Abstract
The XENON1T collaboration recently reported the excess of events from recoil electrons, possibly giving an insight into new area beyond the Standard Model (SM) of particle physics. We try to explain this excess by considering effective interactions between the sterile neutrinos and the SM particles. In this paper, we present an effective model based on one-particle-irreducible interaction vertices at low energies that are induced from the SM gauge symmetric four-fermion operators at high energies. The effective interaction strength is constrained by the SM precision measurements, astrophysical and cosmological observations. We introduce a novel effective electromagnetic interaction between sterile neutrinos and SM neutrinos, which can successfully explain the XENON1T event rate through inelastic scattering of the sterile neutrino dark matter from Xenon electrons. We find that sterile neutrinos with masses around 90 keV and specific effective coupling can fit well with the XENON1T data where the best fit points preserving DM constraints and possibly describe the anomalies in other experiments.
Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM, Effective Field Theories, Neutrino Physics
Footnotes
ArXiv ePrint: 2008.05029
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Soroush Shakeri, Email: s.shakeri@iut.ac.ir.
Fazlollah Hajkarim, Email: hajkarim@th.physik.uni-frankfurt.de.
She-Sheng Xue, Email: xue@icra.it.
References
- [1].XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].
- [2].M. Szydagis, C. Levy, G.M. Blockinger, A. Kamaha, N. Parveen and G.R.C. Rischbieter, Investigating the XENON1T Low-Energy Electronic Recoil Excess Using NEST, arXiv:2007.00528 [INSPIRE].
- [3].B. Bhattacherjee and R. Sengupta, XENON1T Excess: Some Possible Backgrounds, arXiv:2006.16172 [INSPIRE].
- [4].A.E. Robinson, XENON1T observes tritium, arXiv:2006.13278 [INSPIRE].
- [5].Di Luzio L, Fedele M, Giannotti M, Mescia F, Nardi E. Solar axions cannot explain the XENON1T excess . Phys. Rev. Lett. 2020;125:131804. doi: 10.1103/PhysRevLett.125.131804. [DOI] [PubMed] [Google Scholar]
- [6].Gao C, Liu J, Wang L-T, Wang X-P, Xue W, Zhong Y-M. Reexamining the Solar Axion Explanation for the XENON1T Excess . Phys. Rev. Lett. 2020;125:131806. doi: 10.1103/PhysRevLett.125.131806. [DOI] [PubMed] [Google Scholar]
- [7].Dent JB, Dutta B, Newstead JL, Thompson A. Inverse Primakoff Scattering as a Probe of Solar Axions at Liquid Xenon Direct Detection Experiments . Phys. Rev. Lett. 2020;125:131805. doi: 10.1103/PhysRevLett.125.131805. [DOI] [PubMed] [Google Scholar]
- [8].S.A. Díaz, K.-P. Schröder, K. Zuber, D. Jack and E.E.B. Barrios, Constraint on the axion-electron coupling constant and the neutrino magnetic dipole moment by using the tip-RGB luminosity of fifty globular clusters, arXiv:1910.10568 [INSPIRE].
- [9].Viaux N, et al. Neutrino and axion bounds from the globular cluster M5 (NGC 5904) . Phys. Rev. Lett. 2013;111:231301. doi: 10.1103/PhysRevLett.111.231301. [DOI] [PubMed] [Google Scholar]
- [10].P. Athron et al., Global fits of axion-like particles to XENON1T and astrophysical data, arXiv:2007.05517 [INSPIRE].
- [11].R. Mohapatra and P. Pal, Massive neutrinos in physics and astrophysics, vol. 60, second edition, World scientific (1998).
- [12].C. Itzykson and J. Zuber, Quantum Field Theory, International Series In Pure and Applied Physics, McGraw-Hill, New York, U.S.A. (1980).
- [13].O. Tomalak and R.J. Hill, Theory of elastic neutrino-electron scattering, Phys. Rev. D101 (2020) 033006 [arXiv:1907.03379] [INSPIRE].
- [14].Broggini C, Giunti C, Studenikin A. Electromagnetic Properties of Neutrinos . Adv. High Energy Phys. 2012;2012:459526. doi: 10.1155/2012/459526. [DOI] [Google Scholar]
- [15].Carlson JF, Oppenheimer JR. The impacts of fast electrons and magnetic neutrons . Phys. Rev. 1932;41:763. doi: 10.1103/PhysRev.41.763. [DOI] [Google Scholar]
- [16].A. de Gouvêa and J. Jenkins, What can we learn from neutrino electron scattering?, Phys. Rev. D74 (2006) 033004 [hep-ph/0603036] [INSPIRE].
- [17].Fujikawa K, Shrock R. The Magnetic Moment of a Massive Neutrino and Neutrino Spin Rotation . Phys. Rev. Lett. 1980;45:963. doi: 10.1103/PhysRevLett.45.963. [DOI] [Google Scholar]
- [18].K. Bhattacharya and P.B. Pal, Neutrinos and magnetic fields: A Short review, Proc. Indian Natl. Sci. Acad. A70 (2004) 145 [hep-ph/0212118] [INSPIRE].
