Abstract
Calcium ions (Ca2+) play critical roles in neuronal processes, such as signaling pathway activation, transcriptional regulation, and synaptic transmission initiation. Therefore, the regulation of Ca2+ homeostasis is one of the most important processes underlying the basic cellular viability and function of the neuron. Multiple components, including intracellular organelles and plasma membrane Ca2+-ATPase, are involved in neuronal Ca2+ control, and recent studies have focused on investigating the roles of mitochondria in synaptic function. Numerous mitochondrial Ca2+ regulatory proteins have been identified in the past decade, with studies demonstrating the tissue- or cell-type-specific function of each component. The mitochondrial calcium uniporter and its binding subunits are major inner mitochondrial membrane proteins contributing to mitochondrial Ca2+ uptake, whereas the mitochondrial Na+/Ca2+ exchanger (NCLX) and mitochondrial permeability transition pore (mPTP) are well-studied proteins involved in Ca2+ extrusion. The level of cytosolic Ca2+ and the resulting characteristics of synaptic vesicle release properties are controlled via mitochondrial Ca2+ uptake and release at presynaptic sites, while in dendrites, mitochondrial Ca2+ regulation affects synaptic plasticity. During brain aging and the progress of neurodegenerative disease, mitochondrial Ca2+ mishandling has been observed using various techniques, including live imaging of Ca2+ dynamics. Furthermore, Ca2+ dysregulation not only disrupts synaptic transmission but also causes neuronal cell death. Therefore, understanding the detailed pathophysiological mechanisms affecting the recently discovered mitochondrial Ca2+ regulatory machineries will help to identify novel therapeutic targets. Here, we discuss current research into mitochondrial Ca2+ regulatory machineries and how mitochondrial Ca2+ dysregulation contributes to brain aging and neurodegenerative disease.
Keywords: mitochondria, calcium regulation, aging, neurodegenerative disease, synaptic regulation
Introduction
Mitochondria affect cellular functions via their roles in ATP production, lipid synthesis, reactive oxygen species (ROS) generation, and Ca2+ regulation. Recent studies of mitochondria-dependent Ca2+ handling have revealed the molecular identities of Ca2+-control components, including the mitochondrial calcium uniporter (MCU) and its auxiliary subunits (Mammucari et al., 2017). Furthermore, the development of enhanced Ca2+ sensors has enabled subcellular investigations of how mitochondria contribute to synaptic transmission. In addition, mitochondrial matrix-targeting sequence-tagged genetically encoded calcium indicators (GECIs) have allowed direct monitoring of mitochondrial Ca2+ dynamics (Kwon et al., 2016a).
In aged animals and humans, mitochondrial functional impairment is a key hallmark of brain aging (Grimm and Eckert, 2017; Mattson and Arumugam, 2018; Muller et al., 2018). Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and other aging-related neurodegenerative diseases also show mitochondrial defects. However, the detailed molecular mechanisms underlying these defects, particularly those related to mitochondrial Ca2+, have not yet been studied in depth.
Here, we describe mitochondrial Ca2+-related features and unveiled mitochondrial Ca2+ regulatory molecular mechanisms of brain aging and neurodegenerative disease models, and discuss experimental methods and controversies within the current research.
Mitochondrial Ca2+ Regulatory Components and Their Physiological Roles in Neurons
Ca2+ ions enter neurons through ionotropic glutamate receptors and voltage-dependent Ca2+ channels, with the imported Ca2+ then affecting various cellular processes, including the modulation of synaptic strength and Ca2+-mediated cell death (Ghosh and Greenberg, 1995). At the presynapse, Ca2+ triggers synaptic vesicle exocytosis, and residual Ca2+ alters synaptic release properties toward asynchronous release. Moreover, short-term synaptic plasticity can be controlled by presynaptic Ca2+ dynamics, while in dendrites, Ca2+ influences various signaling cascades involved in long-term synaptic plasticity and gene transcription (Hayashi and Majewska, 2005; Higley and Sabatini, 2008; Sudhof, 2012; Kaeser and Regehr, 2014; Kwon et al., 2016a).
Cytosolic Ca2+ is controlled by plasma membrane Ca2+ pumps and intracellular organelles, including mitochondria and the endoplasmic reticulum (ER). The ER imports Ca2+ through sarco/endoplasmic Ca2+ ATPase and releases it via ryanodine receptors or IP3 receptors (IP3Rs) (Verkhratsky, 2005). ER is partially tethered to mitochondria by mitochondria-associated membrane (MAM) or mitochondria-ER contact sites (MERCs) proteins such as Mitofusin 2, Sigma-1 receptor, vesicle-associated membrane protein-associated protein B (VAPB)/protein tyrosine phosphatase-interacting protein 51 (PTPIP51), IP3R/glucose-regulated protein (Grp75)/Voltage-dependent anion-selective channel 1 (VDAC1), and PDZ domain containing 8 (PDZD8), enabling ER-to-mitochondria Ca2+ transfer (Rapizzi et al., 2002; Szabadkai et al., 2006; Hayashi and Su, 2007; De Vos et al., 2012; Hirabayashi et al., 2017). The involvement of MAM in neurodegenerative diseases is a major topic in the field, but previous reviews wonderfully covered this scope (Paillusson et al., 2016; Liu and Zhu, 2017; Area-Gomez et al., 2018; Bernard-Marissal et al., 2018; Gomez-Suaga et al., 2018; Lau et al., 2018). Therefore, only a part of studies using direct observation of mitochondrial Ca2+ dynamics will be discussed here.
Several Ca2+ regulatory proteins have been identified in the outer and inner mitochondrial membranes. VDACs located in the outer mitochondrial membrane (OMM) are responsible for importing various ions and metabolites (Colombini, 2016). In the inner mitochondrial membrane, MCU mediates mitochondrial membrane potential-dependent Ca2+ influx into the mitochondrial matrix (Kirichok et al., 2004; Baughman et al., 2011; De Stefani et al., 2011). Reduced MCU-dependent Ca2+ uptake at presynaptic sites elevates cytosolic Ca2+ and alters short-term synaptic plasticity and synchronous release (Kang et al., 2008; Kwon et al., 2016b). In addition, a recent study showed upregulation of mitochondrial fission and dendritic mitochondrial Ca2+ transients following chemically induced long-term potentiation (LTP), with the interference of fission impairing mitochondrial Ca2+ uptake and LTP (Divakaruni et al., 2018).
Mitochondrial calcium uniporter forms complexes with other proteins, which regulate its opening dynamics (Mammucari et al., 2017; Pallafacchina et al., 2018). Mitochondrial calcium uptake protein 1/2/3 (MICU1/2/3) are the first MCU binding proteins to be characterized. MICU1 and MICU2 serve as molecular gatekeepers that negatively regulate MCU under low Ca2+ but positively regulate it under high cytosolic Ca2+ (Csordas et al., 2013; Patron et al., 2014; Liu et al., 2016). MICU3 is abundant in the brain and enhances mitochondrial Ca2+ uptake, with silencing of MICU3 in cortical neurons causing a reduction in stimulation-induced mitochondrial Ca2+ levels (Patron et al., 2019). Furthermore, the presynaptic MICU3-dependent increase in Ca2+ sensitivity allows MCU to open without Ca2+ release from ER and facilitates Ca2+-mediated mitochondrial ATP production and synaptic vesicle endocytosis (Ashrafi et al., 2020).
Essential MCU regulator (EMRE) is another MCU complex protein that bridges MCU and MICU1 and regulates the level of Ca2+ in the mitochondrial matrix. In addition, recent unveiled structural features of EMRE show that it triggers dimerization of MCU-EMRE complex and controls pore opening (Sancak et al., 2013; Vais et al., 2016; Wang et al., 2019). The MCU paralog MCUb exerts an inhibitory effect on MCU, with overexpression of MCUb completely abolishing MCU currents (Raffaello et al., 2013; Mammucari et al., 2017). Mitochondrial calcium uniporter regulator 1 (MCUR1) is a scaffold factor, whose absence results in the failure of MCU to form a complex (Tomar et al., 2016; Supplementary Figure 1).
