The content is available as a PDF (629.1 KB).
Literatur
- 1.Berner R, Sauter S, Duffner U, Brandis M, Niemeyer CM. Bakteriämie-Episoden bei pädiatrisch-onkologischen Patienten, insbesondere durch Streptokokken der Viridans-Gruppe. Klin Padiatr. 1998;210(4):256–260. doi: 10.1055/s-2008-1043888. [DOI] [PubMed] [Google Scholar]
- 2.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Infektionsprävention im Rahmen der Pflege und Behandlung von Patienten mit übertragbaren Krankheiten. Bundesgesundheitsbl. 2015;58(10):1151–1170. doi: 10.1007/s00103-015-2234-2. [DOI] [PubMed] [Google Scholar]
- 3.Miller HK, Braun TM, Stillwell T, et al. Infectious Risk after Allogeneic Hematopoietic Cell Transplantation Complicated by Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2017;23(3):522–528. doi: 10.1016/j.bbmt.2016.12.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Harris AC, Young R, Devine S, et al. International, Multicenter Standardization of Acute Graft-versus-Host Disease Clinical Data Collection: A Report from the Mount Sinai Acute GVHD International Consortium. Biol Blood Marrow Transplant. 2016;22(1):4–10. doi: 10.1016/j.bbmt.2015.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Fox N, Freifeld AG (2012) The neutropenic diet reviewed: moving toward a safe food handling approach. Oncol (Williston Park) 26(6):572–575, 580, 582 [PubMed]
- 6.Maia JE, da Cruz LB, Gregianin LJ. Microbiological profile and nutritional quality of a regular diet compared to a neutropenic diet in a pediatric oncology unit. Pediatr Blood Cancer. 2018;65(3):e26828. doi: 10.1002/pbc.26828. [DOI] [PubMed] [Google Scholar]
- 7.Moody KM, Baker RA, Santizo RO, et al. A randomized trial of the effectiveness of the neutropenic diet versus food safety guidelines on infection rate in pediatric oncology patients. Pediatr Blood Cancer. 2018;65(1):e26711. doi: 10.1002/pbc.26711. [DOI] [PubMed] [Google Scholar]
- 8.Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Kochanek M, Schalk E, von Bergwelt-Baildon M, et al. Management of sepsis in neutropenic cancer patients: 2018 guidelines from the Infectious Diseases Working Party (AGIHO) and Intensive Care Working Party (iCHOP) of the German Society of Hematology and Medical Oncology (DGHO) Ann Hematol. 2019;98(5):1051–1069. doi: 10.1007/s00277-019-03622-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315(8):762–774. doi: 10.1001/jama.2016.0288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Stosor V, Zembower TR, editors. Infectious Complications in Cancer Patients (Cancer Treatment and Research, Vol 161) Cham: Springer International Publishing; 2014. [Google Scholar]
- 12.Girmenia C, Candoni A, Delia M, et al. Infection control in patients with myelodysplastic syndromes who are candidates for active treatment: Expert panel consensus-based recommendations. Blood Rev. 2019;34:16–25. doi: 10.1016/j.blre.2018.10.002. [DOI] [PubMed] [Google Scholar]
- 13.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Anforderungen an die Hygiene bei der medizinischen Versorgung von immunsupprimierten Patienten. Bundesgesundheitsbl. 2010;53(4):357–388. doi: 10.1007/s00103-010-1028-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Ständige Impfkommision (STIKO) (2005) Hinweise der STIKO zu Impfungen für Patienten mit Immundefizienz. Stand: November 2005. Epid Bull(39):1–12
- 15.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Personelle und organisatorische Voraussetzungen zur Prävention nosokomialer Infektionen. Bundesgesundheitsbl. 2009;53(9):951–962. doi: 10.1007/s00103-009-0929-y. [DOI] [PubMed] [Google Scholar]
- 16.Rolston KV. Infections in Cancer Patients with Solid Tumors: A Review. Infect Dis Ther. 2017;6(1):69–83. doi: 10.1007/s40121-017-0146-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Avritscher EB, Cooksley CD, Rolston KV, et al. Serious postoperative infections following resection of common solid tumors: outcomes, costs, and impact of hospital surgical volume. Support Care Cancer. 2014;22(2):527–535. doi: 10.1007/s00520-013-2006-1. [DOI] [PubMed] [Google Scholar]
- 18.Sammon J, Trinh VQ, Ravi P, et al. Health care-associated infections after major cancer surgery: temporal trends, patterns of care, and effect on mortality. Cancer. 2013;119(12):2317–2324. doi: 10.1002/cncr.28027. [DOI] [PubMed] [Google Scholar]
- 19.Sammon JD, Klett DE, Sood A, et al. Sepsis after major cancer surgery. J Surg Res. 2015;193(2):788–794. doi: 10.1016/j.jss.2014.07.046. [DOI] [PubMed] [Google Scholar]
- 20.Rolston KVI, Nesher L, Tarrand JT. Current Microbiology of Surgical Site Infections in Patients with Cancer: A Retrospective Review. Infect Dis Ther. 2014;3(2):245–256. doi: 10.1007/s40121-014-0048-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Schreiber PW, Sax H, Wolfensberger A, Clack L, Kuster SP. The preventable proportion of healthcare-associated infections 2005–2016: Systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(11):1277–1295. doi: 10.1017/ice.2018.183. [DOI] [PubMed] [Google Scholar]
- 22.Crossnohere NL, Richardson DR, Reinhart C, et al. Side effects from acute myeloid leukemia treatment: results from a national survey. Curr Med Res Opin. 2019;35(11):1965–1970. doi: 10.1080/03007995.2019.1631149. [DOI] [PubMed] [Google Scholar]
- 23.Lyman GH, Michels SL, Reynolds MW, Barron R, Tomic KS, Yu J. Risk of mortality in patients with cancer who experience febrile neutropenia. Cancer. 2010;116(23):5555–5563. doi: 10.1002/cncr.25332. [DOI] [PubMed] [Google Scholar]
- 24.Rhee C, Jones TM, Hamad Y, et al. Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. Jama Netw Open. 2019;2(2):e187571. doi: 10.1001/jamanetworkopen.2018.7571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Pergam SA. Infection Prevention in Transplantation. Curr Infect Dis Rep. 2016;18(2):7. doi: 10.1007/s11908-015-0513-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15(10):1143–1238. doi: 10.1016/j.bbmt.2009.06.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Ullmann AJ, Schmidt-Hieber M, Bertz H, et al. Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol. 2016;95(9):1435–1455. doi: 10.1007/s00277-016-2711-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Balletto E, Mikulska M. Bacterial Infections in Hematopoietic Stem Cell Transplant Recipients. Mediterr J Hematol Infect Dis. 2015;7(1):e2015045. doi: 10.4084/MJHID.2015.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Ariza-Heredia EJ, Chemaly RF. Update on infection control practices in cancer hospitals. CA Cancer J Clin. 2018;68(5):340–355. doi: 10.3322/caac.21462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Maschmeyer G, Rolston KVI, editors. Infections in Hematology A clinically oriented, compact, and up-to-date overview on all aspects of infections in hematology patients. Heidelberg: Springer; 2015. [Google Scholar]
- 31.Bennett J, Dolin R, Blaser M (2019) Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9. Aufl. Elsevier, Philadelphia
- 32.Dunbar A, Tai E, Nielsen DB, Shropshire S, Richardson LC. Preventing infections during cancer treatment: development of an interactive patient education website. Clin J Oncol Nurs. 2014;18(4):426–431. doi: 10.1188/14.CJON.426-431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Die Kategorien in der Richtlinie für Krankenhaushygiene und Infektionsprävention – Aktualisierung der Definitionen. Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention. Bundesgesundheitsbl. 2010;53(7):754–756. doi: 10.1007/s00103-010-1106-z. [DOI] [PubMed] [Google Scholar]
- 34.MTD-Verlag GmbH (2016) Medizinprodukte-Betreiberverordnung (MPBetreibV) – Verordnung über das Errichten, Betreiben und Anwenden von Medizinprodukten (Medizinprodukte-Betreiberverordnung – MPBetreibV) in der Neufassung vom 21. August 2002 (BGBl. I S. 3397) zuletzt geändert durch Artikel 1 und 2 der Verordnung vom 27. September 2016 (BGBl. I S. 2203). Gültig seit 1. Januar 2017. https://www.mtd.de/gesundheitssystem/gesetze-verordnungen/medizinprodukte-betreiberverordnung-mpbetreibv. Zugegriffen: 1. Nov. 2020
- 35.Gudnadottir U, Fritz J, Zerbel S, Bernardo A, Sethi AK, Safdar N. Reducing health care-associated infections: patients want to be engaged and learn about infection prevention. Am J Infect Control. 2013;41(11):955–958. doi: 10.1016/j.ajic.2013.03.310. [DOI] [PubMed] [Google Scholar]
- 36.Görig T, Dittmann K, Kramer A, Heidecke C-D, Diedrich S, Hübner N-O. Active involvement of patients and relatives improves subjective adherence to hygienic measures, especially selfreported hand hygiene: Results of the AHOI pilot study. Antimicrob Resist Infect Control. 2019;8(1):201. doi: 10.1186/s13756-019-0648-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Butenko S, Lockwood C, McArthur A. Patient experiences of partnering with healthcare professionals for hand hygiene compliance: a systematic review. JBI Database System Rev Implement Rep. 2017;15(6):1645–1670. doi: 10.11124/JBISRIR-2016-003001. [DOI] [PubMed] [Google Scholar]
- 38.Agreli HF, Murphy M, Creedon S, et al. Patient involvement in the implementation of infection prevention and control guidelines and associated interventions: a scoping review. BMJ Open. 2019;9:e025824. doi: 10.1136/bmjopen-2018-025824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Birnbach DJ, Nevo I, Barnes S, et al. Do hospital visitors wash their hands? Assessing the use of alcohol-based hand sanitizer in a hospital lobby. Am J Infect Control. 2012;40(4):340–343. doi: 10.1016/j.ajic.2011.05.006. [DOI] [PubMed] [Google Scholar]