- [19].Vogel P, Engel J. Neutrino Electromagnetic Form-Factors . Phys. Rev. D. 1989;39:3378. doi: 10.1103/PhysRevD.39.3378. [DOI] [PubMed] [Google Scholar]
- [20].Khan AN. Can Nonstandard Neutrino Interactions explain the XENON1T spectral excess? . Phys. Lett. B. 2020;809:135782. doi: 10.1016/j.physletb.2020.135782. [DOI] [Google Scholar]
- [21].Babu KS, Jana S, Lindner M. Large Neutrino Magnetic Moments in the Light of Recent Experiments . JHEP. 2020;10:040. doi: 10.1007/JHEP10(2020)040. [DOI] [Google Scholar]
- [22].Chala M, Titov A. One-loop running of dimension-six Higgs-neutrino operators and implications of a large neutrino dipole moment . JHEP. 2020;09:188. doi: 10.1007/JHEP09(2020)188. [DOI] [Google Scholar]
- [23].d. Amaral, Dorian Warren Praia, D.G. Cerdeno, P. Foldenauer and E. Reid, Solar neutrino probes of the muon anomalous magnetic moment in the gauged, arXiv:2006.11225 [INSPIRE].
- [24].Miranda OG, Papoulias DK, Tórtola M, Valle JWF. XENON1T signal from transition neutrino magnetic moments . Phys. Lett. B. 2020;808:135685. doi: 10.1016/j.physletb.2020.135685. [DOI] [Google Scholar]
- [25].G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S. Vogl, EFT Interpretation of XENON1T Electron Recoil Excess: Neutrinos and Dark Matter, arXiv:2007.08500 [INSPIRE].
- [26].Lindner M, Radovčić B, Welter J. Revisiting Large Neutrino Magnetic Moments . JHEP. 2017;07:139. doi: 10.1007/JHEP07(2017)139. [DOI] [Google Scholar]
- [27].Fornal B, Sandick P, Shu J, Su M, Zhao Y. Boosted Dark Matter Interpretation of the XENON1T Excess . Phys. Rev. Lett. 2020;125:161804. doi: 10.1103/PhysRevLett.125.161804. [DOI] [PubMed] [Google Scholar]
- [28].Jho Y, Park J-C, Park SC, Tseng P-Y. Leptonic New Force and Cosmic-ray Boosted Dark Matter for the XENON1T Excess . Phys. Lett. B. 2020;811:135863. doi: 10.1016/j.physletb.2020.135863. [DOI] [Google Scholar]
- [29].H. Alhazmi, D. Kim, K. Kong, G. Mohlabeng, J.-C. Park and S. Shin, Implications of the XENON1T Excess on the Dark Matter Interpretation, arXiv:2006.16252 [INSPIRE].
- [30].H. Davoudiasl, P.B. Denton and J. Gehrlein, Attractive scenario for light dark matter direct detection, Phys. Rev. D102 (2020) 091701 [arXiv:2007.04989] [INSPIRE].
- [31].Dey UK, Maity TN, Ray TS. Prospects of Migdal Effect in the Explanation of XENON1T Electron Recoil Excess . Phys. Lett. B. 2020;811:135900. doi: 10.1016/j.physletb.2020.135900. [DOI] [Google Scholar]
- [32].McKeen D, Pospelov M, Raj N. Hydrogen portal to exotic radioactivity . Phys. Rev. Lett. 2020;125:231803. doi: 10.1103/PhysRevLett.125.231803. [DOI] [PubMed] [Google Scholar]
- [33].Alonso-Álvarez G, Ertas F, Jaeckel J, Kahlhoefer F, Thormaehlen LJ. Hidden Photon Dark Matter in the Light of XENON1T and Stellar Cooling . JCAP. 2020;11:029. doi: 10.1088/1475-7516/2020/11/029. [DOI] [Google Scholar]
- [34].Chiang C-W, Lu B-Q. Evidence of a simple dark sector from XENON1T excess . Phys. Rev. D. 2020;102:123006. doi: 10.1103/PhysRevD.102.123006. [DOI] [Google Scholar]
- [35].Borah D, Mahapatra S, Nanda D, Sahu N. Inelastic fermion dark matter origin of XENON1T excess with muon (g − 2) and light neutrino mass. Phys. Lett. B. 2020;811:135933. doi: 10.1016/j.physletb.2020.135933. [DOI] [Google Scholar]
- [36].Harigaya K, Nakai Y, Suzuki M. Inelastic Dark Matter Electron Scattering and the XENON1T Excess . Phys. Lett. B. 2020;809:135729. doi: 10.1016/j.physletb.2020.135729. [DOI] [Google Scholar]
- [37].Bell NF, Dent JB, Dutta B, Ghosh S, Kumar J, Newstead JL. Explaining the XENON1T excess with Luminous Dark Matter . Phys. Rev. Lett. 2020;125:161803. doi: 10.1103/PhysRevLett.125.161803. [DOI] [PubMed] [Google Scholar]
- [38].H.M. Lee, Exothermic Dark Matter for XENON1T Excess, arXiv:2006.13183 [INSPIRE].