The mitochondrial Na+/Ca2+ exchanger (NCLX) is one of the primary Ca2+ efflux units in mitochondria (Palty et al., 2010). Genetic ablation of NCLX increases Ca2+ retention in mitochondria and causes mitochondria-dependent cell death (Luongo et al., 2017). Also, H+/Ca2+ exchanger is considered as a Ca2+ efflux component, although its molecular identity is arguable (Jiang et al., 2009; De Marchi et al., 2014). Additional Ca2+ release-associated protein, mitochondrial permeability transition pore (mPTP), is activated by Ca2+ overload and ROS, leading to apoptosis or necrosis (Giorgi et al., 2018). This pore has been mainly studied under pathological conditions, including aging and neurodegenerative diseases, and the roles of core components including ATP synthase, cyclophilin D (CyPD), and the adenine nucleotide translocators (ANTs), are recently updated, although there are debates (Kokoszka et al., 2004; Bonora et al., 2013; Alavian et al., 2014; Karch and Molkentin, 2014; Raffaello et al., 2016; He et al., 2017; Rottenberg and Hoek, 2017; Zhou et al., 2017; Bernardi, 2018; Muller et al., 2018; Carroll et al., 2019; Karch et al., 2019).
Mitochondrial Ca2+ Dyshomeostasis in Aged Brains
Dysregulation of Ca2+ homeostasis is one of the hallmarks of brain aging (Mattson and Arumugam, 2018), with impaired Ca2+ control in aged brains resulting in various cellular and physiological deficits. Hippocampal CA1 pyramidal neurons in aged animals show elevated Ca2+ currents, as confirmed by Ca2+ imaging using multiple Ca2+ fluorophores (Landfield and Pitler, 1984; Disterhoft et al., 1996; Verkhratsky et al., 1998; Thibault et al., 2001; Lessmann et al., 2003). Age-associated Ca2+ changes have also been observed in other brain regions and in peripheral nerves (Verkhratsky et al., 1998).
Age-dependent dysregulation of Ca2+ results from various molecular changes, including increased voltage-gated Ca2+ channel expression, reduced Ca2+ binding protein expression, and impaired mitochondrial and ER Ca2+ handling (Mattson and Arumugam, 2018). Ca2+ isotope uptake by isolated synaptosomal mitochondria is significantly reduced in aged rat brains (Leslie et al., 1985). In addition, cytosolic Ca2+ dynamics in aged rodent brain slices or acutely dissociated neurons have been monitored using chemical Ca2+ dyes, such as Fura-2. Use of this dye in combination with a mitochondrial membrane potential indicator or mitochondrial uncoupler has revealed that the potential is disrupted in aged neurons, resulting in a decrease in mitochondrial Ca2+ uptake and an elevation of cytosolic Ca2+ upon stimulation (Xiong et al., 2002; Murchison et al., 2004). Mitochondrial Ca2+ buffering is also reduced in aged Rhesus monkeys, shown using isolated putamen mitochondria (Pandya et al., 2015).
Altered Mitochondrial Ca2+ Dynamics in AD
Ca2+ dysregulation is a common feature of several neurodegenerative diseases, including AD and PD (Beal, 1998; Zundorf and Reiser, 2011; Liao et al., 2017; Pchitskaya et al., 2018). Disruption of Ca2+ homeostasis and mitochondrial Ca2+ overload have been observed before pathological features of these diseases appear, highlighting the importance of neuronal Ca2+ regulation (Lesne et al., 2008; Surmeier et al., 2017).
AD is characterized by the accumulation of amyloid beta (Aβ) peptide, which is produced by abnormal proteolytic cleavage of amyloid precursor protein (APP), as well as by the formation of neurofibrillary tangles composed of tau protein and by neuronal loss, leading to learning and memory impairment (Oddo et al., 2003; Mattson et al., 2008). Mutations in APP or in the γ-secretase components presenilin1 and 2 (PSEN1/2) are the most well-characterized alterations contributing to dominantly inherited familial AD (FAD) (Chen et al., 2017; Muller et al., 2018).
Increased Aβ expression in FAD models or exogenous application of Aβ leads to elevated cytosolic Ca2+. In the past two decades, multiple underlying mechanisms have been suggested, including mitochondrial Ca2+ dysregulation (Du et al., 2008; Supnet and Bezprozvanny, 2010; Jadiya et al., 2019; Calvo-Rodriguez et al., 2020). In-vivo Ca2+ imaging with mitochondria-targeted Förster resonance energy transfer (FRET)-based GECI has directly demonstrated an Aβ-dependent mitochondrial Ca2+ increase in mouse cortex. This upregulation was observed prior to neuronal death, with blockade of MCU restoring the mitochondrial Ca2+ level in the APP/PS1 mutant mouse model (Calvo-Rodriguez et al., 2020).
Brain levels of NCLX protein are significantly reduced in human AD patients and in 3xTg-AD triple mutant mice (expressing mutations in APP, presenilin 1, and tau). Mutant APP-expressing-N2a cells also show decreased NCLX expression, resulting in impaired mitochondrial Ca2+ extrusion, consistent with the increased mitochondrial Ca2+ transients revealed by the mitochondria-localized GECI mito-R-GECO1. Alleviation of mitochondrial Ca2+ overload by NCLX expression in 3xTg-AD mice rescues cognitive decline and AD-related pathology (Jadiya et al., 2019). Another Ca2+ extrusion-related molecule, CypD, which is part of mPTP, is known to interact with mitochondrially transported Aβ. Inhibition or genetic ablation of CypD protects neurons from Aβ-triggered cell death and rescues impaired LTP and deficits in spatial learning and memory (Du et al., 2008).
Mitochondrial Ca2+ overload in AD can also result from impaired ER–mitochondria communication. Previous studies suggest that ER–mitochondria contacts are increased in AD models, promoting Ca2+ transfer to mitochondria (Zampese et al., 2011; Area-Gomez et al., 2012; Hedskog et al., 2013; Calvo-Rodriguez et al., 2019). ER-to-mitochondria Ca2+ transfer has been monitored using the mitochondria-localized chemical dye Rhod-5N or a mitochondrial matrix- or OMM-targeted protein Ca2+ sensors (Zampese et al., 2011; Hedskog et al., 2013; Calvo-Rodriguez et al., 2019). Opposite to these, some studies using electron microscopy (EM) and fluorescent imaging have reported reduced ER-mitochondria contacts in AD animal models and patients (Sepulveda-Falla et al., 2014; Martino Adami et al., 2019; Lau et al., 2020; Figure 1).
FIGURE 1.
Neurodegenerative disease-related ER and mitochondrial proteins. AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; ALS, amyotrophic lateral sclerosis.
Apolipoprotein E4 (ApoE4) is the major risk factor for sporadic AD and it can increase ER–mitochondria contacts (Tambini et al., 2016; Orr et al., 2019). ApoE4-expressing cells show higher cytosolic and mitochondrial Ca2+, and given that ApoE4 expression alters neuronal MAM-tethering protein composition, this could explain enhanced MAM activity in sporadic AD (Orr et al., 2019; Table 1).
TABLE 1.