- 40.Wong MWH, Xu YZ, Bone J, Srigley JA. Impact of patient and visitor hand hygiene interventions at a pediatric hospital: A stepped wedge cluster randomized controlled trial. Am J Infect Control. 2020;48(5):511–516. doi: 10.1016/j.ajic.2019.09.026. [DOI] [PubMed] [Google Scholar]
- 41.Srigley JA, Furness CD, Gardam M. Measurement of patient hand hygiene in multiorgan transplant units using a novel technology: an observational study. Infect Control Hosp Epidemiol. 2014;35(11):1336–1341. doi: 10.1086/678419. [DOI] [PubMed] [Google Scholar]
- 42.Gaube S, Fischer P, Windl V, Lermer E. The effect of persuasive messages on hospital visitors’ hand hygiene behavior. Health Psychol. 2020;39(6):471–481. doi: 10.1037/hea0000854. [DOI] [PubMed] [Google Scholar]
- 43.Davis R, Parand A, Pinto A, Buetow S. Systematic review of the effectiveness of strategies to encourage patients to remind healthcare professionals about their hand hygiene. J Hosp Infect. 2015;89(3):141–162. doi: 10.1016/j.jhin.2014.11.010. [DOI] [PubMed] [Google Scholar]
- 44.von Lengerke T, Kröning B, Lange K. Patients’ intention to speak up for health care providers’ hand hygiene in inpatient diabetic foot wound treatment: a cross-sectional survey in diabetes outpatient centres in Lower Saxony, Germany. Psychol Health Med. 2017;22(10):1137–1148. doi: 10.1080/13548506.2016.1268696. [DOI] [PubMed] [Google Scholar]
- 45.Han A, Choi JS. Factors influencing infection prevention self-care behaviors in patients with hematologic cancer after discharge. Eur J Oncol Nurs. 2018;35:102–106. doi: 10.1016/j.ejon.2018.06.005. [DOI] [PubMed] [Google Scholar]
- 46.Leonard K. A European survey relating to cancer therapy and neutropenic infections: nurse and patient viewpoints. Eur J Oncol Nurs. 2012;16(4):380–386. doi: 10.1016/j.ejon.2011.08.004. [DOI] [PubMed] [Google Scholar]
- 47.Yokoe D, Casper C, Dubberke E, et al. Safe living after hematopoietic cell transplantation. Bone Marrow Transplant. 2009;44(8):509–519. doi: 10.1038/bmt.2009.262. [DOI] [PubMed] [Google Scholar]
- 48.Lequilliec N, Raymond R, Vanjak D, et al. Practices of infectious control management during neutropenia: A survey from 149 French hospitals. J Mycol Med. 2017;27(2):227–231. doi: 10.1016/j.mycmed.2017.02.006. [DOI] [PubMed] [Google Scholar]
- 49.Thom KA, Kleinberg M, Roghmann MC. Infection prevention in the cancer center. Clin Infect Dis. 2013;57(4):579–585. doi: 10.1093/cid/cit290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Okada J, Yamamizu Y, Fukai K. Effectiveness of hand hygiene depends on the patient’s health condition and care environment. Jpn J Nurs Sci. 2016;13(4):413–423. doi: 10.1111/jjns.12122. [DOI] [PubMed] [Google Scholar]
- 51.Mody L, Washer LL, Kaye KS, et al. Multidrug-resistant Organisms in Hospitals: What Is on Patient Hands and in Their Rooms? Clin Infect Dis. 2019;69(11):1837–1844. doi: 10.1093/cid/ciz092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Pittet D, Allegranzi B, Sax H, et al. Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect Dis. 2006;6(10):641–652. doi: 10.1016/S1473-3099(06)70600-4. [DOI] [PubMed] [Google Scholar]
- 53.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Erratum zu: Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl. 2016;59(11):1503–1504. doi: 10.1007/s00103-016-2453-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2016) Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl 59(9):1189–1220 [DOI] [PMC free article] [PubMed]
- 55.Reichardt C, Koniger D, Bunte-Schonberger K, et al. Three years of national hand hygiene campaign in Germany: what are the key conclusions for clinical practice? J Hosp Infect. 2013;83(Suppl 1):S11–S16. doi: 10.1016/S0195-6701(13)60004-3. [DOI] [PubMed] [Google Scholar]
- 56.Kampf G, Simon A. Händehygiene bei immunsupprimierten Patienten. In: Kampf G, editor. Kompendium Händehygiene. Wiesbaden: mhp-Verlag; 2017. pp. 266–271. [Google Scholar]
- 57.Lund BM, O’Brien SJ. The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog Dis. 2011;8(9):961–973. doi: 10.1089/fpd.2011.0860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Evans EW, Redmond EC. An assessment of food safety information provision for UK chemotherapy patients to reduce the risk of foodborne infection. Public Health. 2017;153:25–35. doi: 10.1016/j.puhe.2017.06.017. [DOI] [PubMed] [Google Scholar]
- 59.Evans EW, Redmond EC. Food Safety Knowledge and Self-Reported Food-Handling Practices in Cancer Treatment. Oncol Nurs Forum. 2018;45(5):E98–E110. doi: 10.1188/18.ONF.E98-E110. [DOI] [PubMed] [Google Scholar]
- 60.Stull JW, Stevenson KB (2015) Zoonotic disease risks for immunocompromised and other high-risk clients and staff: promoting safe pet ownership and contact. Vet Clin North Am Small Anim Pract 45(2):377–392, vii [DOI] [PubMed]
- 61.Gurry GA, Campion V, Premawardena C, et al. High rates of potentially infectious exposures between immunocompromised patients and their companion animals: an unmet need for education. Intern Med J. 2017;47(3):333–335. doi: 10.1111/imj.13361. [DOI] [PubMed] [Google Scholar]
- 62.Hemsworth S, Pizer B. Pet ownership in immunocompromised children—a review of the literature and survey of existing guidelines. Eur J Oncol Nurs. 2006;10(2):117–127. doi: 10.1016/j.ejon.2005.08.001. [DOI] [PubMed] [Google Scholar]
- 63.Laws H-J, Baumann U, Bogdan C, et al. Impfen bei Immundefizienz: Anwendungshinweise zu den von der Ständigen Impfkommission empfohlenen Impfungen. (III) Impfen bei hämatologischen und onkologischen Erkrankungen (antineoplastische Therapie, Stammzelltransplantation), Organtransplantation und Asplenie. Bundesgesundheitsbl. 2020;63(5):588–644. doi: 10.1007/s00103-020-03123-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Prävention von Infektionen, die von Gefäßkathetern ausgehen. Hinweise zur Implementierung. Informativer Anhang 2 zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2017;60(2):231–244. doi: 10.1007/s00103-016-2486-5. [DOI] [PubMed] [Google Scholar]
- 65.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Prävention von Infektionen, die von Gefäßkathetern ausgehen. Teil 1 – Nichtgetunnelte zentralvenöse Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2017;60(2):171–206. doi: 10.1007/s00103-016-2487-4. [DOI] [PubMed] [Google Scholar]
- 66.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Prävention von Infektionen, die von Gefäßkathetern ausgehen. Teil 2 – Periphervenöse Verweilkanülen und arterielle Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2017;60(2):207–215. doi: 10.1007/s00103-016-2488-3. [DOI] [PubMed] [Google Scholar]
- 67.Hentrich M, Schalk E, Schmidt-Hieber M, et al. Central venous catheter-related infections in hematology and oncology: 2012 updated guidelines on diagnosis, management and prevention by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Ann Oncol. 2014;25(5):936–947. doi: 10.1093/annonc/mdt545. [DOI] [PubMed] [Google Scholar]
- 68.Simon A, Furtwängler R, Laws HJ et al (2018) Evidenzbasierte Empfehlungen zur Anwendung dauerhaft implantierter, zentralvenöser Zugänge in der diatrischen Onkologie im Auftrag der Gesellschaft für pädiatrische Onkologie und Hämatologie. (Bd. 5. vollst. überarb. Aufl.) mhp Verlag, Wiesbaden
- 69.DeLa Cruz RF, Caillouet B, Guerrero SS. Strategic patient education program to prevent catheter-related bloodstream infection. Clin J Oncol Nurs. 2012;16(1):E12–E17. doi: 10.1188/12.CJON.E12-E17. [DOI] [PubMed] [Google Scholar]
- 70.Moller T, Adamsen L. Hematologic patients’ clinical and psychosocial experiences with implanted long-term central venous catheter: self-management versus professionally controlled care. Cancer Nurs. 2010;33(6):426–435. doi: 10.1097/NCC.0b013e3181dc1908. [DOI] [PubMed] [Google Scholar]
- 71.Moller T, Borregaard N, Tvede M, Adamsen L. Patient education—a strategy for prevention of infections caused by permanent central venous catheters in patients with haematological malignancies: a randomized clinical trial. J Hosp Infect. 2005;61(4):330–341. doi: 10.1016/j.jhin.2005.01.031. [DOI] [PubMed] [Google Scholar]
- 72.Centers for Disease Control and Prevention (CDC), Foundation CDC (2019) 3 Steps Toward Preventing Infections During Cancer Treatment (3 Steps). https://www.preventcancerinfections.org/. Zugegriffen: 1. Nov. 2020
- 73. Verbund für Angewandte Hygiene e. V. (VAH) (2019) Hygiene-Tipps für das Krankenhaus. Informationen zur Infektionsprävention. https://hygiene-tipps-fuer-kids.de/krankenhaus-projektbeschreibung. Zugegriffen: 1. Nov. 2020
- 74.Exner M, Simon A, Stiftung Deutsche Leukämie- & Lymphom-Hilfe (Hrsg) (2017) Infektionen? Nein, danke! Wir tun was dagegen! Vermeidung übertragbarer Krankheiten bei Patienten mit Abwehrschwäche im häuslichen Umfeld. https://www.leukaemie-hilfe.de/nc/download-informationen.html?tx_drblob_pi1%5BdownloadUid%5D=631. Zugegriffen: 1. Nov. 2020
- 75.Hall CB. Nosocomial respiratory syncytial virus infections: the “Cold War” has not ended. Clin Infect Dis. 2000;31(2):590–596. doi: 10.1086/313960. [DOI] [PubMed] [Google Scholar]