- [39].Bramante J, Song N. Electric But Not Eclectic: Thermal Relic Dark Matter for the XENON1T Excess . Phys. Rev. Lett. 2020;125:161805. doi: 10.1103/PhysRevLett.125.161805. [DOI] [PubMed] [Google Scholar]
- [40].Smirnov J, Beacom JF. New Freezeout Mechanism for Strongly Interacting Dark Matter . Phys. Rev. Lett. 2020;125:131301. doi: 10.1103/PhysRevLett.125.131301. [DOI] [PubMed] [Google Scholar]
- [41].D. Choudhury, S. Maharana, D. Sachdeva and V. Sahdev, Dark Matter, Muon Anomalous Magnetic Moment and the XENON1T Excess, arXiv:2007.08205 [INSPIRE].
- [42].Takahashi F, Yamada M, Yin W. XENON1T Excess from Anomaly-Free Axionlike Dark Matter and Its Implications for Stellar Cooling Anomaly . Phys. Rev. Lett. 2020;125:161801. doi: 10.1103/PhysRevLett.125.161801. [DOI] [PubMed] [Google Scholar]
- [43].Bally A, Jana S, Trautner A. Neutrino self-interactions and XENON1T electron recoil excess . Phys. Rev. Lett. 2020;125:161802. doi: 10.1103/PhysRevLett.125.161802. [DOI] [PubMed] [Google Scholar]
- [44].Okada N, Okada S, Raut D, Shafi Q. Dark matter Z′ and XENON1T excess from U(1)X extended standard model. Phys. Lett. B. 2020;810:135785. doi: 10.1016/j.physletb.2020.135785. [DOI] [Google Scholar]
- [45].Lindner M, Mambrini Y, de Melo TB, Queiroz FS. XENON1T anomaly: A light Z’ from a Two Higgs Doublet Model . Phys. Lett. B. 2020;811:135972. doi: 10.1016/j.physletb.2020.135972. [DOI] [Google Scholar]
- [46].Boehm C, Cerdeno DG, Fairbairn M, Machado PAN, Vincent AC. Light new physics in XENON1T . Phys. Rev. D. 2020;102:115013. doi: 10.1103/PhysRevD.102.115013. [DOI] [Google Scholar]
- [47].Aristizabal Sierra D, De Romeri V, Flores LJ, Papoulias DK. Light vector mediators facing XENON1T data . Phys. Lett. B. 2020;809:135681. doi: 10.1016/j.physletb.2020.135681. [DOI] [Google Scholar]
- [48].Choi G, Suzuki M, Yanagida TT. XENON1T Anomaly and its Implication for Decaying Warm Dark Matter . Phys. Lett. B. 2020;811:135976. doi: 10.1016/j.physletb.2020.135976. [DOI] [Google Scholar]
- [49].Choi G, Yanagida TT, Yokozaki N. Feebly interacting U(1)B−L gauge boson warm dark matter and XENON1T anomaly. Phys. Lett. B. 2020;810:135836. doi: 10.1016/j.physletb.2020.135836. [DOI] [Google Scholar]
- [50].Kim J, Nomura T, Okada H. A radiative seesaw model linking to XENON1T anomaly . Phys. Lett. B. 2020;811:135862. doi: 10.1016/j.physletb.2020.135862. [DOI] [Google Scholar]
- [51].Baek S, Kim J, Ko P. XENON1T excess in local Z 2 DM models with light dark sector. Phys. Lett. B. 2020;810:135848. doi: 10.1016/j.physletb.2020.135848. [DOI] [Google Scholar]
- [52].Lindner M, Queiroz FS, Rodejohann W, Xu X-J. Neutrino-electron scattering: general constraints on Z′ and dark photon models . JHEP. 2018;05:098. doi: 10.1007/JHEP05(2018)098. [DOI] [Google Scholar]
- [53].S.-S. Xue, Neutrino masses and mixings, Mod. Phys. Lett. A14 (1999) 2701 [hep-ph/9706301] [INSPIRE].
- [54].S.-S. Xue and F. Sheng, On the standard model and parity conservation, hep-ph/0106117 [INSPIRE].