Ca2+ dynamics in neurodegenerative disease models.
| Disease | Model | Ca2+ level | Ca2+ indicator | Ca2+ inducer | ER-mito contact | References | |||
| Cyto | Mito | Cyto | Mito | ||||||
| AD | Aβ | APP/PS1 mut in-vivo cortex | ↑ | ↑ | mtYellow Cameleon3.6 | Calvo-Rodriguez et al., 2020 | |||
| Aβ oligomer | Hippocampal neuron (DIV15-21) | ↑ | ↓ | Fura-2 | Rhod-5N | Caffeine, ACh | ↑ | Calvo-Rodriguez et al., 2019 | |
| APPswe 3xTG-AD | Neuroblastoma N2a cell | ↑ | ↑ | Fura4-AM | mito-R-GECO1 | KCl | Jadiya et al., 2019 | ||
| Aβ | APPswe/Lon SH-SY5Y | ↔ | ↑ | Cyt-AEQ | mit-AEQ | Bradykinin | ↑ | Hedskog et al., 2013 | |
| PS2 (WT, T122R) | SH-SY5Y | ↑ (ER-mito transfer) | Cyt-AEQ, N33D1cpv | 4mtD1cpv, mit-AEQ | Bradykinin | ↑ | Zampese et al., 2011 | ||
| APOE4 | Neuroblastoma N2a cell | basal ↔ | ↑ | Fura-2 AM | Rhod-2AM | CaCl2, Thapsigargin | ↑ (MAM protein level) | Orr et al., 2019 | |
| PD | α–synuclein (WT) | SH-SY5Y HeLa cell | ↔ | ↑ | Cyt-AEQ | mit-AEQ | Bradykinin, Histamine | ↑ | Cali et al., 2012 |
| α–synuclein (WT, A53T, A30P) | SH-SY5Y Neuron derived from patient iPSC | ↓ | Rhod2-AM | Oxo-M | ↓ | Paillusson et al., 2017 | |||
| PINK1 mutant | Drosophila | ↔ | ↑ | GCaMP | mito-GCaMP, Rhod2-AM | ↑ | Lee et al., 2018 | ||
| PINK1 KD / KO | SH-SY5Y human neuron mouse neuron | ↑ | ↑ (Capacity ↓) | Fluo-4, Fura-2 | KCl, Ca-NPEGTA | Gandhi et al., 2009 | |||
| PINK1 KO | Isolated mitochondria | Capacity ↓ | Extra mitochondria Ca2+: Calcium Green 5N | KCl | Akundi et al., 2011 | ||||
| Parkin KD / mutant | Drosophila Patient fibroblast | ↔ | ↓ | Cyt-AEQ | mit-AEQ | Histamine ATP | ↓ | Basso et al., 2018 | |
| Parkin KO / mutant | PARK2 KO mouse Patient fibroblast | ↓ | ↑ | Fura-2 | N33-D1cpv, pericam-mt | Bradykinin, ATP, Histamine | ↑ | Gautier et al., 2016 | |
| LRRK2 (G2019S, R1441C) | Cortical neuron patient fibroblast | ↑ | ↑ | RCaMP | mt-GCaMP6m | KCl | Verma et al., 2017 | ||
| HD | HTT (YAC72) | Isolated mitochondria (YAC72 brain) | ↑ (slower recovery) | Capacity ↓ | Extra-mitochondrial Ca2+ : Calcium Green 5N | CaCl2 | Panov et al., 2002 | ||
| HTT (YAC128) | Isolated mitochondria, striatal neuron | ↑ | Capacity ↑ | Fura-2FF-AM | Extra-mitochondrial Ca2+ using electrode | CaCl2 (w/o BSA), glutamate | Pellman et al., 2015 | ||
| HTT (YAC128) | Isolated forebrain mitochondria | ↑ | Extra-mitochondrial Ca2+ : Calcium Green 5N | CaCl2 | Oliveira et al., 2007 | ||||
| R6/2 mice | ↑ | ||||||||
| Hdh150 knock-in mice | ↔ | ||||||||
| STHdhQ111 | Striatal cell line | ↔↑(Bradykinin) | ↓↔ (low Ca2+) | Fura-2AM | mit-AEQ | ATP, Bradykinin, Ca2+ | Lim et al., 2008 | ||
| STHdhQ111 | Striatal cell line | ↔ | ↓ | Fluo-3AM | Rhod-2AM | Thapsigargin | Quintanilla et al., 2013 | ||
| HTT (YAC128) | Medium spiny neuron (MSN) | ↑ | Fura-2 | Glutamate | Tang et al., 2005 | ||||
| HTT (YAC128), HD patient | MEF, MSN, patient fibroblast | ↑ | 2mt-cameleon | Bradykinin, DHPG | Wang et al., 2013 | ||||
| ALS | SOD1 (G37R) | Neuroblastoma N2a cell | ↑ | ↓ | Cyt-AEQ | mit-AEQ | Bradykinin | Coussee et al., 2011 | |
| SOD1 (G93A) | Motor neuron | ↓ (release from mito) | Fura-2AM | FCCP | Tadic et al., 2019 | ||||
| SOD1 (G93A) | Motor neuron | ↑ | ↓ | Fura-2AM | Rhod-2AM | Glutamate | Kruman et al., 1999 | ||
| SOD1 (G93A) | Motor neuron | ↑ | ↑ | Fura-2AM | mt-pericam | No inducer | Tradewell et al., 2011 | ||
| SOD1 (G93A) | Isolated spinal cord mitochondria | ↓endstage & presymptomatic | Calcium Green 5N | Parone et al., 2013 | |||||
| SOD1 (G37R, G85R) | ↓endstage ↔presymptomatic | ||||||||
| TDP43 (M337V, Q331K, A382T, G348C) | HEK293 | ↑ | ↓ | Fluo-4AM | Rhod-2AM | Oxo-M | ↓ | Stoica et al., 2014 | |
| FUS (R521C, R518K) | HEK293 | ↑ | ↓ | Fluo-4AM | Rhod-2AM | Oxo-M | ↓ | Stoica et al., 2016 | |
| C9ORF72, TARDBP (M337V, I383T) | Patient fibroblast derived MN | ↑ (recovery time) | ↓ | Fura-2AM | Rhod-2AM | KCl, Glutamate | Dafinca et al., 2020 | ||
Disease models show differential Ca2+ dynamics depending on disease models, Ca2+ sensors, and stimulation condition. Disease models: 3xTG-AD, Presenilin 1 (Psen1, M146V homozygous knock-in), amyloid beta precursor protein (APPswe, K670N/M671L transgene) and microtubule associated protein tau (MAPT, P301L transgene); APPswe/Lon, Swedish (K670N/M671L) and London (V717I) mutations; YAC models, expanded number of polyQ in Htt; R6/2 mice, expressing a short N-terminal fragment of human Htt with 150 polyQ; Hdh150 knock-in mice, full-length Htt with 150 polyQ; STHdhQ111, striatal cell lines from HD knock-in mouse model; Ca2+ sensors: AEQ, aequorin (chemiluminescence-based genetically encoded Ca2+ sensor); D1cpv, FRET-based Ca2+ sensor (N33 for outer mitochondrial membrane, 4 mt for mitochondrial matrix); Etc: Ach, Acetylcholine; DHPG, (RS)-3,5-dihydroxyphenylglycine, a potent agonist of group I metabotropic glutamate receptors; MEF, mouse embryonic fibroblast.
Furthermore, mitochondria contribute to the presynaptic defects observed in AD. Increased insulin-like growth factor-1 receptor (IGF-1R) levels are found in AD patient and mouse model brain samples (Moloney et al., 2010; Zhang et al., 2013). IGF-1R regulates synaptic transmission by modulating presynaptic mitochondrial Ca2+ buffering and ATP production, as measured using the mitochondria-targeted GECI and the ATP sensor, although detailed mechanisms are not known. Interestingly, inhibition of IGF-1R reverses altered synaptic release in an APP/PS1 mutant model (Gazit et al., 2016).