- 76.Libbrecht C, Goutagny MP, Bacchetta J, et al. Impact of a change in protected environment on the occurrence of severe bacterial and fungal infections in children undergoing hematopoietic stem cell transplantation. Eur J Haematol. 2016;97(1):70–77. doi: 10.1111/ejh.12685. [DOI] [PubMed] [Google Scholar]
- 77.Picheansanthian W, Chotibang J. Glove utilization in the prevention of cross transmission: a systematic review. JBI Database System Rev Implement Rep. 2015;13(4):188–230. doi: 10.11124/jbisrir-2015-1817. [DOI] [PubMed] [Google Scholar]
- 78. (2005) Ständige Impfkommission (STIKO) am. Bull, Bd. 39. Robert Koch Institut, Hinweise zu Impfungen bei Patienten mit Immundefizienz. Epid, S 353–364
- 79.Niehues T, Bogdan C, Hecht J, Mertens T, Wiese-Posselt M, Zepp F. Impfen bei Immundefizienz. Bundesgesundheitsbl. 2017;60(6):674–684. doi: 10.1007/s00103-017-2555-4. [DOI] [PubMed] [Google Scholar]
- 80.Rieger CT, Liss B, Mellinghoff S, et al. Anti-infective vaccination strategies in patients with hematologic malignancies or solid tumors—Guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) Ann Oncol. 2018;29(6):1354–1365. doi: 10.1093/annonc/mdy117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.El Ramahi R, Freifeld A. Epidemiology, Diagnosis, Treatment, and Prevention of Influenza Infection in Oncology Patients. J Oncol Pract. 2019;15(4):177–184. doi: 10.1200/JOP.18.00567. [DOI] [PubMed] [Google Scholar]
- 82.Price SA, Podczervinski S, MacLeod K, Helbert L, Pergam SA. Understanding influenza vaccination rates and reasons for refusal in caregivers and household contacts of cancer patients. Am J Infect Control. 2019;47(4):468–470. doi: 10.1016/j.ajic.2018.10.010. [DOI] [PubMed] [Google Scholar]
- 83.Gesetz für den Schutz vor Masern und zur Stärkung der Impfprävention (Masernschutzgesetz). Vom 10. Februar 2020 (BGBl. Teil I Nr. 6, S. 148–157)
- 84.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Impfungen von Personal in medizinischen Einrichtungen in Deutschland: Empfehlung zur Umsetzung der gesetzlichen Regelung in § 23a Infektionsschutzgesetz. Bundesgesundheitsbl (in Vorbereitung) [DOI] [PMC free article] [PubMed]
- 85.Berg TT, Wicker S. Impfungen für medizinisches Personal. Krankenhaushygiene up2date 13(03) 2018. pp. 331–342. [Google Scholar]
- 86.Frenzel E, Chemaly RF, Ariza-Heredia E, et al. Association of increased influenza vaccination in health care workers with a reduction in nosocomial influenza infections in cancer patients. Am J Infect Control. 2016;44(9):1016–1021. doi: 10.1016/j.ajic.2016.03.024. [DOI] [PubMed] [Google Scholar]
- 87.Field RI. Mandatory vaccination of health care workers: whose rights should come first? Pharm Ther. 2009;34(11):615–618. [PMC free article] [PubMed] [Google Scholar]
- 88.Maltezou HC, Poland GA. Vaccination policies for healthcare workers in Europe. Vaccine. 2014;32(38):4876–4880. doi: 10.1016/j.vaccine.2013.10.046. [DOI] [PubMed] [Google Scholar]
- 89.Maltezou HC, Dedoukou X, Vernardaki A, et al. Measles in healthcare workers during the ongoing epidemic in Greece, 2017–2018. J Hosp Infect. 2018;100(4):e261–e263. doi: 10.1016/j.jhin.2018.06.007. [DOI] [PubMed] [Google Scholar]
- 90.Maltezou HC, Poland GA. Immunization of healthcare providers: a critical step toward patient safety. Vaccine. 2014;32(38):4813. doi: 10.1016/j.vaccine.2014.05.046. [DOI] [PubMed] [Google Scholar]
- 91.Montoya A, Schildhouse R, Goyal A, et al. How often are health care personnel hands colonized with multidrug-resistant organisms? A systematic review and meta-analysis. Am J Infect Control. 2019;47(6):693–703. doi: 10.1016/j.ajic.2018.10.017. [DOI] [PubMed] [Google Scholar]
- 92.Biehl LM, Higgins P, Wille T, et al. Impact of single-room contact precautions on hospital-acquisition and transmission of multidrug-resistant Escherichia coli: a prospective multicentre cohort study in haematological and oncological wards. Clin Microbiol Infect. 2019;25(8):1013–1020. doi: 10.1016/j.cmi.2018.12.029. [DOI] [PubMed] [Google Scholar]
- 93.Sodre da Costa LS, Neves VM, Marra AR, et al. Measuring hand hygiene compliance in a hematology-oncology unit: a comparative study of methodologies. Am J Infect Control. 2013;41(11):997–1000. doi: 10.1016/j.ajic.2013.03.301. [DOI] [PubMed] [Google Scholar]
- 94.Graf K, Ott E, Wolny M, et al. Hand hygiene compliance in transplant and other special patient groups: an observational study. Am J Infect Control. 2013;41(6):503–508. doi: 10.1016/j.ajic.2012.09.009. [DOI] [PubMed] [Google Scholar]
- 95.Fehling P, Hasenkamp J, Unkel S, et al. Effect of gloved hand disinfection on hand hygiene before infection-prone procedures on a stem cell ward. J Hosp Infect. 2019;103(3):321–327. doi: 10.1016/j.jhin.2019.06.004. [DOI] [PubMed] [Google Scholar]
- 96.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Erratum zu: Infektionsprävention im Rahmen der Pflege und Behandlung von Patienten mit übertragbaren Krankheiten. Bundesgesundheitsbl. 2016;59(1):124–129. doi: 10.1007/s00103-015-2273-8. [DOI] [PubMed] [Google Scholar]
- 97.Szymczak JE, Smathers S, Hoegg C, Klieger S, Coffin SE, Sammons JS. Reasons Why Physicians and Advanced Practice Clinicians Work While Sick: A Mixed-Methods Analysis. JAMA Pediatr. 2015;169(9):815–821. doi: 10.1001/jamapediatrics.2015.0684. [DOI] [PubMed] [Google Scholar]
- 98.Bailey ES, Lobaugh-Jin E, Smith B, et al. Molecular epidemiology of an outbreak of human parainfluenza virus 3 among oncology patients. J Hosp Infect. 2019;103(3):349–353. doi: 10.1016/j.jhin.2019.07.012. [DOI] [PubMed] [Google Scholar]
- 99.Chemaly RF, Shah DP, Boeckh MJ. Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;59(Suppl 5):S344–S351. doi: 10.1093/cid/ciu623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Campbell AP, Guthrie KA, Englund JA, et al. Clinical Outcomes Associated With Respiratory Virus Detection Before Allogeneic Hematopoietic Stem Cell Transplant. Clin Infect Dis. 2015;61(2):192–202. doi: 10.1093/cid/civ272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Geis S, Prifert C, Weissbrich B, et al. Molecular characterization of a respiratory syncytial virus outbreak in a hematology unit in Heidelberg. Germany J Clin Microbiol. 2013;51(1):155–162. doi: 10.1128/JCM.02151-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Lehners N, Tabatabai J, Prifert C, et al. Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders. PLoS ONE. 2016;11(2):e0148258. doi: 10.1371/journal.pone.0148258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.von Lilienfeld-Toal M, Berger A, Christopeit M, et al. Community acquired respiratory virus infections in cancer patients-Guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for haematology and Medical Oncology. Eur J Cancer. 2016;67:200–212. doi: 10.1016/j.ejca.2016.08.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Hijano DR, Maron G, Hayden RT. Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant. Front Microbiol. 2018;9:3097. doi: 10.3389/fmicb.2018.03097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Shah DP, Ghantoji SS, Mulanovich VE, Ariza-Heredia EJ, Chemaly RF. Management of respiratory viral infections in hematopoietic cell transplant recipients. Am J Blood Res. 2012;2(4):203–218. [PMC free article] [PubMed] [Google Scholar]
- 106.Shah DP, Shah PK, Azzi JM, El Chaer F, Chemaly RF. Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review. Cancer Lett. 2016;379(1):100–106. doi: 10.1016/j.canlet.2016.05.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Sung L, Alonzo TA, Gerbing RB, et al. Respiratory syncytial virus infections in children with acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51(6):784–786. doi: 10.1002/pbc.21710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Khawaja F, Chemaly RF. Respiratory syncytial virus in hematopoietic cell transplant recipients and hematologic malignancy patients. Haematologica. 2019;104(7):1322–1331. doi: 10.3324/haematol.2018.215152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Sokol KA, De la Vega-Diaz I, Edmondson-Martin K et al (2016) Masks for prevention of respiratory viruses on the BMT unit: results of a quality initiative. Transpl Infect Dis 18(6):965–967 [DOI] [PubMed]
- 110.Sung AD, Sung JAM, Thomas S, et al. Universal Mask Usage for Reduction of Respiratory Viral Infections After Stem Cell Transplant: A Prospective Trial. Clin Infect Dis. 2016;63(8):999–1006. doi: 10.1093/cid/ciw451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Chu HY, Englund JA, Podczervinski S, et al. Nosocomial transmission of respiratory syncytial virus in an outpatient cancer center. Biol Blood Marrow Transplant. 2014;20(6):844–851. doi: 10.1016/j.bbmt.2014.02.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Huang SS. Chlorhexidine-based decolonization to reduce healthcare-associated infections and multidrug-resistant organisms (MDROs): who, what, where, when, and why? J Hosp Infect. 2019;103(3):235–243. doi: 10.1016/j.jhin.2019.08.025. [DOI] [PubMed] [Google Scholar]
- 113.Messler S, Klare I, Wappler F, et al. Reduction of nosocomial bloodstream infections and nosocomial vancomycin-resistant Enterococcus faecium on an intensive care unit after introduction of antiseptic octenidine-based bathing. J Hosp Infect. 2019;101(3):264–271. doi: 10.1016/j.jhin.2018.10.023. [DOI] [PubMed] [Google Scholar]