- [55].Drewes M. The Phenomenology of Right Handed Neutrinos . Int. J. Mod. Phys. E. 2013;22:1330019. doi: 10.1142/S0218301313300191. [DOI] [Google Scholar]
- [56].S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett.72 (1994) 17 [hep-ph/9303287] [INSPIRE]. [DOI] [PubMed]
- [57].Boyarsky A, Drewes M, Lasserre T, Mertens S, Ruchayskiy O. Sterile neutrino Dark Matter . Prog. Part. Nucl. Phys. 2019;104:1. doi: 10.1016/j.ppnp.2018.07.004. [DOI] [Google Scholar]
- [58].Boyarsky A, Iakubovskyi D, Ruchayskiy O. Next decade of sterile neutrino studies . Phys. Dark Univ. 2012;1:136. doi: 10.1016/j.dark.2012.11.001. [DOI] [Google Scholar]
- [59].Kusenko A. Sterile neutrinos: The Dark side of the light fermions . Phys. Rept. 2009;481:1. doi: 10.1016/j.physrep.2009.07.004. [DOI] [Google Scholar]
- [60].Drewes M, et al. A White Paper on keV Sterile Neutrino Dark Matter . JCAP. 2017;01:025. [Google Scholar]
- [61].Argüelles CR, Mavromatos NE, Rueda JA, Ruffini R. The role of self-interacting right-handed neutrinos in galactic structure . JCAP. 2016;04:038. doi: 10.1088/1475-7516/2016/04/038. [DOI] [Google Scholar]
- [62].Gelmini GB, Lu P, Takhistov V. Visible Sterile Neutrinos as the Earliest Relic Probes of Cosmology . Phys. Lett. B. 2020;800:135113. doi: 10.1016/j.physletb.2019.135113. [DOI] [Google Scholar]
- [63].T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B620 (2005) 17 [hep-ph/0505013] [INSPIRE].
- [64].Shaposhnikov M. The nuMSM, leptonic asymmetries, and properties of singlet fermions . JHEP. 2008;08:008. doi: 10.1088/1126-6708/2008/08/008. [DOI] [Google Scholar]
- [65].G. Gelmini, S. Palomares-Ruiz and S. Pascoli, Low reheating temperature and the visible sterile neutrino, Phys. Rev. Lett.93 (2004) 081302 [astro-ph/0403323] [INSPIRE]. [DOI] [PubMed]
- [66].I.M. Shoemaker and J. Wyenberg, Direct Detection Experiments at the Neutrino Dipole Portal Frontier, Phys. Rev. D99 (2019) 075010 [arXiv:1811.12435] [INSPIRE].
- [67].Ge S-F, Pasquini P, Sheng J. Solar neutrino scattering with electron into massive sterile neutrino . Phys. Lett. B. 2020;810:135787. doi: 10.1016/j.physletb.2020.135787. [DOI] [Google Scholar]
- [68].Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett.81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
- [69].P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett. B67 (1977) 421 [INSPIRE].
- [70].Glashow SL. The Future of Elementary Particle Physics . NATO Sci. Ser. B. 1980;61:687. [Google Scholar]
- [71].Gell-Mann M, Ramond P, Slansky R. Complex Spinors and Unified Theories . Conf. Proc. C. 1979;790927:315. [Google Scholar]
- [72].Schechter J, Valle JWF. Neutrino Masses in SU(2) × U(1) Theories. Phys. Rev. D. 1980;22:2227. doi: 10.1103/PhysRevD.22.2227. [DOI] [Google Scholar]
- [73].Mohapatra RN, Senjanović G. Neutrino Mass and Spontaneous Parity Nonconservation . Phys. Rev. Lett. 1980;44:912. doi: 10.1103/PhysRevLett.44.912. [DOI] [Google Scholar]
- [74].Haghighat M, Mahmoudi S, Mohammadi R, Tizchang S, Xue SS. Circular polarization of cosmic photons due to their interactions with Sterile neutrino dark matter . Phys. Rev. D. 2020;101:123016. doi: 10.1103/PhysRevD.101.123016. [DOI] [Google Scholar]
- [75].Cheng TP, Li L-F. Neutrino Masses, Mixings and Oscillations in SU(2) x U(1) Models of Electroweak Interactions. Phys. Rev. D. 1980;22:2860. doi: 10.1103/PhysRevD.22.2860. [DOI] [Google Scholar]
- [76].Foot R, Lew H, He XG, Joshi GC. Seesaw Neutrino Masses Induced by a Triplet of Leptons . Z. Phys. C. 1989;44:441. doi: 10.1007/BF01415558. [DOI] [Google Scholar]
- [77].Ma E, Srivastava R. Dirac or inverse seesaw neutrino masses with B − L gauge symmetry and S3 flavor symmetry. Phys. Lett. B. 2015;741:217. doi: 10.1016/j.physletb.2014.12.049. [DOI] [Google Scholar]
- [78].Ma E, Pollard N, Srivastava R, Zakeri M. Gauge B − L Model with Residual Z 3 Symmetry. Phys. Lett. B. 2015;750:135. doi: 10.1016/j.physletb.2015.09.010. [DOI] [Google Scholar]
- [79].Davidson A. B − L as the fourth color within an SU(2)L × U(1)R × U(1) model. Phys. Rev. D. 1979;20:776. doi: 10.1103/PhysRevD.20.776. [DOI] [Google Scholar]
- [80].R.N. Mohapatra and R.E. Marshak, Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett.44 (1980) 1316 [Erratum ibid.44 (1980) 1643] [INSPIRE].