PD-Related Mitochondrial Ca2+ Dysfunction
Parkinson’s disease is characterized at the cellular level by dopaminergic neuron loss in the substantia nigra. Several genes contributing to PD pathogenesis have been identified, including α-synuclein, leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and parkin (Abou-Sleiman et al., 2006; Ferreira and Massano, 2017). Ca2+ regulation is especially important for dopaminergic neurons because of their steady and autonomous pacemaker function (Chan et al., 2007; Guzman et al., 2010).
Mutation of α-synuclein and its aggregation into Lewy bodies are well-known pathological processes in PD. Interestingly, α-synuclein is localized to ER, mitochondria, and MAM and contributes to regulating ER–mitochondria communication (Li et al., 2007; Cali et al., 2012; Guardia-Laguarta et al., 2014). In one study, overexpression of WT or mutant α-synuclein in HeLa and SH-SY5Y cells was found to increase mitochondrial Ca2+ by enhancing ER–mitochondria interaction (Cali et al., 2012, 2019). However, another study using mutant α-synuclein-overexpressing cells produced conflicting results in terms of ER–mitochondria interactions (Guardia-Laguarta et al., 2014). Furthermore, overexpression of α-synuclein (WT/mutant) in SH-SY5Y cells disturbed the interaction between VAPB and PTPIP51, and this was accompanied by reduced ER-to-mitochondria Ca2+ transfer (Paillusson et al., 2017). High dose of WT/mutant α-synuclein can form the aggregates, and this in turn reduces ER-mitochondria contacts (Cali et al., 2012, 2019). Therefore, the dose-dependent effect could be the possible cause of discrepancies (Figure 1).
PINK1, a mitochondrial serine/threonine kinase, and parkin, an E3 ubiquitin ligase, are proposed to underlie mitochondrial quality control, with mutations in either gene highly related to PD (Narendra and Youle, 2011; Pickrell and Youle, 2015). Dopaminergic neuron-specific mitochondrial Ca2+ imaging with mito-GCaMP, a mitochondria-targeted GECI, in Drosophila PD models revealed elevated mitochondrial Ca2+. Pharmacological and genetic inhibition of IP3R and MCU restore mitochondrial Ca2+ and dopaminergic neuron loss (Lee et al., 2018). In contrast, due to negative regulation of NCLX, PINK1-deficient cortical neurons show reduced mitochondrial Ca2+ capacity and higher mitochondrial Ca2+ accumulation (Gandhi et al., 2009). Similarly, purified mitochondria from PINK1–/– mouse brain show a significantly decreased mitochondrial Ca2+ buffering capacity (Akundi et al., 2011).
Primary fibroblasts from PD patients with parkin mutations had reduced mitochondrial Ca2+ uptake due to loosened ER–mitochondria connectivity (Basso et al., 2018). Contrary to these results, other studies found that fibroblasts from Parkin-deficient mice or from PD patients with a parkin mutation show increased ER–mitochondria contacts (Gautier et al., 2016). In addition, OMM- and matrix-targeted Ca2+ sensors revealed higher ER-mitochondrial Ca2+ transfer (Gautier et al., 2016).
Dendrite shortening in LRRK2 mutant models is a well-known change related to mitochondrial dysfunction (Cherra et al., 2013). Abnormal mitochondrial function results from the stimulation-induced increase in mitochondrial Ca2+, which is accompanied by upregulated MCU expression. Interestingly, chemical inhibition or knockdown of MCU successfully restores neurite length (Verma et al., 2017; Table 1).
Dysregulation of Mitochondrial Ca2+ in Other Neurodegenerative Diseases
HD is a hereditary neurodegenerative disease characterized by involuntary movements, psychiatric abnormalities, and dementia. The major pathogenic features of the disease are progressive striatal neuronal loss, particularly of GABAergic medium spiny neurons, and extension of the N-terminal polyglutamine (polyQ) stretch of the huntingtin protein (Walker, 2007; Brustovetsky, 2016).
In the mutant huntingtin transgenic mouse brain, polyQ-stretched huntingtin is associated with the mitochondrial membrane (Choo et al., 2004). Interestingly, deficits in mitochondrial Ca2+ buffering have been observed after applying Calcium Green-5N to isolated mitochondria from HD mouse brain to monitor extramitochondrial Ca2+ (Panov et al., 2002). Live imaging of HD model striatal cell lines with mitochondria-targeted aequorin or Rhod-2AM indicates that mitochondria are able to handle a low Ca2+ challenge, but that a higher Ca2+ concentration disrupts their buffering ability (Lim et al., 2008; Quintanilla et al., 2013).
However, other studies demonstrated increased Ca2+ uptake capacity in isolated mitochondria from HD model mouse forebrains (Oliveira et al., 2007; Pellman et al., 2015). Furthermore, mitochondrial Ca2+ influx is higher in primary medium spiny neurons of HD model mice (Tang et al., 2005) and in fibroblasts from HD patients (Wang et al., 2013), which leads to cell death or mitochondrial DNA damage. Interestingly, this excitotoxicity is prevented by MCU or mPTP inhibition (Tang et al., 2005; Figure 1 and Table 1).
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle paralysis resulting from the degeneration of upper and lower motor neurons. ALS exhibits multiple pathogenic features, including oxidative stress, mitochondrial dysfunction, and protein dysfunction of 43-kDa transactivating response region binding protein (TDP-43) and cytoplasmic Cu2+/Zn2+-superoxide dismutase 1 (SOD1) (Ferraiuolo et al., 2011; Lee et al., 2011; Tadic et al., 2014).
Monitoring with mitochondria-/ER-targeted ratiometric sensor proteins and Fura-2 identified elevated levels of mitochondrial, ER, and cytosolic Ca2+ in the motor neurons of ALS mutant transgenic mice (SOD1G93A) (Tradewell et al., 2011). However, in another study, Rhod-2- and Fura-2-based Ca2+ imaging showed significantly decreased mitochondrial Ca2+ uptake and increased cytosolic Ca2+ in SOD1G93A mice motor neurons (Kruman et al., 1999). Decreased mitochondrial Ca2+ buffering capacity in SOD1G93A-expressing mice can be restored by CypD deletion, which regulates mPTP opening, suppressing cell death (Parone et al., 2013). Other ALS mutant (SOD1G37R-overexpressing) N2a cells also show significantly reduced mitochondrial Ca2+ uptake and elevated cytosolic Ca2+ (Coussee et al., 2011).
Multiple studies suggest that specific molecular processes underlie ALS progression, but their findings are contentious. Hypoglossal motor neurons of SOD1G93A-transgenic mice show upregulated MCU and MICU1 expression at the end stage of the disease (P115–140) (Fuchs et al., 2013). However, in symptomatic cervical spinal cord motor neurons, MCU level is significantly decreased (Tadic et al., 2019).
Other ALS-associated genes have also been identified, including TDP-43, fused in sarcoma (FUS), VAPB, and expanded hexanucleotide repeats in intron 1 of the encoding chromosome 9 open reading frame 72 (C9ORF72). The OMM protein PTPIP51 is a known binding partner of the ER protein VAPB. VAPB–PTPIP51 interaction in mouse motor neurons is disrupted by overexpression of ALS mutant or wild-type TDP-43 and FUS, also leading to disruption of Ca2+ homeostasis in HEK293T cells (Stoica et al., 2014, 2016). ALS patient fibroblast-derived motor neurons with C9ORF72 and TDP-43 mutations show delayed clearance of cytosolic Ca2+, lower mitochondrial buffering capacity, and imbalance of MICU1 and MICU2 expression (Dafinca et al., 2020) (Figure 1 and Table 1).
