochim. Acta. 2011;56(9):3296. doi: 10.1016/j.electacta.2011.01.026. [DOI] [Google Scholar]
  • [38].Yin HY, Tang DY, Zhu H, Zhang Y, Wang DH. Production of iron and oxygen in molten K2CO3-Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode. Electrochem. Commun. 2011;13(12):1521. doi: 10.1016/j.elecom.2011.10.009. [DOI] [Google Scholar]
  • [39].Wang DH, Xiao W. Inert anode development for high-temperature molten salts. In: Lantelme F, Groult H, editors. Molten Salts Chemistry-From Lab to Applications. Oxford: Elsevier; 2013. p. 171. [Google Scholar]
  • [40].Schwandt C, Fray DJ. Use of molten salt fluxes and cathodic protection for preventing the oxidation of titanium at elevated temperatures. Metall. Mater. Trans. B. 2014;45(6):2145. doi: 10.1007/s11663-014-0134-8. [DOI] [Google Scholar]
  • [41].Schwandt C, Fray DJ. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride. Electrochim. Acta. 2005;51(1):66. doi: 10.1016/j.electacta.2005.03.048. [DOI] [Google Scholar]
  • [42].Jiang K, Hu XH, Ma M, Wang DH, Qiu GH, Jin XB, Chen GZ. “Perovskitization”-assisted electrochemical reduction of solid TiO2 in molten CaCl2. Angew. Chem. Int. Ed. 2006;45(3):428. doi: 10.1002/anie.200502318. [DOI] [PubMed] [Google Scholar]
  • [43].Gordo E, Chen GZ, Fray DJ. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. Electrochim. Acta. 2004;49(13):2195. doi: 10.1016/j.electacta.2003.12.045. [DOI] [Google Scholar]
  • [44].Wu T, Jin XB, Xiao W, Liu C, Wang DH, Chen GZ. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2. Phys. Chem. Chem. Phys. 2008;10(13):1809. doi: 10.1039/b719369f. [DOI] [PubMed] [Google Scholar]
  • [45].Chen GZ, Gordo E, Fray DJ. Direct electrolytic preparation of chromium powder. Metall. Mater. Trans. B. 2004;35(2):223. doi: 10.1007/s11663-004-0024-6. [DOI] [Google Scholar]
  • [46].Deng Y, Wang DH, Xiao W, Jin XB, Hu XH, Chen GZ. Electrochemistry at conductor/insulator/electrolyte three-phase interlines: A thin layer model. J. Phys. Chem. B. 2005;109(29):14043. doi: 10.1021/jp044604r. [DOI] [PubMed] [Google Scholar]
  • [47].Xiao W, Jin XB, Deng Y, Wang DH, Chen GZ. Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electroreduction of solid AgCl. Chem. Eur. J. 2007;13(2):604. doi: 10.1002/chem.200600172. [DOI] [PubMed] [Google Scholar]
  • [48].Li W, Jin XB, Huang FL, Chen GZ. Metal-to-oxide molar volume ratio: The overlooked barrier to solid-state electro-reduction and a green bypass through recyclable NH4HCO3. Angew. Chem. Int. Ed. 2010;49(18):3203. doi: 10.1002/anie.200906833. [DOI] [PubMed] [Google Scholar]
  • [49].W. Li, H.L. Chen, F.L. Huang, X.B. Jin, F.M. Xiao, and G.Z. Chen, Fast electro-reduction of TiO2 precursors with macro-micro-bimodal porosity in molten CaCl2, [in] The 3rd Asia Conference on Molten Salts and Ionic Liquids, Harbin, 2011.