- [81].Marshak RE, Mohapatra RN. Quark - Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group . Phys. Lett. B. 1980;91:222. doi: 10.1016/0370-2693(80)90436-0. [DOI] [Google Scholar]
- [82].Wetterich C. Neutrino Masses and the Scale of B-L Violation . Nucl. Phys. B. 1981;187:343. doi: 10.1016/0550-3213(81)90279-0. [DOI] [Google Scholar]
- [83].Gu P-H, Sarkar U. Radiative Neutrino Mass, Dark Matter and Leptogenesis . Phys. Rev. D. 2008;77:105031. doi: 10.1103/PhysRevD.77.105031. [DOI] [Google Scholar]
- [84].Marciano WJ, Sanda AI. Exotic Decays of the Muon and Heavy Leptons in Gauge Theories . Phys. Lett. B. 1977;67:303. doi: 10.1016/0370-2693(77)90377-X. [DOI] [Google Scholar]
- [85].Mohapatra RN, Pati JC. A Natural Left-Right Symmetry . Phys. Rev. D. 1975;11:2558. doi: 10.1103/PhysRevD.11.2558. [DOI] [Google Scholar]
- [86].Senjanović G, Mohapatra RN. Exact Left-Right Symmetry and Spontaneous Violation of Parity . Phys. Rev. D. 1975;12:1502. doi: 10.1103/PhysRevD.12.1502. [DOI] [Google Scholar]
- [87].H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 1. Proof by Homotopy Theory Nucl. Phys. B185 (1981) 20 [Erratum ibid.195 (1982) 541] [INSPIRE].
- [88].H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 2. Intuitive Topological Proof, Nucl. Phys. B193 (1981) 173 [INSPIRE].
- [89].Nielsen HB, Ninomiya M. A no-go theorem for regularizing chiral fermions . Phys. Lett. B. 1981;105:219. doi: 10.1016/0370-2693(81)91026-1. [DOI] [Google Scholar]
- [90].Nielsen HB, Ninomiya M. Intuitive understanding of anomalies: A Paradox with regularization . Int. J. Mod. Phys. A. 1991;6:2913. doi: 10.1142/S0217751X91001441. [DOI] [Google Scholar]
- [91].Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II, Phys. Rev.124 (1961) 246 [INSPIRE].
- [92].Xue S-S. Hierarchy spectrum of SM fermions: from top quark to electron neutrino . JHEP. 2016;11:072. doi: 10.1007/JHEP11(2016)072. [DOI] [Google Scholar]
- [93].Xue S-S. An effective strong-coupling theory of composite particles in UV-domain . JHEP. 2017;05:146. doi: 10.1007/JHEP05(2017)146. [DOI] [Google Scholar]
- [94].S.-S. Xue, Vectorlike W±-boson coupling at TeV and third family fermion masses, Phys. Rev. D93 (2016) 073001 [arXiv:1506.05994] [INSPIRE].
- [95].Xue S-S. Ultraviolet fixed point and massive composite particles in TeV scales . Phys. Lett. B. 2014;737:172. doi: 10.1016/j.physletb.2014.08.031. [DOI] [Google Scholar]
- [96].S.-S. Xue, Quark masses and mixing angles, Phys. Lett. B398 (1997) 177 [hep-ph/9610508] [INSPIRE].
- [97].Leonardi R, Panella O, Romeo F, Gurrola A, Sun H, Xue S-S. Phenomenology at the LHC of composite particles from strongly interacting Standard Model fermions via four-fermion operators of NJL type . Eur. Phys. J. C. 2020;80:309. doi: 10.1140/epjc/s10052-020-7822-0. [DOI] [Google Scholar]
- [98].Bardeen WA, Hill CT, Lindner M. Minimal Dynamical Symmetry Breaking of the Standard Model . Phys. Rev. D. 1990;41:1647. doi: 10.1103/PhysRevD.41.1647. [DOI] [PubMed] [Google Scholar]
- [99].S.-S. Xue, A Further study of the possible scaling region of lattice chiral fermions, Phys. Rev. D61 (2000) 054502 [hep-lat/9910013] [INSPIRE].
- [100].Xue S-S. Higgs Boson and Top-Quark Masses and Parity-Symmetry Restoration . Phys. Lett. B. 2013;727:308. doi: 10.1016/j.physletb.2013.10.024. [DOI] [Google Scholar]
- [101].Alioli S, Cirigliano V, Dekens W, de Vries J, Mereghetti E. Right-handed charged currents in the era of the Large Hadron Collider . JHEP. 2017;05:086. doi: 10.1007/JHEP05(2017)086. [DOI] [Google Scholar]
- [102].Passarino G, Veltman MJG. One Loop Corrections for e + e − Annihilation Into μ+μ− in the Weinberg Model. Nucl. Phys. B. 1979;160:151. doi: 10.1016/0550-3213(79)90234-7. [DOI] [Google Scholar]
- [103].Patel HH. Package-X: A Mathematica package for the analytic calculation of one-loop integrals . Comput. Phys. Commun. 2015;197:276. doi: 10.1016/j.cpc.2015.08.017. [DOI] [Google Scholar]
- [104].Lee BW, Shrock RE. Natural Suppression of Symmetry Violation in Gauge Theories: Muon - Lepton and Electron Lepton Number Nonconservation . Phys. Rev. D. 1977;16:1444. doi: 10.1103/PhysRevD.16.1444. [DOI] [Google Scholar]
- [105].Giunti C, Studenikin A. Neutrino electromagnetic interactions: a window to new physics . Rev. Mod. Phys. 2015;87:531. doi: 10.1103/RevModPhys.87.531. [DOI] [Google Scholar]
- [106].K. Abazajian, G.M. Fuller and M. Patel, Sterile neutrino hot, warm, and cold dark matter, Phys. Rev. D64 (2001) 023501 [astro-ph/0101524] [INSPIRE].