Discussion
In summary, brain aging and neurodegenerative diseases involve mitochondria- and ER-mitochondria contact-related Ca2+ regulatory defects. These alterations have been revealed using various experimental methods, including electrophysiological recording and live imaging. However, large part of in-vitro studies for neurodegenerative diseases have performed using cell lines and patient-derived fibroblasts rather than neurons. In addition, Ca2+ signals were triggered by various chemicals, and most conditions are not neurophysiological (Table 1). Depending on tissues and brain regions, mitochondrial Ca2+ uptake capacity and regulatory components can be different (Markus et al., 2016; Vecellio Reane et al., 2016; Patron et al., 2019). Therefore, application of recently advanced genetically encoded Ca2+ sensors for specific organelles will provide more precise neuron type-specific data (Kwon et al., 2016a).
Finally, mitochondrial Ca2+ regulatory molecular mechanisms have recently been revealed, with some studies showing that the composition of the MCU complex can change during disease progress and differ between mutant types (Table 1). Thus, revealing the detailed pathophysiological mechanisms of mitochondrial defects at the molecular level could lead to novel therapeutic targets that are specific for particular mutations and disease stages.
Author Contributions
HJ, SYK, FC, and S-KK wrote the manuscript and created the figures and table. S-KK and YC provided guidance and edited the manuscript. All authors contributed to the article and approved the submitted version.
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Acknowledgments
A draft of this manuscript was edited by the Doran Amos, Ph.D., and Julia Slone-Murphy, Ph.D., ELS, of NeuroEdit Ltd.
Footnotes
Funding. S-KK was supported by grants from the Brain Research Program and the Bio and Medical Technology Development Program of the National Research Foundation funded by the Korean Government (nos. NRF2017M3C7A1043838, NRF2019M3E5D2 A01063794, NRF2019M3F3A1A02072175, and NRF2020R1C1C1 006386), and the Korea Institute of Science and Technology Institutional Program (no. 2E30070). YC was supported by a Korea University Grant.
Supplementary Material
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2020.599792/full#supplementary-material
MCU complex machinery. When the cytosolic Ca2+ level is low, MICU1/MICU2 heterodimer keeps MCU as a closed-form, whereas in high Ca2+ concentration, their conformational change helps MCU allow Ca2+ influx toward mitochondrial matrix. Otherwise, MICU1/MICU3 heterodimer has less gatekeeping function than MICU1/MICU2 dimer, which leads to opening the MCU complex in lower Ca2+ condition.
References
- Abou-Sleiman P. M., Muqit M. M., Wood N. W. (2006). Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci. 7 207–219. 10.1038/nrn1868 [DOI] [PubMed] [Google Scholar]
- Akundi R. S., Huang Z., Eason J., Pandya J. D., Zhi L., Cass W. A., et al. (2011). Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One 6:e16038. 10.1371/journal.pone.0016038 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alavian K. N., Beutner G., Lazrove E., Sacchetti S., Park H. A., Licznerski P., et al. (2014). An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc. Natl. Acad. Sci. U.S.A. 111 10580–10585. 10.1073/pnas.1401591111 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Area-Gomez E., de Groof A., Bonilla E., Montesinos J., Tanji K., Boldogh I., et al. (2018). A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis. 9:335. 10.1038/s41419-017-0215-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Area-Gomez E., Del Carmen Lara Castillo M., Tambini M. D., Guardia-Laguarta C., de Groof A. J., Madra M., et al. (2012). Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31 4106–4123. 10.1038/emboj.2012.202 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashrafi G., de Juan-Sanz J., Farrell R. J., Ryan T. A. (2020). Molecular tuning of the axonal mitochondrial Ca(2+) uniporter ensures metabolic flexibility of neurotransmission. Neuron 105 678–687.e5. 10.1016/j.neuron.2019.11.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basso V., Marchesan E., Peggion C., Chakraborty J., von Stockum S., Giacomello M., et al. (2018). Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol. Res. 138 43–56. 10.1016/j.phrs.2018.09.006 [DOI] [PubMed] [Google Scholar]
- Baughman J. M., Perocchi F., Girgis H. S., Plovanich M., Belcher-Timme C. A., Sancak Y., et al. (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476 341–345. 10.1038/nature10234 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beal M. F. (1998). Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol. 44(Suppl. 1) S110–S114. 10.1002/ana.410440716 [DOI] [PubMed] [Google Scholar]
- Bernardi P. (2018). Why F-ATP synthase remains a strong candidate as the mitochondrial permeability transition pore. Front. Physiol. 9:1543. 10.3389/fphys.2018.01543 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernard-Marissal N., Chrast R., Schneider B. L. (2018). Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship? Cell Death Dis. 9:333. 10.1038/s41419-017-0125-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonora M., Bononi A., De Marchi E., Giorgi C., Lebiedzinska M., Marchi S., et al. (2013). Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12 674–683. 10.4161/cc.23599 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brustovetsky N. (2016). Mutant huntingtin and elusive defects in oxidative metabolism and mitochondrial calcium handling. Mol. Neurobiol. 53 2944–2953. 10.1007/s12035-015-9188-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cali T., Ottolini D., Negro A., Brini M. (2012). alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287 17914–17929. 10.1074/jbc.M111.302794 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cali T., Ottolini D., Vicario M., Catoni C., Vallese F., Cieri D., et al. (2019). splitGFP technology reveals dose-dependent ER-mitochondria interface modulation by alpha-Synuclein A53T and A30P mutants. Cells 8:1072. 10.3390/cells8091072 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo-Rodriguez M., Hernando-Perez E., Nunez L., Villalobos C. (2019). Amyloid beta oligomers increase ER-Mitochondria Ca(2+) cross talk in young hippocampal neurons and exacerbate aging-induced intracellular Ca(2+) remodeling. Front. Cell Neurosci. 13:22. 10.3389/fncel.2019.00022 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo-Rodriguez M., Hou S. S., Snyder A. C., Kharitonova E. K., Russ A. N., Das S., et al. (2020). Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun. 11:2146. 10.1038/s41467-020-16074-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll J., He J., Ding S., Fearnley I. M., Walker J. E. (2019). Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase. Proc. Natl. Acad. Sci. U.S.A. 116 12816–12821. 10.1073/pnas.1904005116 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan C. S., Guzman J. N., Ilijic E., Mercer J. N., Rick C., Tkatch T., et al. (2007). ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447 1081–1086. 10.1038/nature05865 [DOI] [PubMed] [Google Scholar]
- Chen G. F., Xu T. H., Yan Y., Zhou Y. R., Jiang Y., Melcher K., et al. (2017). Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38 1205–1235. 10.1038/aps.2017.28 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherra S. J., III, Steer E., Gusdon A. M., Kiselyov K., Chu C. T. (2013). Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am. J. Pathol. 182 474–484. 10.1016/j.ajpath.2012.10.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choo Y. S., Johnson G. V., MacDonald M., Detloff P. J., Lesort M. (2004). Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 13 1407–1420. 10.1093/hmg/ddh162 [DOI] [PubMed] [Google Scholar]
- Colombini M. (2016). The VDAC channel: molecular basis for selectivity. Biochim. Biophys. Acta 1863 2498–2502. 10.1016/j.bbamcr.2016.01.019 [DOI] [PubMed] [Google Scholar]
- Coussee E., De Smet P., Bogaert E., Elens I., Van Damme P., Willems P., et al. (2011). G37R SOD1 mutant alters mitochondrial complex I activity, Ca(2+) uptake and ATP production. Cell Calcium 49 217–225. 10.1016/j.ceca.2011.02.004 [DOI] [PubMed] [Google Scholar]