  • [50].Chen GZ, Fray DJ. A morphological study of the FFC chromium and titanium powders. Miner. Process. Extr. Metall. 2006;115(1):49. doi: 10.1179/174328506X91365. [DOI] [Google Scholar]
  • [51].TWI Ltd., What is friction welding? [2020-07-04] https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-friction-welding
  • [52].Muir Wood AJ, Copcutt RC, Chen GZ, Fray DJ. Electrochemical fabrication of nickel manganese gallium alloy powder. Adv. Eng. Mater. 2003;5(9):650. doi: 10.1002/adem.200300369. [DOI] [Google Scholar]
  • [53].Wang DH, Qiu GH, Jin XB, Hu XH, Chen GZ. Electrochemical metallisation of solid terbium oxide. Angew. Chem. Int. Ed. 2006;45(15):2384. doi: 10.1002/anie.200503571. [DOI] [PubMed] [Google Scholar]
  • [54].Qiu GH, Wang DH, Ma M, Jin XB, Chen GZ. Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2. J. Electroanal. Chem. 2006;589(1):139. doi: 10.1016/j.jelechem.2006.02.002. [DOI] [Google Scholar]
  • [55].Pistorius PC, Fray DJ. Formation of silicon by electrodeoxidation, and implications for titanium metal production. J. South Afr. Inst. Min. Metall. 2006;106(1):31. [Google Scholar]
  • [56].Delimarskii YK, Gorodiskii OV, Grishchenko VF. Cathode liberation of carbon from molten carbonates. Dokl. Akad. Nauk SSSR. 1964;159(3):650. [Google Scholar]
  • [57].Ingram MD, Baron B, Janz GJ. The electrolytic deposition of carbon from fused carbonates. Electrochim. Acta. 1966;11(11):1629. doi: 10.1016/0013-4686(66)80076-2. [DOI] [Google Scholar]
  • [58].Kawamura H, Ito Y. Electrodeposition of cohesive carbon films on aluminum in a LiCl-KCl-K2CO3 melt. J. Appl. Electrochem. 2000;30(5):571. doi: 10.1023/A:1003927100308. [DOI] [Google Scholar]
  • [59].Massot L, Chamelot P, Bouyer F, Taxil P. Studies of carbon nucleation phenomena in molten alkaline fluoride media. Electrochim. Acta. 2003;48(5):465. doi: 10.1016/S0013-4686(02)00646-1. [DOI] [Google Scholar]
  • [60].Ijije HV, Lawrence RC, Siambun NJ, Jeong S, Jewell DA, Hu D, Chen GZ. Electro-deposition and re-oxidation of carbon in carbonate containing molten salts. Faraday Discuss. 2014;172:105. doi: 10.1039/C4FD00046C. [DOI] [PubMed] [Google Scholar]
  • [62].K. Dring, Direct electrochemical production of titanium, [in] The 3rd Workshop on Reactive Metal Processing (RMW3), Cambridge, 2007 [2020-07-09] http://www.okabe.iis.u-tokyo.ac.jp/core-to-core/rmw/RMW3/slide/RMW3_06_Dring_F.pdf.
  • [63].G.Z. Chen and D.J. Fray, Prevention of Unwanted Reactions at Three Phase Boundaries, UK Patent, Appl. GB0329541.7, 2003.
  • [64].Stevenson A. Development of a Novel Electrochemical Pyro-processing Methodology for Spent Nuclear Fuels. Nottingham: University of Nottingham; 2016. [Google Scholar]
  • [65].Hu ML, Qu ZF, Bai CG, Hu D, Chen GZ. Effect of the changed electrolytic cell on the current efficiency in FFC Cambridge Process. Mater. Trans. 2017;58(3):322. doi: 10.2320/matertrans.MK201623. [DOI] [Google Scholar]
  • [66].Xiao W, Jin XB, Deng Y, Wang DH, Chen GZ. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. J. Electroanal. Chem. 2010;639(1–2):130. doi: 10.1016/j.jelechem.2009.12.001. [DOI] [Google Scholar]
  • [67].Yang X, Yasuda K, Nohira T, Hagiwara R, Homma T. Cathodic potential dependence of electrochemical reduction of SiO2 granules in molten CaCl2. Metall. Mater. Trans. E. 2016;3(3):145. [Google Scholar]
  • [68].Juzeliūnas E, Fray DJ. Silicon electrochemistry in molten salts. Chem. Rev. 2020;120(3):1690. doi: 10.1021/acs.chemrev.9b00428. [DOI] [PubMed] [Google Scholar]
  • [69].Gao P, Jin XB, Wang DH, Hu XH, Chen GZ. A quartz sealed Ag/AgCl reference electrode for CaCl2 baeed molten salts. J. Electroanal. Chem. 2005;579(2):321. doi: 10.1016/j.jelechem.2005.03.004. [DOI] [Google Scholar]
  • [70].Wang H, Siambun NJ, Yu LP, Chen GZ. A robust alumina membrane reference electrode for high temperature molten salts. J. Electrochem. Soc. 2012;159(9):H740. doi: 10.1149/2.033209jes. [DOI] [Google Scholar]