- [107].A.A. Gvozdev, N.V. Mikheev and L.A. Vasilevskaya, The Radiative decay of the massive neutrino in the external electromagnetic fields, Phys. Rev. D54 (1996) 5674 [hep-ph/9610219] [INSPIRE]. [DOI] [PubMed]
- [108].Pal PB, Wolfenstein L. Radiative Decays of Massive Neutrinos . Phys. Rev. D. 1982;25:766. doi: 10.1103/PhysRevD.25.766. [DOI] [Google Scholar]
- [109].V.D. Barger, R.J.N. Phillips and S. Sarkar, Remarks on the KARMEN anomaly, Phys. Lett. B352 (1995) 365 [Erratum ibid.356 (1995) 617] [hep-ph/9503295] [INSPIRE].
- [110].T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys. Lett. B631 (2005) 151 [hep-ph/0503065] [INSPIRE].
- [111].Mohapatra RN, Valle JWF. Neutrino Mass and Baryon Number Nonconservation in Superstring Models . Phys. Rev. D. 1986;34:1642. doi: 10.1103/PhysRevD.34.1642. [DOI] [PubMed] [Google Scholar]
- [112].K.A. Olive, TASI lectures on dark matter, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2002), Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model(s)1 (2003) 797 astro-ph/0301505 [INSPIRE].
- [113].S.H. Hansen, J. Lesgourgues, S. Pastor and J. Silk, Constraining the window on sterile neutrinos as warm dark matter, Mon. Not. Roy. Astron. Soc.333 (2002) 544 [astro-ph/0106108] [INSPIRE].
- [114].Lin T. Dark matter models and direct detection . PoS. 2019;333:009. [Google Scholar]
- [115].E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. vol. 69, Addison-Wesley Publishing Company (1990).
- [116].A. Biswas, D. Borah and D. Nanda, keV Neutrino Dark Matter in a Fast Expanding Universe, Phys. Lett. B786 (2018) 364 [arXiv:1809.03519] [INSPIRE].
- [117].Drees M, Hajkarim F, Schmitz ER. The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter . JCAP. 2015;06:025. doi: 10.1088/1475-7516/2015/06/025. [DOI] [Google Scholar]
- [118].Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys.641 (2020) A6 [arXiv:1807.06209] [INSPIRE].
- [119].R. Allahverdi et al., The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe, arXiv:2006.16182 [INSPIRE].
- [120].Radel G, Beyer R. Neutrino electron scattering . Mod. Phys. Lett. A. 1993;8:1067. doi: 10.1142/S0217732393002567. [DOI] [Google Scholar]
- [121].Formaggio JA, Zeller GP. From eV to EeV: Neutrino Cross Sections Across Energy Scales . Rev. Mod. Phys. 2012;84:1307. doi: 10.1103/RevModPhys.84.1307. [DOI] [Google Scholar]
- [122].H.-J. He, Y.-C. Wang and J. Zheng, EFT Approach of Inelastic Dark Matter for Xenon Electron Recoil Detection, arXiv:2007.04963 [INSPIRE].
- [123].K. Kannike, M. Raidal, H. Veermäe, A. Strumia and D. Teresi, Dark Matter and the XENON1T electron recoil excess, Phys. Rev. D102 (2020) 095002 [arXiv:2006.10735] [INSPIRE].
- [124].M.D. Campos and W. Rodejohann, Testing keV sterile neutrino dark matter in future direct detection experiments, Phys. Rev. D94 (2016) 095010 [arXiv:1605.02918] [INSPIRE].
- [125].M. Baryakhtar, A. Berlin, H. Liu and N. Weiner, Electromagnetic Signals of Inelastic Dark Matter Scattering, arXiv:2006.13918 [INSPIRE].
- [126].Ando S, Kusenko A. Interactions of keV sterile neutrinos with matter . Phys. Rev. D. 2010;81:113006. doi: 10.1103/PhysRevD.81.113006. [DOI] [Google Scholar]
- [127].R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D85 (2012) 076007 [arXiv:1108.5383] [INSPIRE]. [DOI] [PubMed]
- [128].W. Liao, X.-H. Wu and H. Zhou, Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter, Phys. Rev. D89 (2014) 093017 [arXiv:1311.6075] [INSPIRE].