- Csordas G., Golenar T., Seifert E. L., Kamer K. J., Sancak Y., Perocchi F., et al. (2013). MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell Metab. 17 976–987. 10.1016/j.cmet.2013.04.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dafinca R., Barbagallo P., Farrimond L., Candalija A., Scaber J., Ababneh N. A., et al. (2020). Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD. Stem Cell Rep. 14 892–908. 10.1016/j.stemcr.2020.03.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Marchi U., Santo-Domingo J., Castelbou C., Sekler I., Wiederkehr A., Demaurex N. (2014). NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state. J. Biol. Chem. 289 20377–20385. 10.1074/jbc.M113.540898 [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Stefani D., Raffaello A., Teardo E., Szabo I., Rizzuto R. (2011). A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476 336–340. 10.1038/nature10230 [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Vos K. J., Morotz G. M., Stoica R., Tudor E. L., Lau K. F., Ackerley S., et al. (2012). VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21 1299–1311. 10.1093/hmg/ddr559 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Disterhoft J. F., Thompson L. T., Moyer J. R., Jr., Mogul D. J. (1996). Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sci. 59 413–420. 10.1016/0024-3205(96)00320-7 [DOI] [PubMed] [Google Scholar]
- Divakaruni S. S., Van Dyke A. M., Chandra R., LeGates T. A., Contreras M., Dharmasri P. A., et al. (2018). Long-term potentiation requires a rapid burst of dendritic mitochondrial fission during induction. Neuron 100 860–875e7. 10.1016/j.neuron.2018.09.025 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du H., Guo L., Fang F., Chen D., Sosunov A. A., McKhann G. M., et al. (2008). Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat. Med. 14 1097–1105. 10.1038/nm.1868 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferraiuolo L., Kirby J., Grierson A. J., Sendtner M., Shaw P. J. (2011). Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat. Rev. Neurol. 7 616–630. 10.1038/nrneurol.2011.152 [DOI] [PubMed] [Google Scholar]
- Ferreira M., Massano J. (2017). An updated review of Parkinson’s disease genetics and clinicopathological correlations. Acta Neurol. Scand. 135 273–284. 10.1111/ane.12616 [DOI] [PubMed] [Google Scholar]
- Fuchs A., Kutterer S., Muhling T., Duda J., Schutz B., Liss B., et al. (2013). Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J. Physiol. 591 2723–2745. 10.1113/jphysiol.2012.247981 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandhi S., Wood-Kaczmar A., Yao Z., Plun-Favreau H., Deas E., Klupsch K., et al. (2009). PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33 627–638. 10.1016/j.molcel.2009.02.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gautier C. A., Erpapazoglou Z., Mouton-Liger F., Muriel M. P., Cormier F., Bigou S., et al. (2016). The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Hum. Mol. Genet. 25 2972–2984. 10.1093/hmg/ddw148 [DOI] [PubMed] [Google Scholar]
- Gazit N., Vertkin I., Shapira I., Helm M., Slomowitz E., Sheiba M., et al. (2016). IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron 89 583–597. 10.1016/j.neuron.2015.12.034 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh A., Greenberg M. E. (1995). Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268 239–247. 10.1126/science.7716515 [DOI] [PubMed] [Google Scholar]
- Giorgi C., Marchi S., Pinton P. (2018). The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19 713–730. 10.1038/s41580-018-0052-8 [DOI] [PubMed] [Google Scholar]
- Gomez-Suaga P., Bravo-San Pedro J. M., Gonzalez-Polo R. A., Fuentes J. M., Niso-Santano M. (2018). ER-mitochondria signaling in Parkinson’s disease. Cell Death Dis. 9:337. 10.1038/s41419-017-0079-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimm A., Eckert A. (2017). Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem. 143 418–431. 10.1111/jnc.14037 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guardia-Laguarta C., Area-Gomez E., Rub C., Liu Y., Magrane J., Becker D., et al. (2014). alpha-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34 249–259. 10.1523/JNEUROSCI.2507-13.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guzman J. N., Sanchez-Padilla J., Wokosin D., Kondapalli J., Ilijic E., Schumacker P. T., et al. (2010). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468 696–700. 10.1038/nature09536 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi T., Su T. P. (2007). Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131 596–610. 10.1016/j.cell.2007.08.036 [DOI] [PubMed] [Google Scholar]
- Hayashi Y., Majewska A. K. (2005). Dendritic spine geometry: functional implication and regulation. Neuron 46 529–532. 10.1016/j.neuron.2005.05.006 [DOI] [PubMed] [Google Scholar]
- He J., Carroll J., Ding S., Fearnley I. M., Walker J. E. (2017). Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc. Natl. Acad. Sci. U.S.A. 114 9086–9091. 10.1073/pnas.1711201114 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedskog L., Pinho C. M., Filadi R., Ronnback A., Hertwig L., Wiehager B., et al. (2013). Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc. Natl. Acad. Sci. U.S.A. 110 7916–7921. 10.1073/pnas.1300677110 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higley M. J., Sabatini B. L. (2008). Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59 902–913. 10.1016/j.neuron.2008.08.020 [DOI] [PubMed] [Google Scholar]
- Hirabayashi Y., Kwon S. K., Paek H., Pernice W. M., Paul M. A., Lee J., et al. (2017). ER-mitochondria tethering by PDZD8 regulates Ca(2+) dynamics in mammalian neurons. Science 358 623–630. 10.1126/science.aan6009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jadiya P., Kolmetzky D. W., Tomar D., Di Meco A., Lombardi A. A., Lambert J. P., et al. (2019). Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat. Commun. 10:3885. 10.1038/s41467-019-11813-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang D., Zhao L., Clapham D. E. (2009). Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326 144–147. 10.1126/science.1175145 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaeser P. S., Regehr W. G. (2014). Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76 333–363. 10.1146/annurev-physiol-021113-170338 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang J. S., Tian J. H., Pan P. Y., Zald P., Li C., Deng C., et al. (2008). Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132 137–148. 10.1016/j.cell.2007.11.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karch J., Bround M. J., Khalil H., Sargent M. A., Latchman N., Terada N., et al. (2019). Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci. Adv. 5:eaaw4597. 10.1126/sciadv.aaw4597 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karch J., Molkentin J. D. (2014). Identifying the components of the elusive mitochondrial permeability transition pore. Proc. Natl. Acad. Sci. U.S.A. 111 10396–10397. 10.1073/pnas.1410104111 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirichok Y., Krapivinsky G., Clapham D. E. (2004). The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427 360–364. 10.1038/nature02246 [DOI] [PubMed] [Google Scholar]
- Kokoszka J. E., Waymire K. G., Levy S. E., Sligh J. E., Cai J., Jones D. P., et al. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427 461–465. 10.1038/nature02229 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruman I. I., Pedersen W. A., Springer J. E., Mattson M. P. (1999). ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol. 160 28–39. 10.1006/exnr.1999.7190 [DOI] [PubMed] [Google Scholar]
- Kwon S. K., Hirabayashi Y., Polleux F. (2016a). Organelle-specific sensors for monitoring Ca(2+) dynamics in neurons. Front. Synaptic Neurosci. 8:29. 10.3389/fnsyn.2016.00029 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon S. K., Sando R., III, Lewis T. L., Hirabayashi Y., Maximov A., Polleux F. (2016b). LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons. PLoS Biol. 14:e1002516. 10.1371/journal.pbio.1002516 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landfield P. W., Pitler T. A. (1984). Prolonged Ca2+-dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science 226 1089–1092. 10.1126/science.6494926 [DOI] [PubMed] [Google Scholar]