- 114.Fan CY, Lee WT, Hsu TC, et al. Effect of chlorhexidine bathing on colonization or infection with Acinetobacter baumannii: a systematic review and meta-analysis. J Hosp Infect. 2019;103(3):284–292. doi: 10.1016/j.jhin.2019.08.004. [DOI] [PubMed] [Google Scholar]
- 115.Huang SS, Septimus E, Kleinman K, et al. Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): a cluster-randomised trial. Lancet. 2019;393(10177):1205–1215. doi: 10.1016/S0140-6736(18)32593-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Snarski E, Mank A, Iacobelli S, et al. Current practices used for the prevention of central venous catheter-associated infection in hematopoietic stem cell transplantation recipients: a survey from the Infectious Diseases Working Party and Nurses’ Group of EBMT. Transpl Infect Dis. 2015;17(4):558–565. doi: 10.1111/tid.12399. [DOI] [PubMed] [Google Scholar]
- 117.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Empfehlungen zur Prävention und Kontrolle von Methicillin-resistenten Staphylococcus aureus-Stämmen (MRSA) in medizinischen und pflegerischen Einrichtungen. Bundesgesundheitsbl. 2014;57(6):696–732. doi: 10.1007/s00103-015-2176-8. [DOI] [PubMed] [Google Scholar]
- 118.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Prävention Gefäßkatheter-assoziierter Infektionen – Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention am Robert Koch-Institut. Bundesgesundheitsbl. 2002;25(11):907–924. [Google Scholar]
- 119.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Prävention von Infektionen, die von Gefäßkathetern ausgehen. Hinweise zur Blutkulturdiagnostik. Informativer Anhang 1 zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2017;60(2):216–230. doi: 10.1007/s00103-016-2485-6. [DOI] [PubMed] [Google Scholar]
- 120.Raulji CM, Clay K, Velasco C, Yu LC. Daily Bathing with Chlorhexidine and Its Effects on Nosocomial Infection Rates in Pediatric Oncology Patients. Pediatr Hematol Oncol. 2015;32(5):315–321. doi: 10.3109/08880018.2015.1013588. [DOI] [PubMed] [Google Scholar]
- 121.Choi SW, Chang L, Hanauer DA, et al. Rapid reduction of central line infections in hospitalized pediatric oncology patients through simple quality improvement methods. Pediatr Blood Cancer. 2013;60(2):262–269. doi: 10.1002/pbc.24187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Climo MW, Yokoe DS, Warren DK, et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. 2013;368(6):533–542. doi: 10.1056/NEJMoa1113849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Abbas M, Pires D, Peters A, et al. Conflicts of interest in infection prevention and control research: no smoke without fire. A narrative review. Intensive Care Med. 2018;44(10):1679–1690. doi: 10.1007/s00134-018-5361-z. [DOI] [PubMed] [Google Scholar]
- 124.Heo ST, Kim SJ, Jeong YG, Bae IG, Jin JS, Lee JC. Hospital outbreak of Burkholderia stabilis bacteraemia related to contaminated chlorhexidine in haematological malignancy patients with indwelling catheters. J Hosp Infect. 2008;70(3):241–245. doi: 10.1016/j.jhin.2008.07.019. [DOI] [PubMed] [Google Scholar]
- 125.Gastmeier P, Kampf KP, Behnke M, Geffers C, Schwab F. An observational study of the universal use of octenidine to decrease nosocomial bloodstream infections and MDR organisms. J Antimicrob Chemother. 2016;71(9):2569–2576. doi: 10.1093/jac/dkw170. [DOI] [PubMed] [Google Scholar]
- 126.Meissner A, Hasenclever D, Brosteanu O, Chaberny IF. EFFECT of daily antiseptic body wash with octenidine on nosocomial primary bacteraemia and nosocomial multidrug-resistant organisms in intensive care units: design of a multicentre, cluster-randomised, double-blind, cross-over study. BMJ Open. 2017;7(11):e016251. doi: 10.1136/bmjopen-2017-016251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Becker SL, Berger FK, Feldner SK, et al. Outbreak of Burkholderia cepacia complex infections associated with contaminated octenidine mouthwash solution, Germany, August to September 2018. Euro Surveill. 2018;23(42):1800540. doi: 10.2807/1560-7917.ES.2018.23.42.1800540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Huang SS, Septimus E, Hayden MK, et al. Effect of body surface decolonisation on bacteriuria and candiduria in intensive care units: an analysis of a cluster-randomised trial. Lancet Infect Dis. 2016;16(1):70–79. doi: 10.1016/S1473-3099(15)00238-8. [DOI] [PubMed] [Google Scholar]
- 129.Wang EW, Layon AJ. Chlorhexidine gluconate use to prevent hospital acquired infections—a useful tool, not a panacea. Ann Transl Med. 2017;5(1):14. doi: 10.21037/atm.2017.01.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Kampf G. Acquired resistance to chlorhexidine—is it time to establish an ‘antiseptic stewardship’ initiative? J Hosp Infect. 2016;94(3):213–227. doi: 10.1016/j.jhin.2016.08.018. [DOI] [PubMed] [Google Scholar]
- 131.McNeil JC, Hulten KG, Kaplan SL, Mahoney DH, Mason EO. Staphylococcus aureus infections in pediatric oncology patients: high rates of antimicrobial resistance, antiseptic tolerance and complications. Pediatr Infect Dis J. 2013;32(2):124–128. doi: 10.1097/INF.0b013e318271c4e0. [DOI] [PubMed] [Google Scholar]
- 132.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Anforderung an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsbl. 2004;47(1):51–61. doi: 10.1007/s00103-003-0752-9. [DOI] [PubMed] [Google Scholar]
- 133.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Hygienemaßnahmen zur Prävention der Infektion durch Enterokokken mit speziellen Antibiotikaresistenzen. Bundesgesundheitsbl. 2018;61(10):1310–1361. doi: 10.1007/s00103-018-2811-2. [DOI] [PubMed] [Google Scholar]
- 134.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. Bundesgesundheitsbl. 2012;55(10):1311–1354. doi: 10.1007/s00103-012-1549-5. [DOI] [PubMed] [Google Scholar]
- 135.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Hygienemaßnahmen bei Clostridioides difficile-Infektion (CDI) Bundesgesundheitsbl. 2019;62(7):906–923. doi: 10.1007/s00103-019-02959-1. [DOI] [PubMed] [Google Scholar]
- 136.Kanamori H, Rutala WA, Weber DJ. The Role of Patient Care Items as a Fomite in Healthcare-Associated Outbreaks and Infection Prevention. Clin Infect Dis. 2017;65(8):1412–1419. doi: 10.1093/cid/cix462. [DOI] [PubMed] [Google Scholar]
- 137.Donskey CJ. Does improving surface cleaning and disinfection reduce health care-associated infections? Am J Infect Control. 2013;41(5 Suppl):S12–S19. doi: 10.1016/j.ajic.2012.12.010. [DOI] [PubMed] [Google Scholar]
- 138.Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarek JL, Umscheid CA. Cleaning Hospital Room Surfaces to Prevent Health Care-Associated Infections: A Technical Brief. Ann Intern Med. 2015;163(8):598–607. doi: 10.7326/M15-1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Leas BF, Sullivan N, Han JH, Pegues DA, Kaczmarek JL, Umscheid CA (2015) Environmental Cleaning for the Prevention of Healthcare-Associated Infections Technical Brief, No 22, Agency for Healthcare Research and Quality, (AHRQ), Rockville (MD) [PubMed]
- 140.Havill NL. Best practices in disinfection of noncritical surfaces in the health care setting: creating a bundle for success. Am J Infect Control. 2013;41(5 Suppl):S26–S30. doi: 10.1016/j.ajic.2012.10.028. [DOI] [PubMed] [Google Scholar]
- 141.Satlin MJ, Chavda KD, Baker TM, et al. Colonization With Levofloxacin-resistant Extended-spectrum beta-Lactamase-producing Enterobacteriaceae and Risk of Bacteremia in Hematopoietic Stem Cell Transplant Recipients. Clin Infect Dis. 2018;67(11):1720–1728. doi: 10.1093/cid/ciy363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;58(9):1274–1283. doi: 10.1093/cid/ciu052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Satlin MJ, Walsh TJ. Multidrug-resistant Enterobacteriaceae, Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus: Three major threats to hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2017;19(6):e12762. doi: 10.1111/tid.12762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Vehreschild MJ, Hamprecht A, Peterson L, et al. A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother. 2014;69(12):3387–3392. doi: 10.1093/jac/dku305. [DOI] [PubMed] [Google Scholar]
- 145.Vehreschild MJ, Liss BJ, Cornely OA. Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection. 2013;41(5):1049–1050. doi: 10.1007/s15010-013-0436-9. [DOI] [PubMed] [Google Scholar]
- 146.Vehreschild MJ, Weitershagen D, Biehl LM, et al. Clostridium difficile infection in patients with acute myelogenous leukemia and in patients undergoing allogeneic stem cell transplantation: epidemiology and risk factor analysis. Biol Blood Marrow Transplant. 2014;20(6):823–828. doi: 10.1016/j.bbmt.2014.02.022. [DOI] [PubMed] [Google Scholar]
- 147.Ruhnke M, Arnold R, Gastmeier P. Infection control issues in patients with haematological malignancies in the era of multidrug-resistant bacteria. Lancet Oncol. 2014;15(13):e606–e619. doi: 10.1016/S1470-2045(14)70344-4. [DOI] [PubMed] [Google Scholar]
- 148.Pouch SM, Satlin MJ. Carbapenem-resistant Enterobacteriaceae in special populations: Solid organ transplant recipients, stem cell transplant recipients, and patients with hematologic malignancies. Virulence. 2017;8(4):391–402. doi: 10.1080/21505594.2016.1213472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Medernach RL, Logan LK. The Growing Threat of Antibiotic Resistance in Children. Infect Dis Clin North Am. 2018;32(1):1–17. doi: 10.1016/j.idc.2017.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.van Loon K, Voor In ’t Holt AF, Vos MC (2018) A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 62(1)pii: e01730–17 [DOI] [PMC free article] [PubMed]