- [129].G.J. Gounaris, E.A. Paschos and P.I. Porfyriadis, Electron spectra in the ionization of atoms by neutrinos, Phys. Rev. D70 (2004) 113008 [hep-ph/0409053] [INSPIRE].
- [130].Chen J-W, Chi H-C, Liu CP, Wu C-P. Low-energy electronic recoil in xenon detectors by solar neutrinos . Phys. Lett. B. 2017;774:656. doi: 10.1016/j.physletb.2017.10.029. [DOI] [Google Scholar]
- [131].Chen J-W, et al. Atomic ionization of germanium by neutrinos from an ab initio approach . Phys. Lett. B. 2014;731:159. doi: 10.1016/j.physletb.2014.02.036. [DOI] [Google Scholar]
- [132].B.M. Roberts and V.V. Flambaum, Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors, Phys. Rev. D100 (2019) 063017 [arXiv:1904.07127] [INSPIRE].
- [133].J.-W. Chen et al., Constraining neutrino electromagnetic properties by germanium detectors, Phys. Rev. D91 (2015) 013005 [arXiv:1411.0574] [INSPIRE].
- [134].Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D98 (2018) 030001 [INSPIRE].
- [135].G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, University of Chicago Press, U.S.A. (1996).
- [136].A. Kramida, Yu. Ralchenko, J. Reader and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.7.1), National Institute of Standards and Technology, Gaithersburg, MD, U.S.A. (2019) https://physics.nist.gov/asd.
- [137].C.-C. Hsieh et al., Discovery potential of multiton xenon detectors in neutrino electromagnetic properties, Phys. Rev. D100 (2019) 073001 [arXiv:1903.06085] [INSPIRE].
- [138].XENON collaboration, Energy resolution and linearity of XENON1T in the MeV energy range, Eur. Phys. J. C80 (2020) 785 [arXiv:2003.03825] [INSPIRE].
- [139].Drees M, Mehra R. Neutron EDM constrains direct dark matter detection prospects . Phys. Lett. B. 2019;799:135039. doi: 10.1016/j.physletb.2019.135039. [DOI] [Google Scholar]
- [140].Barger V, Keung W-Y, Marfatia D. Electromagnetic properties of dark matter: Dipole moments and charge form factor . Phys. Lett. B. 2011;696:74. doi: 10.1016/j.physletb.2010.12.008. [DOI] [Google Scholar]
- [141].Cirelli M, Del Nobile E, Panci P. Tools for model-independent bounds in direct dark matter searches . JCAP. 2013;10:019. doi: 10.1088/1475-7516/2013/10/019. [DOI] [Google Scholar]
- [142].Weber M, de Boer W. Determination of the Local Dark Matter Density in our Galaxy . Astron. Astrophys. 2010;509:A25. doi: 10.1051/0004-6361/200913381. [DOI] [Google Scholar]
- [143].C. Dessert, J.W. Foster, Y. Kahn and B.R. Safdi, Systematics in the XENON1T data: the 15-keV anti-axion, arXiv:2006.16220 [INSPIRE].
- [144].J.N. Bahcall and C. Pena-Garay, Solar models and solar neutrino oscillations, New J. Phys.6 (2004) 63 [hep-ph/0404061] [INSPIRE].
- [145].J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
- [146].Lopes I, Turck-Chièze S. Solar neutrino physics oscillations: Sensitivity to the electronic density in the Sun’s core . Astrophys. J. 2013;765:14. doi: 10.1088/0004-637X/765/1/14. [DOI] [Google Scholar]
- [147].Haxton WC, Hamish Robertson RG, Serenelli AM. Solar Neutrinos: Status and Prospects . Ann. Rev. Astron. Astrophys. 2013;51:21. doi: 10.1146/annurev-astro-081811-125539. [DOI] [Google Scholar]
- [148].G. Raffelt and A. Weiss, Red giant bound on the axion - electron coupling revisited, Phys. Rev. D51 (1995) 1495 [hep-ph/9410205] [INSPIRE]. [DOI] [PubMed]
- [149].Arceo-Díaz S, Schröder K-P, Zuber K, Jack D. Constraint on the magnetic dipole moment of neutrinos by the tip-RGB luminosity in ω-Centauri . Astropart. Phys. 2015;70:1. doi: 10.1016/j.astropartphys.2015.03.006. [DOI] [Google Scholar]
- [150].I.M. Shoemaker, Y.-D. Tsai and J. Wyenberg, An Active-to-Sterile Neutrino Transition Dipole Moment and the XENON1T Excess, arXiv:2007.05513 [INSPIRE].
- [151].Gninenko SN. The MiniBooNE anomaly and heavy neutrino decay . Phys. Rev. Lett. 2009;103:241802. doi: 10.1103/PhysRevLett.103.241802. [DOI] [PubMed] [Google Scholar]
- [152].S.N. Gninenko, A resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments, Phys. Rev. D83 (2011) 015015 [arXiv:1009.5536] [INSPIRE].