- Lau D. H. W., Hartopp N., Welsh N. J., Mueller S., Glennon E. B., Morotz G. M., et al. (2018). Disruption of ER-mitochondria signalling in fronto-temporal dementia and related amyotrophic lateral sclerosis. Cell Death Dis. 9:327. 10.1038/s41419-017-0022-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau D. H. W., Paillusson S., Hartopp N., Rupawala H., Morotz G. M., Gomez-Suaga P., et al. (2020). Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer’s disease brain. Neurobiol. Dis. 143:105020. 10.1016/j.nbd.2020.105020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee E. B., Lee V. M., Trojanowski J. Q. (2011). Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13 38–50. 10.1038/nrn3121 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. S., Huh S., Lee S., Wu Z., Kim A. K., Kang H. Y., et al. (2018). Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc. Natl. Acad. Sci. U.S.A. 115 E8844–E8853. 10.1073/pnas.1721136115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie S. W., Chandler L. J., Barr E. M., Farrar R. P. (1985). Reduced calcium uptake by rat brain mitochondria and synaptosomes in response to aging. Brain Res. 329 177–183. 10.1016/0006-8993(85)90523-2 [DOI] [PubMed] [Google Scholar]
- Lesne S., Kotilinek L., Ashe K. H. (2008). Plaque-bearing mice with reduced levels of oligomeric amyloid-beta assemblies have intact memory function. Neuroscience 151 745–749. 10.1016/j.neuroscience.2007.10.054 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lessmann V., Gottmann K., Malcangio M. (2003). Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol. 69 341–374. 10.1016/s0301-0082(03)00019-4 [DOI] [PubMed] [Google Scholar]
- Li W. W., Yang R., Guo J. C., Ren H. M., Zha X. L., Cheng J. S., et al. (2007). Localization of alpha-synuclein to mitochondria within midbrain of mice. Neuroreport 18 1543–1546. 10.1097/WNR.0b013e3282f03db4 [DOI] [PubMed] [Google Scholar]
- Liao Y., Dong Y., Cheng J. (2017). The function of the mitochondrial calcium uniporter in neurodegenerative disorders. Int. J. Mol. Sci. 18:248. 10.3390/ijms18020248 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim D., Fedrizzi L., Tartari M., Zuccato C., Cattaneo E., Brini M., et al. (2008). Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J. Biol. Chem. 283 5780–5789. 10.1074/jbc.M704704200 [DOI] [PubMed] [Google Scholar]
- Liu M. L., Zang T., Zhang C. L. (2016). Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Rep. 14 115–128. 10.1016/j.celrep.2015.12.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Zhu X. (2017). Endoplasmic reticulum-mitochondria tethering in neurodegenerative diseases. Transl. Neurodegener. 6:21. 10.1186/s40035-017-0092-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luongo T. S., Lambert J. P., Gross P., Nwokedi M., Lombardi A. A., Shanmughapriya S., et al. (2017). The mitochondrial Na(+)/Ca(2+) exchanger is essential for Ca(2+) homeostasis and viability. Nature 545 93–97. 10.1038/nature22082 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mammucari C., Gherardi G., Rizzuto R. (2017). Structure, activity regulation, and role of the mitochondrial calcium uniporter in health and disease. Front. Oncol. 7:139. 10.3389/fonc.2017.00139 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markus N. M., Hasel P., Qiu J., Bell K. F., Heron S., Kind P. C., et al. (2016). Expression of mRNA encoding Mcu and other mitochondrial calcium regulatory genes depends on cell type, neuronal subtype, and Ca2+ signaling. PLoS One 11:e0148164. 10.1371/journal.pone.0148164 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martino Adami P. V., Nichtova Z., Weaver D. B., Bartok A., Wisniewski T., Jones D. R., et al. (2019). Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer’s disease. J. Cell Sci. 132:jcs229906. 10.1242/jcs.229906 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattson M. P., Arumugam T. V. (2018). Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 27 1176–1199. 10.1016/j.cmet.2018.05.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattson M. P., Gleichmann M., Cheng A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron 60 748–766. 10.1016/j.neuron.2008.10.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moloney A. M., Griffin R. J., Timmons S., O’Connor R., Ravid R., O’Neill C. (2010). Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging 31 224–243. 10.1016/j.neurobiolaging.2008.04.002 [DOI] [PubMed] [Google Scholar]
- Muller M., Ahumada-Castro U., Sanhueza M., Gonzalez-Billault C., Court F. A., Cardenas C. (2018). Mitochondria and calcium regulation as basis of neurodegeneration associated with aging. Front. Neurosci. 12:470. 10.3389/fnins.2018.00470 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murchison D., Zawieja D. C., Griffith W. H. (2004). Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium 36 61–75. 10.1016/j.ceca.2003.11.010 [DOI] [PubMed] [Google Scholar]
- Narendra D. P., Youle R. J. (2011). Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 14 1929–1938. 10.1089/ars.2010.3799 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oddo S., Caccamo A., Shepherd J. D., Murphy M. P., Golde T. E., Kayed R., et al. (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39 409–421. 10.1016/s0896-6273(03)00434-3 [DOI] [PubMed] [Google Scholar]
- Oliveira J. M., Jekabsons M. B., Chen S., Lin A., Rego A. C., Goncalves J., et al. (2007). Mitochondrial dysfunction in Huntington’s disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice. J. Neurochem. 101 241–249. 10.1111/j.1471-4159.2006.04361.x [DOI] [PubMed] [Google Scholar]
- Orr A. L., Kim C., Jimenez-Morales D., Newton B. W., Johnson J. R., Krogan N. J., et al. (2019). Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J. Alzheimers Dis. 68 991–1011. 10.3233/JAD-181184 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paillusson S., Gomez-Suaga P., Stoica R., Little D., Gissen P., Devine M. J., et al. (2017). alpha-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca(2+) homeostasis and mitochondrial ATP production. Acta Neuropathol. 134 129–149. 10.1007/s00401-017-1704-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paillusson S., Stoica R., Gomez-Suaga P., Lau D. H. W., Mueller S., Miller T., et al. (2016). There’s Something Wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. Trends Neurosci. 39 146–157. 10.1016/j.tins.2016.01.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pallafacchina G., Zanin S., Rizzuto R. (2018). Recent advances in the molecular mechanism of mitochondrial calcium uptake. F1000Res. 7::1858. 10.12688/f1000research.15723.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palty R., Silverman W. F., Hershfinkel M., Caporale T., Sensi S. L., Parnis J., et al. (2010). NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. Sci. U.S.A. 107 436–441. 10.1073/pnas.0908099107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pandya J. D., Grondin R., Yonutas H. M., Haghnazar H., Gash D. M., Zhang Z., et al. (2015). Decreased mitochondrial bioenergetics and calcium buffering capacity in the basal ganglia correlates with motor deficits in a nonhuman primate model of aging. Neurobiol. Aging 36 1903–1913. 10.1016/j.neurobiolaging.2015.01.018 [DOI] [PubMed] [Google Scholar]
- Panov A. V., Gutekunst C. A., Leavitt B. R., Hayden M. R., Burke J. R., Strittmatter W. J., et al. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5 731–736. 10.1038/nn884 [DOI] [PubMed] [Google Scholar]