- 151.Rump B, Timen A, Hulscher M, Verweij M. Ethics of Infection Control Measures for Carriers of Antimicrobial Drug-Resistant Organisms. Emerg Infect Dis. 2018;24(9):1609–1616. doi: 10.3201/eid2409.171644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Kommission für Krankenhaushygiene (KRINKO) (2019) Ergänzung zur Empfehlung der KRINKO „Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen“ (2012) im Zusammenhang mit der von EUCAST neu definierten Kategorie „I“ bei der Antibiotika-Resistenzbestimmung: Konsequenzen für die Definition von MRGN. Epid Bull 9:82–83
- 153.Rohde AM, Zweigner J, Wiese-Posselt M, et al. Incidence of infections due to third generation cephalosporin-resistant Enterobacteriaceae—a prospective multicentre cohort study in six German university hospitals. Antimicrob Resist Infect Control. 2018;7:159. doi: 10.1186/s13756-018-0452-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Boldt AC, Schwab F, Rohde AM, et al. Admission prevalence of colonization with third-generation cephalosporin-resistant Enterobacteriaceae and subsequent infection rates in a German university hospital. PLoS ONE. 2018;13(8):e0201548. doi: 10.1371/journal.pone.0201548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Biehl LM, Schmidt-Hieber M, Liss B, Cornely OA, Vehreschild MJ. Colonization and infection with extended spectrum beta-lactamase producing Enterobacteriaceae in high-risk patients—Review of the literature from a clinical perspective. Crit Rev Microbiol. 2016;42(1):1–16. doi: 10.3109/1040841X.2013.875515. [DOI] [PubMed] [Google Scholar]
- 156.Cattaneo C, Di Blasi R, Skert C, et al. Bloodstream infections in haematological cancer patients colonized by multidrug-resistant bacteria. Ann Hematol. 2018;97(9):1717–1726. doi: 10.1007/s00277-018-3341-6. [DOI] [PubMed] [Google Scholar]
- 157.Deutsche Gesellschaft für Pädiatrische Infektiologie (DGPI) Paed IC. Infektionspräventives Vorgehen bei Nachweis von MRGN im Kindesalter. Hyg Med. 2014;39(10):392–399. [Google Scholar]
- 158.Joint FAO/WHO Codex Alimentarius Commission (1997) General Requirements (Food Hygiene). Codex Alimentarius (Supplement to Volume 1B). Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO), Rome
- 159.De Waele E, Demol J, Caccialanza R, et al. Unidentified cachexia patients in the oncologic setting: Cachexia UFOs do exist. Nutrition. 2019;63–64(07/08):200–204. doi: 10.1016/j.nut.2019.02.015. [DOI] [PubMed] [Google Scholar]
- 160.Isenring EA, Teleni L. Nutritional counseling and nutritional supplements: a cornerstone of multidisciplinary cancer care for cachectic patients. Curr Opin Support Palliat Care. 2013;7(4):390–395. doi: 10.1097/SPC.0000000000000016. [DOI] [PubMed] [Google Scholar]
- 161.Kurk S, Peeters P, Stellato R, et al. Skeletal muscle mass loss and dose-limiting toxicities in metastatic colorectal cancer patients. J Cachexia Sarcopenia Muscle. 2019;10(4):803–813. doi: 10.1002/jcsm.12436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Schmid I, Albert MH, Stachel D, Simon A. Nahrungsmittelrestriktionen zur Infektionsprävention bei Kindern mit Krebserkrankung: Was ist gesichert und was ist sinnvoll? Hyg Med. 2008;33(1/2):16–24. [Google Scholar]
- 163.Baumgartner A, Hoskin K, Schuetz P. Optimization of nutrition during allogeneic hematologic stem cell transplantation. Curr Opin Clin Nutr Metab Care. 2018;21(3):152–158. doi: 10.1097/MCO.0000000000000461. [DOI] [PubMed] [Google Scholar]
- 164.Friedemann M. Gesundheitliches Gefährdungspotenzial von Enterobacter sakazakii (Cronobacter spp. nov.) in Säuglingsnahrung. Bundesgesundheitbl. 2008;51(6):664–674. doi: 10.1007/s00103-008-0543-4. [DOI] [PubMed] [Google Scholar]
- 165.Healy B, Cooney S, O’Brien S, et al. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis. 2010;7(4):339–350. doi: 10.1089/fpd.2009.0379. [DOI] [PubMed] [Google Scholar]
- 166.Holy O, Forsythe S. Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect. 2014;86(3):169–177. doi: 10.1016/j.jhin.2013.09.011. [DOI] [PubMed] [Google Scholar]
- 167.Hurrell E, Kucerova E, Loughlin M, et al. Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae. BMC Infect Dis. 2009;9:146. doi: 10.1186/1471-2334-9-146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Gardner A, Mattiuzzi G, Faderl S, et al. Randomized comparison of cooked and noncooked diets in patients undergoing remission induction therapy for acute myeloid leukemia. J Clin Oncol. 2008;26(35):5684–5688. doi: 10.1200/JCO.2008.16.4681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Lassiter M, Schneider SM. A pilot study comparing the neutropenic diet to a non-neutropenic diet in the allogeneic hematopoietic stem cell transplantation population. Clin J Oncol Nurs. 2015;19(3):273–278. doi: 10.1188/15.CJON.19-03AP. [DOI] [PubMed] [Google Scholar]
- 170.van Tiel F, Harbers MM, Terporten PH, et al. Normal hospital and low-bacterial diet in patients with cytopenia after intensive chemotherapy for hematological malignancy: a study of safety. Ann Oncol. 2007;18(6):1080–1084. doi: 10.1093/annonc/mdm082. [DOI] [PubMed] [Google Scholar]
- 171.Sonbol M, Jain T, Firwana B. Neutropenic diets to prevent cancer infections: updated systematic review and meta-analysis. BMJ Support Palliat Care. 2019;9(4):425–433. doi: 10.1136/bmjspcare-2018-001742. [DOI] [PubMed] [Google Scholar]
- 172.Ball S, Brown TJ, Das A, Khera R, Khanna S, Gupta A. Effect of Neutropenic Diet on Infection Rates in Cancer Patients With Neutropenia: A Meta-analysis of Randomized Controlled Trials. Am J Clin Oncol. 2019;42(3):270–274. doi: 10.1097/COC.0000000000000514. [DOI] [PubMed] [Google Scholar]
- 173.Wolfe HR, Sadeghi N, Agrawal D, Johnson DH, Gupta A. Things We Do For No Reason: Neutropenic Diet. J Hosp Med. 2018;13(8):573–576. doi: 10.12788/jhm.2985. [DOI] [PubMed] [Google Scholar]
- 174.Tramsen L, Salzmann-Manrique E, Bochennek K, et al. Lack of Effectiveness of Neutropenic Diet and Social Restrictions as Anti-Infective Measures in Children With Acute Myeloid Leukemia: An Analysis of the AML-BFM 2004 Trial. J Clin Oncol. 2016;34(23):2776–2783. doi: 10.1200/JCO.2016.66.7881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Taggart C, Neumann N, Alonso PB, et al. Comparing a Neutropenic Diet to a Food Safety-Based Diet in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019;25(7):1382–1386. doi: 10.1016/j.bbmt.2019.03.017. [DOI] [PubMed] [Google Scholar]
- 176.Trifilio S, Helenowski I, Giel M, et al. Questioning the role of a neutropenic diet following hematopoetic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18(9):1385–1390. doi: 10.1016/j.bbmt.2012.02.015. [DOI] [PubMed] [Google Scholar]
- 177.Moody K, Finlay J, Mancuso C, Charlson M. Feasibility and safety of a pilot randomized trial of infection rate: neutropenic diet versus standard food safety guidelines. J Pediatr Hematol Oncol. 2006;28(3):126–133. doi: 10.1097/01.mph.0000210412.33630.fb. [DOI] [PubMed] [Google Scholar]
- 178.Goldenberg JZ, Yap C, Lytvyn L, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017;12:Cd006095. doi: 10.1002/14651858.CD006095.pub4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Guo Q, Goldenberg JZ, Humphrey C, El Dib R, Johnston BC. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev. 2019;4:Cd004827. doi: 10.1002/14651858.CD004827.pub5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Ouyang X, Li Q, Shi M, et al. Probiotics for preventing postoperative infection in colorectal cancer patients: a systematic review and meta-analysis. Int J Colorectal Dis. 2019;34(3):459–469. doi: 10.1007/s00384-018-3214-4. [DOI] [PubMed] [Google Scholar]
- 181.Wei D, Heus P, van de Wetering FT, van Tienhoven G, Verleye L, Scholten RJ. Probiotics for the prevention or treatment of chemotherapy- or radiotherapy-related diarrhoea in people with cancer. Cochrane Database Syst Rev. 2018;8:Cd008831. doi: 10.1002/14651858.CD008831.pub3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Kujawa-Szewieczek A, Adamczak M, Kwiecien K, Dudzicz S, Gazda M, Wiecek A. The Effect of Lactobacillus plantarum 299v on the Incidence of Clostridium difficile Infection in High Risk Patients Treated with Antibiotics. Nutrients. 2015;7(12):10179–10188. doi: 10.3390/nu7125526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Bai J, Behera M, Bruner DW. The gut microbiome, symptoms, and targeted interventions in children with cancer: a systematic review. Support Care Cancer. 2018;26(2):427–439. doi: 10.1007/s00520-017-3982-3. [DOI] [PubMed] [Google Scholar]
- 184.Gorshein E, Wei C, Ambrosy S, et al. Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clin Transplant. 2017;31(5):e12947. doi: 10.1111/ctr.12947. [DOI] [PubMed] [Google Scholar]
- 185.Cohen SA, Woodfield MC, Boyle N, Stednick Z, Boeckh M, Pergam SA. Incidence and outcomes of bloodstream infections among hematopoietic cell transplant recipients from species commonly reported to be in over-the-counter probiotic formulations. Transpl Infect Dis. 2016;18(5):699–705. doi: 10.1111/tid.12587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186.Salminen MK, Rautelin H, Tynkkynen S, et al. Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis. 2006;42(5):e35–e44. doi: 10.1086/500214. [DOI] [PubMed] [Google Scholar]