- [153].McKeen D, Pospelov M. Muon Capture Constraints on Sterile Neutrino Properties . Phys. Rev. D. 2010;82:113018. doi: 10.1103/PhysRevD.82.113018. [DOI] [Google Scholar]
- [154].M. Masip and P. Masjuan, Heavy-neutrino decays at neutrino telescopes, Phys. Rev. D83 (2011) 091301 [arXiv:1103.0689] [INSPIRE].
- [155].S. Karmakar and S. Pandey, XENON1T constraints on neutrino non-standard interactions, arXiv:2007.11892 [INSPIRE].
- [156].V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, arXiv:2007.15563 [INSPIRE].
- [157].Coloma P, Machado PAN, Martinez-Soler I, Shoemaker IM. Double-Cascade Events from New Physics in IceCube . Phys. Rev. Lett. 2017;119:201804. doi: 10.1103/PhysRevLett.119.201804. [DOI] [PubMed] [Google Scholar]
- [158].Magill G, Plestid R, Pospelov M, Tsai Y-D. Dipole Portal to Heavy Neutral Leptons . Phys. Rev. D. 2018;98:115015. doi: 10.1103/PhysRevD.98.115015. [DOI] [Google Scholar]
- [159].W. DeRocco, P.W. Graham and S. Rajendran, Exploring the robustness of stellar cooling constraints on light particles, Phys. Rev. D102 (2020) 075015 [arXiv:2006.15112] [INSPIRE].
- [160].Miller Bertolami MM, Melendez BE, Althaus LG, Isern J. Revisiting the axion bounds from the Galactic white dwarf luminosity function . JCAP. 2014;10:069. doi: 10.1088/1475-7516/2014/10/069. [DOI] [Google Scholar]
- [161].Ayala A, Domínguez I, Giannotti M, Mirizzi A, Straniero O. Revisiting the bound on axion-photon coupling from Globular Clusters . Phys. Rev. Lett. 2014;113:191302. doi: 10.1103/PhysRevLett.113.191302. [DOI] [PubMed] [Google Scholar]
- [162].Giannotti M, Irastorza IG, Redondo J, Ringwald A, Saikawa K. Stellar Recipes for Axion Hunters . JCAP. 2017;10:010. doi: 10.1088/1475-7516/2017/10/010. [DOI] [Google Scholar]
- [163].Diaz A, Argüelles CA, Collin GH, Conrad JM, Shaevitz MH. Where Are We With Light Sterile Neutrinos? . Phys. Rept. 2020;884:1. doi: 10.1016/j.physrep.2020.08.005. [DOI] [Google Scholar]
- [164].K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].
- [165].LSND collaboration, Evidence for neutrino oscillations from the observation ofappearance in abeam, Phys. Rev. D64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
- [166].MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett.121 (2018) 221801 [arXiv:1805.12028] [INSPIRE]. [DOI] [PubMed]
- [167].Bertuzzo E, Jana S, Machado PAN, Zukanovich Funchal R. Dark Neutrino Portal to Explain MiniBooNE excess . Phys. Rev. Lett. 2018;121:241801. doi: 10.1103/PhysRevLett.121.241801. [DOI] [PubMed] [Google Scholar]
- [168].BOREXINO collaboration, Comprehensive measurement of pp-chain solar neutrinos, Nature562 (2018) 505 [INSPIRE]. [DOI] [PubMed]
- [169].Bringmann T, Pospelov M. Novel direct detection constraints on light dark matter . Phys. Rev. Lett. 2019;122:171801. doi: 10.1103/PhysRevLett.122.171801. [DOI] [PubMed] [Google Scholar]
- [170].Miranda OG, Papoulias DK, Tórtola M, Valle JWF. Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering . JHEP. 2019;07:103. doi: 10.1007/JHEP07(2019)103. [DOI] [Google Scholar]
- [171].Bulbul E, Markevitch M, Foster A, Smith RK, Loewenstein M, Randall SW. Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters . Astrophys. J. 2014;789:13. doi: 10.1088/0004-637X/789/1/13. [DOI] [Google Scholar]
- [172].A. Boyarsky, J. Franse, D. Iakubovskyi and O. Ruchayskiy, Checking the Dark Matter Origin of a 3.53 keV Line with the Milky Way Center, Phys. Rev. Lett.115 (2015) 161301 [arXiv:1408.2503] [INSPIRE]. [DOI] [PubMed]
- [173].PVDIS collaboration, Measurement of parity violation in electron–quark scattering, Nature506 (2014) 67 [INSPIRE]. [DOI] [PubMed]
- [174].XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
- [175].LZ collaboration, LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [INSPIRE].
- [176].PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett.119 (2017) 181302 [arXiv:1708.06917] [INSPIRE]. [DOI] [PubMed]
- [177].DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
- [178].Peskin ME, Schroeder DV. An Introduction to quantum field theory. Reading, U.S.A.: Addison-Wesley; 1995. [Google Scholar]