- Parone P. A., Da Cruz S., Han J. S., McAlonis-Downes M., Vetto A. P., Lee S. K., et al. (2013). Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci. 33 4657–4671. 10.1523/JNEUROSCI.1119-12.2013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patron M., Checchetto V., Raffaello A., Teardo E., Vecellio Reane D., Mantoan M., et al. (2014). MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell 53 726–737. 10.1016/j.molcel.2014.01.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patron M., Granatiero V., Espino J., Rizzuto R., De Stefani D. (2019). MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death Differ. 26 179–195. 10.1038/s41418-018-0113-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pchitskaya E., Popugaeva E., Bezprozvanny I. (2018). Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 70 87–94. 10.1016/j.ceca.2017.06.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pellman J. J., Hamilton J., Brustovetsky T., Brustovetsky N. (2015). Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington’s disease. J. Neurochem. 134 652–667. 10.1111/jnc.13165 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickrell A. M., Youle R. J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85 257–273. 10.1016/j.neuron.2014.12.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quintanilla R. A., Jin Y. N., von Bernhardi R., Johnson G. V. (2013). Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol. Neurodegener. 8:45. 10.1186/1750-1326-8-45 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raffaello A., De Stefani D., Sabbadin D., Teardo E., Merli G., Picard A., et al. (2013). The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32 2362–2376. 10.1038/emboj.2013.157 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raffaello A., Mammucari C., Gherardi G., Rizzuto R. (2016). Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci. 41 1035–1049. 10.1016/j.tibs.2016.09.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapizzi E., Pinton P., Szabadkai G., Wieckowski M. R., Vandecasteele G., Baird G., et al. (2002). Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell Biol. 159 613–624. 10.1083/jcb.200205091 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottenberg H., Hoek J. B. (2017). The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 16 943–955. 10.1111/acel.12650 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sancak Y., Markhard A. L., Kitami T., Kovacs-Bogdan E., Kamer K. J., Udeshi N. D., et al. (2013). EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342 1379–1382. 10.1126/science.1242993 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sepulveda-Falla D., Barrera-Ocampo A., Hagel C., Korwitz A., Vinueza-Veloz M. F., Zhou K., et al. (2014). Familial Alzheimer’s disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J. Clin. Invest. 124 1552–1567. 10.1172/JCI66407 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoica R., De Vos K. J., Paillusson S., Mueller S., Sancho R. M., Lau K. F., et al. (2014). ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5:3996. 10.1038/ncomms4996 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoica R., Paillusson S., Gomez-Suaga P., Mitchell J. C., Lau D. H., Gray E. H., et al. (2016). ALS/FTD-associated FUS activates GSK-3beta to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep. 17 1326–1342. 10.15252/embr.201541726 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sudhof T. C. (2012). The presynaptic active zone. Neuron 75 11–25. 10.1016/j.neuron.2012.06.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Supnet C., Bezprozvanny I. (2010). The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 47 183–189. 10.1016/j.ceca.2009.12.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surmeier D. J., Schumacker P. T., Guzman J. D., Ilijic E., Yang B., Zampese E. (2017). Calcium and Parkinson’s disease. Biochem. Biophys. Res. Commun. 483 1013–1019. 10.1016/j.bbrc.2016.08.168 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szabadkai G., Bianchi K., Varnai P., De Stefani D., Wieckowski M. R., Cavagna D., et al. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175 901–911. 10.1083/jcb.200608073 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tadic V., Adam A., Goldhammer N., Lautenschlaeger J., Oberstadt M., Malci A., et al. (2019). Investigation of mitochondrial calcium uniporter role in embryonic and adult motor neurons from G93A(hSOD1) mice. Neurobiol. Aging 75 209–222. 10.1016/j.neurobiolaging.2018.11.019 [DOI] [PubMed] [Google Scholar]
- Tadic V., Prell T., Lautenschlaeger J., Grosskreutz J. (2014). The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front. Cell Neurosci. 8:147. 10.3389/fncel.2014.00147 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tambini M. D., Pera M., Kanter E., Yang H., Guardia-Laguarta C., Holtzman D., et al. (2016). ApoE4 upregulates the activity of mitochondria-associated ER membranes. EMBO Rep. 17 27–36. 10.15252/embr.201540614 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang T. S., Slow E., Lupu V., Stavrovskaya I. G., Sugimori M., Llinas R., et al. (2005). Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc. Natl. Acad. Sci. U.S.A. 102 2602–2607. 10.1073/pnas.0409402102 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thibault O., Hadley R., Landfield P. W. (2001). Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J. Neurosci. 21 9744–9756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomar D., Dong Z., Shanmughapriya S., Koch D. A., Thomas T., Hoffman N. E., et al. (2016). MCUR1 is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics. Cell Rep. 15 1673–1685. 10.1016/j.celrep.2016.04.050 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tradewell M. L., Cooper L. A., Minotti S., Durham H. D. (2011). Calcium dysregulation, mitochondrial pathology and protein aggregation in a culture model of amyotrophic lateral sclerosis: mechanistic relationship and differential sensitivity to intervention. Neurobiol. Dis. 42 265–275. 10.1016/j.nbd.2011.01.016 [DOI] [PubMed] [Google Scholar]
- Vais H., Mallilankaraman K., Mak D. D., Hoff H., Payne R., Tanis J. E., et al. (2016). EMRE is a matrix Ca(2+) sensor that governs gatekeeping of the mitochondrial Ca(2+) uniporter. Cell Rep. 14 403–410. 10.1016/j.celrep.2015.12.054 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vecellio Reane D., Vallese F., Checchetto V., Acquasaliente L., Butera G., De Filippis V., et al. (2016). A MICU1 splice variant confers high sensitivity to the mitochondrial Ca(2+) uptake machinery of skeletal muscle. Mol. Cell 64 760–773. 10.1016/j.molcel.2016.10.001 [DOI] [PubMed] [Google Scholar]
- Verkhratsky A. (2005). Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85 201–279. 10.1152/physrev.00004.2004 [DOI] [PubMed] [Google Scholar]
- Verkhratsky A., Orkand R. K., Kettenmann H. (1998). Glial calcium: homeostasis and signaling function. Physiol. Rev. 78 99–141. 10.1152/physrev.1998.78.1.99 [DOI] [PubMed] [Google Scholar]
- Verma M., Callio J., Otero P. A., Sekler I., Wills Z. P., Chu C. T. (2017). Mitochondrial calcium dysregulation contributes to dendrite degeneration mediated by PD/LBD-associated LRRK2 mutants. J. Neurosci. 37 11151–11165. 10.1523/JNEUROSCI.3791-16.2017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker F. O. (2007). Huntington’s disease. Lancet 369 218–228. 10.1016/S0140-6736(07)60111-1 [DOI] [PubMed] [Google Scholar]
- Wang J. Q., Chen Q., Wang X., Wang Q. C., Wang Y., Cheng H. P., et al. (2013). Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. J. Biol. Chem. 288 3070–3084. 10.1074/jbc.M112.407726 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Nguyen N. X., She J., Zeng W., Yang Y., Bai X. C., et al. (2019). Structural mechanism of EMRE-dependent gating of the human mitochondrial calcium uniporter. Cell 177 1252–1261.e13. 10.1016/j.cell.2019.03.050 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong J., Verkhratsky A., Toescu E. C. (2002). Changes in mitochondrial status associated with altered Ca2+ homeostasis in aged cerebellar granule neurons in brain slices. J. Neurosci. 22 10761–10771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zampese E., Fasolato C., Kipanyula M. J., Bortolozzi M., Pozzan T., Pizzo P. (2011). Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl. Acad. Sci. U.S.A. 108 2777–2782. 10.1073/pnas.1100735108 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang B., Tang X. C., Zhang H. Y. (2013). Alternations of central insulin-like growth factor-1 sensitivity in APP/PS1 transgenic mice and neuronal models. J. Neurosci. Res. 91 717–725. 10.1002/jnr.23201 [DOI] [PubMed] [Google Scholar]
- Zhou W., Marinelli F., Nief C., Faraldo-Gomez J. D. (2017). Atomistic simulations indicate the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability transition pore. eLife 6:e23781. 10.7554/eLife.23781 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zundorf G., Reiser G. (2011). Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid. Redox Signal. 14 1275–1288. 10.1089/ars.2010.3359 [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
MCU complex machinery. When the cytosolic Ca2+ level is low, MICU1/MICU2 heterodimer keeps MCU as a closed-form, whereas in high Ca2+ concentration, their conformational change helps MCU allow Ca2+ influx toward mitochondrial matrix. Otherwise, MICU1/MICU3 heterodimer has less gatekeeping function than MICU1/MICU2 dimer, which leads to opening the MCU complex in lower Ca2+ condition.