- 187.Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK. Lactobacillus sepsis associated with probiotic therapy. Pediatrics. 2005;115(1):178–181. doi: 10.1542/peds.2004-2137. [DOI] [PubMed] [Google Scholar]
- 188.Kunz AN, Fairchok MP, Noel JM. Lactobacillus sepsis associated with probiotic therapy. Pediatrics. 2005;116(2):517. doi: 10.1542/peds.2005-0475. [DOI] [PubMed] [Google Scholar]
- 189.Cannon JP, Lee TA, Bolanos JT, Danziger LH. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis. 2005;24(1):31–40. doi: 10.1007/s10096-004-1253-y. [DOI] [PubMed] [Google Scholar]
- 190.Arpi M, Vancanneyt M, Swings J, Leisner JJ. Six cases of Lactobacillus bacteraemia: identification of organisms and antibiotic susceptibility and therapy. Scand J Infect Dis. 2003;35(6–7):404–408. doi: 10.1080/00365540310011830. [DOI] [PubMed] [Google Scholar]
- 191.Carretto E, Barbarini D, Marzani FC, et al. Catheter-related bacteremia due to Lactobacillus rhamnosus in a single-lung transplant recipient. Scand J Infect Dis. 2001;33(10):780–782. doi: 10.1080/003655401317074653. [DOI] [PubMed] [Google Scholar]
- 192.Cooper CD, Vincent A, Greene JN, Sandin RL, Cobian L. Lactobacillus bacteremia in febrile neutropenic patients in a cancer hospital. Clin Infect Dis. 1998;26(5):1247–1248. doi: 10.1086/598365. [DOI] [PubMed] [Google Scholar]
- 193.Schlegel L, Lemerle S, Geslin P. Lactobacillus species as opportunistic pathogens in immunocompromised patients. Eur J Clin Microbiol Infect Dis. 1998;17(12):887–888. doi: 10.1007/s100960050216. [DOI] [PubMed] [Google Scholar]
- 194.Munoz P, Bouza E, Cuenca-Estrella M, et al. Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin Infect Dis. 2005;40(11):1625–1634. doi: 10.1086/429916. [DOI] [PubMed] [Google Scholar]
- 195.Herbrecht R, Nivoix Y. Saccharomyces cerevisiae fungemia: an adverse effect of Saccharomyces boulardii probiotic administration. Clin Infect Dis. 2005;40(11):1635–1637. doi: 10.1086/429926. [DOI] [PubMed] [Google Scholar]
- 196.Enache-Angoulvant A, Hennequin C. Invasive Saccharomyces infection: a comprehensive review. Clin Infect Dis. 2005;41(11):1559–1568. doi: 10.1086/497832. [DOI] [PubMed] [Google Scholar]
- 197.Cesaro S, Chinello P, Rossi L, Zanesco L. Saccharomyces cerevisiae fungemia in a neutropenic patient treated with Saccharomyces boulardii. Support Care Cancer. 2000;8(6):504–505. doi: 10.1007/s005200000123. [DOI] [PubMed] [Google Scholar]
- 198.Cassone M, Serra P, Mondello F, et al. Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol. 2003;41(11):5340–5343. doi: 10.1128/JCM.41.11.5340-5343.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 199.Olver WJ, James SA, Lennard A, et al. Nosocomial transmission of Saccharomyces cerevisiae in bone marrow transplant patients. J Hosp Infect. 2002;52(4):268–272. doi: 10.1053/jhin.2002.1314. [DOI] [PubMed] [Google Scholar]
- 200.Ladas EJ, Bhatia M, Chen L, et al. The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation. Bone Marrow Transplant. 2016;51(2):262–266. doi: 10.1038/bmt.2015.275. [DOI] [PubMed] [Google Scholar]
- 201.Yelin I, Flett KB, Merakou C, et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med. 2019;25(11):1728–1732. doi: 10.1038/s41591-019-0626-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 202.Diorio C, Robinson PD, Ammann RA, et al. Guideline for the Management of Clostridium Difficile Infection in Children and Adolescents With Cancer and Pediatric Hematopoietic Stem-Cell Transplantation Recipients. J Clin Oncol. 2018;36(31):3162–3172. doi: 10.1200/JCO.18.00407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Mehta A, Rangarajan S, Borate U. A cautionary tale for probiotic use in hematopoietic SCT patients-Lactobacillus acidophilus sepsis in a patient with mantle cell lymphoma undergoing hematopoietic SCT. Bone Marrow Transplant. 2013;48(3):461–462. doi: 10.1038/bmt.2012.153. [DOI] [PubMed] [Google Scholar]
- 204.Hota S, Hirji Z, Stockton K, et al. Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol. 2009;30(1):25–33. doi: 10.1086/592700. [DOI] [PubMed] [Google Scholar]
- 205.Eckmanns T, Ruden H, Gastmeier P. The influence of high-efficiency particulate air filtration on mortality and fungal infection among highly immunosuppressed patients: a systematic review. J Infect Dis. 2006;193(10):1408–1418. doi: 10.1086/503435. [DOI] [PubMed] [Google Scholar]
- 206.Passweg JR, Rowlings PA, Atkinson KA, et al. Influence of protective isolation on outcome of allogeneic bone marrow transplantation for leukemia. Bone Marrow Transplant. 1998;21(12):1231–1238. doi: 10.1038/sj.bmt.1701238. [DOI] [PubMed] [Google Scholar]
- 207.Menegueti MG, Ferreira LR, Silva MF, Silva AS, Bellissimo-Rodrigues F. Assessment of microbiological air quality in hemato-oncology units and its relationship with the occurrence of invasive fungal infections: an integrative review. Rev Soc Bras Med Trop. 2013;46(4):391–396. doi: 10.1590/0037-8682-0022-2013. [DOI] [PubMed] [Google Scholar]
- 208.Cesaro S, Tridello G, Castagnola E, et al. Retrospective study on the incidence and outcome of proven and probable invasive fungal infections in high-risk pediatric onco-hematological patients. Eur J Haematol. 2017;99(3):240–248. doi: 10.1111/ejh.12910. [DOI] [PubMed] [Google Scholar]
- 209.Linke C, Tragiannidis A, Ahlmann M, et al. Epidemiology and management burden of invasive fungal infections after autologous hematopoietic stem cell transplantation: 10-year experience at a European Pediatric Cancer Center. Mycoses. 2019;62:954–960. doi: 10.1111/myc.12968. [DOI] [PubMed] [Google Scholar]
- 210.Vokurka S, Bystrická E, Svoboda T, et al. The availability of HEPA-filtered rooms and the incidence of pneumonia in patients after haematopoietic stem cell transplantation (HSCT): results from a prospective, multicentre, eastern European study. J Clin Nursing. 2014;23:1648–1652. doi: 10.1111/jocn.12286. [DOI] [PubMed] [Google Scholar]
- 211.Hicheri Y, Einsele H, Martino R, Cesaro S, Ljungman P, Cordonnier C. Environmental prevention of infection in stem cell transplant recipients: a survey of the Infectious Diseases Working Part of the European Group for Blood and Marrow Transplantation. Transpl Infect Dis. 2013;15:251–258. doi: 10.1111/tid.12064. [DOI] [PubMed] [Google Scholar]
- 212.Ruijters VJ, Oosterom N, Wolfs TFW, van den Heuvel-Eibrink MM, van Grotel M. Frequency and Determinants of Invasive Fungal Infections in Children With Solid and Hematologic Malignancies in a Nonallogeneic Stem Cell Transplantation Setting: A Narrative Review. J Pediatr Hematol Oncol. 2019;41(5):345–354. doi: 10.1097/MPH.0000000000001468. [DOI] [PubMed] [Google Scholar]
- 213.Styczynski J, Tridello G, Donnelly JP, et al. Protective environment for hematopoietic cell transplant (HSCT) recipients: The Infectious Diseases Working Party EBMT analysis of global recommendations on health-care facilities. Bone Marrow Transplant. 2018;53(9):1131–1138. doi: 10.1038/s41409-018-0141-5. [DOI] [PubMed] [Google Scholar]
- 214.Ortega Morente E, Fernandez-Fuentes MA, Grande Burgos MJ, Abriouel H, Pulido PR, Galvez A. Biocide tolerance in bacteria. Int J Food Microbiol. 2013;162(1):13–25. doi: 10.1016/j.ijfoodmicro.2012.12.028. [DOI] [PubMed] [Google Scholar]
- 215.Maschmeyer G, Neuburger S, Fritz L, et al. A prospective, randomised study on the use of well-fitting masks for prevention of invasive aspergillosis in high-risk patients. Ann Oncol. 2009;20(9):1560–1564. doi: 10.1093/annonc/mdp034. [DOI] [PubMed] [Google Scholar]
- 216.Raad I, Hanna H, Osting C, et al. Masking of neutropenic patients on transport from hospital rooms is associated with a decrease in nosocomial aspergillosis during construction. Infect Control Hosp Epidemiol. 2002;23(1):41–43. doi: 10.1086/501967. [DOI] [PubMed] [Google Scholar]
- 217. Verein Deutscher Ingenieure e. V. (VDI) Richtlinienreihe VDI 6022 „Raumlufttechnik, Raumluftqualität“. https://www.vdi.de/richtlinien/unsere-richtlinien-highlights/vdi-6022. Zugegriffen: 1. Nov. 2020
- 218.Göttlich E, Engesser K, Bardtke D. Emission von Pilzsporen in Müllverarbeitungsanlagen. Forum Städte-Hygiene. 1994;45(11/12):321–325. [Google Scholar]
- 219.Dyck A, Exner M, Kramer A. Experimental based experiences with the introduction of a water safety plan for a multi-located university clinic and its efficacy according to WHO recommendations. BMC Public Health. 2007;7:34. doi: 10.1186/1471-2458-7-34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 220.Kizny Gordon AE, Mathers AJ, Cheong EYL, et al. The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections—A Systematic Review of the Literature. Clin Infect Dis. 2017;64(10):1435–1444. doi: 10.1093/cid/cix132. [DOI] [PubMed] [Google Scholar]
- 221.Kossow A, Kampmeier S, Willems S, et al. Control of Multidrug-Resistant Pseudomonas aeruginosa in Allogeneic Hematopoietic Stem Cell Transplant Recipients by a Novel Bundle Including Remodeling of Sanitary and Water Supply Systems. Clin Infect Dis. 2017;65(6):935–942. doi: 10.1093/cid/cix465. [DOI] [PubMed] [Google Scholar]