  • [71].Al-Shara NK, Sher F, Yaqoob A, Chen GZ. Electrochemical investigation of novel reference electrode Ni/Ni(OH)2 in comparision with silver and platinum inert quasi-reference electrodes for electrolysis in eutectic molten hydroxide. Int. J. Hydrogen Energy. 2020;44(50):27224. doi: 10.1016/j.ijhydene.2019.08.248. [DOI] [Google Scholar]
  • [72].Xie HW, Zhang H, Zhai YC, Wang JX, Li CD. Al preparation from solid Al2O3 by direct electrochemical deoxidation in molten CaCl2-NaCl at 550°C. J. Mater. Sci. Technol. 2009;25(4):459. [Google Scholar]
  • [73].Yan XY, Fray DJ. Direct electrolytic reduction of solid alumina using molten calcium chloride-alkali chloride electrolytes. J. App. Electrochem. 2009;39(8):1349. doi: 10.1007/s10800-009-9808-3. [DOI] [Google Scholar]
  • [74].Kadowaki H, Katasho Y, Yasuda K, Nohira T. Electrolytic reduction of solid Al2O3 to liquid Al in molten CaCl2. J. Electrochem. Soc. 2018;165(2):D83. doi: 10.1149/2.1191802jes. [DOI] [Google Scholar]
  • [75].Clark RJH, Bradley DC, Thornton P. The Chemistry of Titanium, Zirconium and Hafnium. Oxford: Pergamon Press; 1973. p. 367. [Google Scholar]
  • [76].Zhu Y, Wang DH, Ma M, Hu XH, Jin XB, Chen GZ. More affordable electrolytic LaNi5-type hydrogen storage powders. Chem. Commum. 2007;24:2515. doi: 10.1039/b701770g. [DOI] [PubMed] [Google Scholar]
  • [77].Chen GZ, Fray DJ, Farthing TW. Cathodic deoxygenation of the alpha-case on titanium and alloys in molten calcium chloride. Metall. Mater. Trans. B. 2001;32(6):1041. doi: 10.1007/s11663-001-0093-8. [DOI] [Google Scholar]
  • [78].Fray DJ. Novel methods for the production of titanium. Int. Mater. Rev. 2008;53(6):317. doi: 10.1179/174328008X324594. [DOI] [Google Scholar]
  • [79].Alexander DTL, Schwandt C, Fray DJ. Microstructural kinetics of phase transformations during electrochemical reduction of titanium dioxide in molten calcium chloride. Acta Mater. 2006;54(11):2933. doi: 10.1016/j.actamat.2006.02.049. [DOI] [Google Scholar]
  • [80].Sri Maha Vishnu D, Sanil N, Shakila L, Panneerselvam G, Sudha R, Mohandas KS, Nagarajan K. A study of the reaction pathways during electrochemical reduction of dense Nb2O5 pellets in molten CaCl2 medium. Electrochim. Acta. 2013;100:51. doi: 10.1016/j.electacta.2013.03.135. [DOI] [Google Scholar]
  • [81].Choi EY, Lee JW, Park JJ, Hur JM, Kim JK, Jung KY, Jeong SM. Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt. Chem. Eng. J. 2012;207–208:514. doi: 10.1016/j.cej.2012.06.161. [DOI] [Google Scholar]
  • [82].Stevenson A, Hu D, Chen GZ. Molten salt assisted electrochemical separation of spent fuel surrogates by partial direct reduction and selective anodic dissolution. ECS Trans. 2014;64(4):333. doi: 10.1149/06404.0333ecst. [DOI] [Google Scholar]
  • [83].Mohandas KS. Direct electrochemical conversion of metal oxides to metal by molten salt electrolysis: A review. Miner. Process. Extra. Metall. 2013;122(4):195. doi: 10.1179/0371955313Z.00000000069. [DOI] [Google Scholar]
  • [84].Schwandt C, Doughty GR, Fray DJ. The FFC-cambridge process for titanium metal winning. Key Eng. Mater. 2010;436:13. doi: 10.4028/www.scientific.net/KEM.436.13. [DOI] [Google Scholar]
  • [85].Hu D, Dolganov A, Ma MC, Bhattacharya B, Bishop M, Chen GZ. Development of the fray-farthing-chen cambridge process: Towards the sustainable production of titanium and its alloys. JOM. 2018;70(2):129. doi: 10.1007/s11837-017-2664-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [86].Yu ZL, Wang N, Fang S, Qi XP, Gao ZF, Yang JY, Lu SG. Pilot-plant production of high-performance silicon nanowires by molten salt electrolysis of silica. Ind. Eng. Chem. Res. 2020;59(1):1. doi: 10.1021/acs.iecr.9b04430. [DOI] [Google Scholar]

Articles from International Journal of Minerals, Metallurgy and Materials are provided here courtesy of Nature Publishing Group

RESOURCES