- 222.Baranovsky S, Jumas-Bilak E, Lotthe A, et al. Tracking the spread routes of opportunistic premise plumbing pathogens in a haematology unit with water points-of-use protected by antimicrobial filters. J Hosp Infect. 2018;98(1):53–59. doi: 10.1016/j.jhin.2017.07.028. [DOI] [PubMed] [Google Scholar]
- 223.Garvey MI, Bradley CW, Holden E. Waterborne Pseudomonas aeruginosa transmission in a hematology unit? Am J Infect Control. 2018;46(4):383–386. doi: 10.1016/j.ajic.2017.10.013. [DOI] [PubMed] [Google Scholar]
- 224.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2020) Anforderungen der Hygiene an abwasserführende Systeme in medizinischen Einrichtungen. Bundesgesundheitsbl 63(4):484–501 [DOI] [PubMed]
- 225.Charron D, Bedard E, Lalancette C, Laferriere C, Prevost M. Impact of electronic faucets and water quality on the occurrence of Pseudomonas aeruginosa in water: a multi-hospital study. Infect Control Hosp Epidemiol. 2015;36(3):311–319. doi: 10.1017/ice.2014.46. [DOI] [PubMed] [Google Scholar]
- 226.Schneider H, Geginat G, Hogardt M, et al. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons. Pediatr Infect Dis J. 2012;31(6):648–650. doi: 10.1097/INF.0b013e31824d1a11. [DOI] [PubMed] [Google Scholar]
- 227.Picot-Gueraud R, Khouri C, Brenier-Pinchart MP, et al. En-suite bathrooms in protected haematology wards: a source of filamentous fungal contamination? J Hosp Infect. 2015;91(3):244–249. doi: 10.1016/j.jhin.2015.07.005. [DOI] [PubMed] [Google Scholar]
- 228.Brown L, Siddiqui S, McMullen A, Waller J, Baer S. Revisiting the “leading edge” of hospital privacy curtains in the medical intensive care unit. Am J Infect Control. 2020;48(7):746–750. doi: 10.1016/j.ajic.2020.03.015. [DOI] [PubMed] [Google Scholar]
- 229.Larocque M, Carver S, Bertrand A, McGeer A, McLeod S, Borgundvaag B. Acquisition of bacteria on health care workers’ hands after contact with patient privacy curtains. Am J Infect Control. 2016;44(11):1385–1386. doi: 10.1016/j.ajic.2016.04.227. [DOI] [PubMed] [Google Scholar]
- 230.Shek K, Patidar R, Kohja Z, et al. Rate of contamination of hospital privacy curtains on a burns and plastic surgery ward: a cross-sectional study. J Hosp Infect. 2017;96(1):54–58. doi: 10.1016/j.jhin.2017.03.012. [DOI] [PubMed] [Google Scholar]
- 231.Wilson G, Jackson V, Boyken L, et al. A randomized control trial evaluating efficacy of antimicrobial impregnated hospital privacy curtains in an intensive care setting. Am J Infect Control. 2020;48(8):862–868. doi: 10.1016/j.ajic.2019.12.024. [DOI] [PubMed] [Google Scholar]
- 232.Garvey MI, Wilkinson MAC, Holden KL, Martin T, Parkes J, Holden E. Tap out: reducing waterborne Pseudomonas aeruginosa transmission in an intensive care unit. J Hosp Infect. 2019;102(1):75–81. doi: 10.1016/j.jhin.2018.07.039. [DOI] [PubMed] [Google Scholar]
- 233.Watkins LFK, Toews KE, Harris AM, et al. Lessons From an Outbreak of Legionnaires’ Disease on a Hematology-Oncology Unit. Infect Control Hosp Epidemiol. 2017;38(3):306–313. doi: 10.1017/ice.2016.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 234.Micol JB, de Botton S, Guieze R, et al. An 18-case outbreak of drug-resistant Pseudomonas aeruginosa bacteriemia in hematology patients. Haematologica. 2006;91(8):1134–1138. [PubMed] [Google Scholar]
- 235.Vianelli N, Giannini MB, Quarti C, et al. Resolution of a Pseudomonas aeruginosa outbreak in a hematology unit with the use of disposable sterile water filters. Haematologica. 2006;91(7):983–985. [PubMed] [Google Scholar]
- 236.De Brabandere E, Ablorh R, Leroux-Roels I. The hospital sanitary as a source of a vim-producing multidrug resistant Pseudomonas aeruginosa outbreak at the pediatric hemato-oncology ward. Antimicrob Resist Infect Control. 2017;6(Suppl 3):52. [Google Scholar]
- 237.Walker J, Moore G. Safe water in healthcare premises. J Hosp Infect. 2016;94(1):1. doi: 10.1016/j.jhin.2016.07.001. [DOI] [PubMed] [Google Scholar]
- 238.Garvey MI, Bradley CW, Jumaa P. The risks of contamination from tap end filters. J Hosp Infect. 2016;94(3):282–283. doi: 10.1016/j.jhin.2016.08.006. [DOI] [PubMed] [Google Scholar]
- 239.Eckmanns T, Oppert M, Martin M, et al. An outbreak of hospital-acquired Pseudomonas aeruginosa infection caused by contaminated bottled water in intensive care units. Clin Microbiol Infect. 2008;14(5):454–458. doi: 10.1111/j.1469-0691.2008.01949.x. [DOI] [PubMed] [Google Scholar]
- 240.Wilson C, Dettenkofer M, Jonas D, Daschner FD. Pathogen growth in herbal teas used in clinical settings: a possible source of nosocomial infection? Am J Infect Control. 2004;32(2):117–119. doi: 10.1016/j.ajic.2003.09.004. [DOI] [PubMed] [Google Scholar]
- 241.Kanamori H, Rutala WA, Sickbert-Bennett EE, Weber DJ. Review of fungal outbreaks and infection prevention in healthcare settings during construction and renovation. Clin Infect Dis. 2015;61(3):433–444. doi: 10.1093/cid/civ297. [DOI] [PubMed] [Google Scholar]
- 242.Pokala HR, Leonard D, Cox J, et al. Association of hospital construction with the development of healthcare associated environmental mold infections (HAEMI) in pediatric patients with leukemia. Pediatr Blood Cancer. 2014;61(2):276–280. doi: 10.1002/pbc.24685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 243.Talento AF, Fitzgerald M, Redington B, O’Sullivan N, Fenelon L, Rogers TR. Prevention of healthcare-associated invasive aspergillosis during hospital construction/renovation works. J Hosp Infect. 2019;103(1):1–12. doi: 10.1016/j.jhin.2018.12.020. [DOI] [PubMed] [Google Scholar]
- 244.Berger J, Willinger B, Diab-Elschahawi M, et al. Effectiveness of preventive measures for hemato-oncologic patients undergoing stem cell transplantation during a period of hospital construction. Am J Infect Control. 2011;39(9):746–751. doi: 10.1016/j.ajic.2011.01.011. [DOI] [PubMed] [Google Scholar]
- 245.Mellinghoff SC, Panse J, Alakel N, et al. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO) Ann Hematol. 2018;97(2):197–207. doi: 10.1007/s00277-017-3196-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 246.Lehrnbecher T. Antifungal prophylaxis in pediatric patients undergoing therapy for cancer: drugs and dosing. Curr Opin Infect Dis. 2015;28(6):523–531. doi: 10.1097/QCO.0000000000000210. [DOI] [PubMed] [Google Scholar]
- 247.Yunus S, Pieper S, Kolve H, Goletz G, Jurgens H, Groll AH. Azole-based chemoprophylaxis of invasive fungal infections in paediatric patients with acute leukaemia: an internal audit. J Antimicrob Chemother. 2014;69(3):815–820. doi: 10.1093/jac/dkt438. [DOI] [PubMed] [Google Scholar]
- 248.Tragiannidis A, Dokos C, Lehrnbecher T, Groll AH. Antifungal chemoprophylaxis in children and adolescents with haematological malignancies and following allogeneic haematopoietic stem cell transplantation: review of the literature and options for clinical practice. Drugs. 2012;72(5):685–704. doi: 10.2165/11599810-000000000-00000. [DOI] [PubMed] [Google Scholar]
- 249.Lehrnbecher T, Fisher BT, Phillips B et al (2020) Clinical Practice Guideline for Systemic Antifungal Prophylaxis in Pediatric Patients With Cancer and Hematopoietic Stem-Cell Transplantation Recipients. J Clin Oncol 38(27):3205–3216 [DOI] [PMC free article] [PubMed]
- 250.Rhame FS. Prevention of nosocomial aspergillosis. J Hosp Infect. 1991;18(Suppl A):466–472. doi: 10.1016/0195-6701(91)90058-g. [DOI] [PubMed] [Google Scholar]
- 251.Streifel AJ, Lauer JL, Vesley D, Juni B, Rhame FS. Aspergillus fumigatus and other thermotolerant fungi generated by hospital building demolition. Appl Environ Microbiol. 1983;46(2):375–378. doi: 10.1128/aem.46.2.375-378.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 252.Vonberg RP, Gastmeier P. Nosocomial aspergillosis in outbreak settings. J Hosp Infect. 2006;63(3):246–254. doi: 10.1016/j.jhin.2006.02.014. [DOI] [PubMed] [Google Scholar]
- 253.Chang CC, Ananda-Rajah M, Belcastro A, et al. Consensus guidelines for implementation of quality processes to prevent invasive fungal disease and enhanced surveillance measures during hospital building works. Intern Med J. 2014;44(12b):1389–1397. doi: 10.1111/imj.12601. [DOI] [PubMed] [Google Scholar]
- 254.Combariza JF, Toro LF, Orozco JJ, Arango M. Cost-effectiveness analysis of interventions for prevention of invasive aspergillosis among leukemia patients during hospital construction activities. Eur J Haematol. 2018;100(2):140–146. doi: 10.1111/ejh.12991. [DOI] [PubMed] [Google Scholar]
- 255.Manuel RJ, Kibbler CC. The epidemiology and prevention of invasive aspergillosis. J Hosp Infect. 1998;39(2):95–109. doi: 10.1016/s0195-6701(98)90323-1. [DOI] [PubMed] [Google Scholar]
- 256.Mahieu LM, De Dooy JJ, Van Laer FA, Jansens H, Ieven MM. A prospective study on factors influencing aspergillus spore load in the air during renovation works in a neonatal intensive care unit. J Hosp Infect. 2000;45(3):191–197. doi: 10.1053/jhin.2000.0773. [DOI] [PubMed] [Google Scholar]
- 257.Barnes RA, Rogers TR. Control of an outbreak of nosocomial aspergillosis by laminar air-flow isolation. J Hosp Infect. 1989;14(2):89–94. doi: 10.1016/0195-6701(89)90110-2. [DOI] [PubMed] [Google Scholar]
- 258.Klimowski LL, Rotstein C, Cummings KM. Incidence of nosocomial aspergillosis in patients with leukemia over a twenty-year period. Infect Control Hosp Epidemiol. 1989;10(7):299–305. doi: 10.1086/646032. [DOI] [PubMed] [Google Scholar]
- 259.Antoniadou A. Outbreaks of zygomycosis in hospitals. Clin Microbiol Infect. 2009;15(Suppl 5):55–59. doi: 10.1111/j.1469-0691.2009.02982.x. [DOI] [PubMed] [Google Scholar]
- 260.Canada Communicable Disease Report (CCDR) (2001) Construction-related nosocomial infections in patients in health care facilities. Decreasing the risk of Aspergillus, Legionella and other infections. Can Commun Dis Rep 27(Suppl 2):1–42 [PubMed]
- 261.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Prävention und Kontrolle Katheter-assoziierter Harnwegsinfektionen. Bundesgesundheitsbl. 2015;58(6):641–650. doi: 10.1007/s00103-015-2152-3. [DOI] [PubMed] [Google Scholar]
- 262.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Prävention postoperativer Wundinfektionen. Bundesgesundheitsbl. 2018;61(4):448–473. doi: 10.1007/s00103-018-2706-2. [DOI] [PubMed] [Google Scholar]
- 263.Tomsic I, Heinze NR, Chaberny IF, Krauth C, Schock B, von Lengerke T. Implementation interventions in preventing surgical site infections in abdominal surgery: a systematic review. BMC Health Serv Res. 2020;20(1):236. doi: 10.1186/s12913-020-4995-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 264.Poutsiaka DD, Munson D, Price LL, Chan GW, Snydman DR. Blood stream infection (BSI) and acute GVHD after hematopoietic SCT (HSCT) are associated. Bone Marrow Transplant. 2011;46(2):300–307. doi: 10.1038/bmt.2010.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265.Dandoy CE, Alonso PB. MBI-LCBI and CLABSI: more than scrubbing the line. Bone Marrow Transplant. 2019;54(12):1932–1939. doi: 10.1038/s41409-019-0489-1. [DOI] [PubMed] [Google Scholar]
- 266.Balian C, Garcia M, Ward J. A Retrospective Analysis of Bloodstream Infections in Pediatric Allogeneic Stem Cell Transplant Recipients: The Role of Central Venous Catheters and Mucosal Barrier Injury. J Pediatr Oncol Nurs. 2018;35(3):210–217. doi: 10.1177/1043454218762706. [DOI] [PubMed] [Google Scholar]
- 267.Dandoy CE, Haslam D, Lane A, et al. Healthcare Burden, Risk Factors, and Outcomes of Mucosal Barrier Injury Laboratory-Confirmed Bloodstream Infections after Stem Cell Transplantation. Biol Blood Marrow Transplant. 2016;22(9):1671–1677. doi: 10.1016/j.bbmt.2016.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Lukenbill J, Rybicki L, Sekeres MA, et al. Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2013;19(5):720–724. doi: 10.1016/j.bbmt.2013.01.022. [DOI] [PubMed] [Google Scholar]
- 269.Mikulska M, Viscoli C, Orasch C, et al. Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. J Infect. 2014;68(4):321–331. doi: 10.1016/j.jinf.2013.12.006. [DOI] [PubMed] [Google Scholar]
- 270.Metzger KE, Rucker Y, Callaghan M, et al. The burden of mucosal barrier injury laboratory-confirmed bloodstream infection among hematology, oncology, and stem cell transplant patients. Infect Control Hosp Epidemiol. 2015;36(2):119–124. doi: 10.1017/ice.2014.38. [DOI] [PubMed] [Google Scholar]
- 271.See I, Iwamoto M, Allen-Bridson K, Horan T, Magill SS, Thompson ND. Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition. Infect Control Hosp Epidemiol. 2013;34(8):769–776. doi: 10.1086/671281. [DOI] [PubMed] [Google Scholar]
- 272.Stango C, Runyan D, Stern J, Macri I, Vacca M. A successful approach to reducing bloodstream infections based on a disinfection device for intravenous needleless connector hubs. J Infus Nurs. 2014;37(6):462–465. doi: 10.1097/NAN.0000000000000075. [DOI] [PubMed] [Google Scholar]
- 273.Kamboj M, Blair R, Bell N, et al. Use of Disinfection Cap to Reduce Central-Line-Associated Bloodstream Infection and Blood Culture Contamination Among Hematology-Oncology Patients. Infect Control Hosp Epidemiol. 2015;36(12):1401–1408. doi: 10.1017/ice.2015.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 274.Timsit JF, Mimoz O, Mourvillier B, et al. Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med. 2012;186(12):1272–1278. doi: 10.1164/rccm.201206-1038OC. [DOI] [PubMed] [Google Scholar]
- 275.Timsit JF, Schwebel C, Bouadma L, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009;301(12):1231–1241. doi: 10.1001/jama.2009.376. [DOI] [PubMed] [Google Scholar]
- 276.Ruschulte H, Franke M, Gastmeier P, et al. Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: a randomized controlled trial. Ann Hematol. 2009;88(3):267–272. doi: 10.1007/s00277-008-0568-7. [DOI] [PubMed] [Google Scholar]
- 277.van der Velden WJ, Herbers AH, Netea MG, Blijlevens NM. Mucosal barrier injury, fever and infection in neutropenic patients with cancer: introducing the paradigm febrile mucositis. Br J Haematol. 2014;167(4):441–452. doi: 10.1111/bjh.13113. [DOI] [PubMed] [Google Scholar]
- 278.Zecha J, Raber-Durlacher J, Laheij A, et al. The impact of the oral cavity in febrile neutropenia and infectious complications in patients treated with myelosuppressive chemotherapy. Support Care Cancer. 2019;27(10):3667–3679. doi: 10.1007/s00520-019-04925-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 279.Schmalz G, Tulani L, Busjan R, et al. Dental and Periodontal Treatment Need after Dental Clearance Is Not Associated with the Outcome of Induction Therapy in Patients with Acute Leukemia: Results of a Retrospective Pilot Study. Adv Hematol. 2020;2020:6710906. doi: 10.1155/2020/6710906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 280.Carvalho CG, Medeiros-Filho JB, Ferreira MC. Guide for health professionals addressing oral care for individuals in oncological treatment based on scientific evidence. Support Care Cancer. 2018;26(8):2651–2661. doi: 10.1007/s00520-018-4111-7. [DOI] [PubMed] [Google Scholar]
- 281.Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120(10):1453–1461. doi: 10.1002/cncr.28592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 282.Peterson DE, Boers-Doets CB, Bensadoun RJ, Herrstedt J (2015) Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann Oncol 26(Suppl 5):v139–v151 [DOI] [PubMed]
- 283.Mutters NT, Neubert TR, Nieth R, Mutters R. The role of Octenidol®, Glandomed® and chlorhexidine mouthwash in the prevention of mucositis and in the reduction of the oropharyngeal flora: a double-blind randomized controlled trial. GMS Hyg Infect Control. 2015;10:Doc05. doi: 10.3205/dgkh000248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 284.Cardona A, Balouch A, Abdul MM, Sedghizadeh PP, Enciso R. Efficacy of chlorhexidine for the prevention and treatment of oral mucositis in cancer patients: a systematic review with meta-analyses. J Oral Pathol Med. 2017;46(9):680–688. doi: 10.1111/jop.12549. [DOI] [PubMed] [Google Scholar]
- 285.Lemes LG, Correa TS, Fiaccadori FS, et al. Prospective study on Norovirus infection among allogeneic stem cell transplant recipients: prolonged viral excretion and viral RNA in the blood. J Clin Virol. 2014;61(3):329–333. doi: 10.1016/j.jcv.2014.08.004. [DOI] [PubMed] [Google Scholar]
- 286.Sheahan A, Copeland G, Richardson L, et al. Control of norovirus outbreak on a pediatric oncology unit. Am J Infect Control. 2015;43(10):1066–1069. doi: 10.1016/j.ajic.2015.05.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 287.Ye X, Van JN, Munoz FM, et al. Noroviruses as a Cause of Diarrhea in Immunocompromised Pediatric Hematopoietic Stem Cell and Solid Organ Transplant Recipients. Am J Transplant. 2015;15(7):1874–1881. doi: 10.1111/ajt.13227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 288.Echenique IA, Penugonda S, Stosor V, Ison MG, Angarone MP. Diagnostic yields in solid organ transplant recipients admitted with diarrhea. Clin Infect Dis. 2015;60(5):729–737. doi: 10.1093/cid/ciu880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 289.Kamboj M, Mihu CN, Sepkowitz K, Kernan NA, Papanicolaou GA. Work-up for infectious diarrhea after allogeneic hematopoietic stem cell transplantation: single specimen testing results in cost savings without compromising diagnostic yield. Transpl Infect Dis. 2007;9(4):265–269. doi: 10.1111/j.1399-3062.2007.00230.x. [DOI] [PubMed] [Google Scholar]
- 290.Trinh SA, Echenique IA, Penugonda S, Angarone MP. Optimal strategies for the diagnosis of community-onset diarrhea in solid organ transplant recipients: Less is more. Transpl Infect Dis. 2017;19(2):e12673. doi: 10.1111/tid.12673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 291.Chadwick PR, Beards G, Brown D, et al. Management of hospital outbreaks of gastro-enteritis due to small roundstructured viruses. J Hosp Infect. 2000;45(1):1–10. doi: 10.1053/jhin.2000.0662. [DOI] [PubMed] [Google Scholar]
- 292.Robert Koch-Institut (RKI) Norovirus-Gastroenteritiden haben in den letzten Wochen deutlich zugenommen – steht eine neue Winterepidemie bevor? Epid Bull. 2006;48:427–429. [Google Scholar]
- 293.Robert Koch-Institut (RKI) (2019) RKI-Ratgeber. Rotaviren-Gastroenteritis. https://www.rki.de/DE/Content/Infekt/EpidBull/Merkblaetter/Ratgeber_Rotaviren.html. Zugegriffen: 1. Nov. 2020
- 294.Kleinkauf N, Eckmanns T, Robert Koch-Institut (RKI) Clostridium difficile: Zum Stand der Meldungen schwer verlaufender Infektionen in. Deutschland: Epid; 2008. pp. 117–119. [Google Scholar]
- 295.Daniel-Wayman S, Fahle G, Palmore T, Green KY, Prevots DR. Norovirus, astrovirus, and sapovirus among immunocompromised patients at a tertiary care research hospital. Diagn Microbiol Infect Dis. 2018;92(2):143–146. doi: 10.1016/j.diagmicrobio.2018.05.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 296.Green KY. Norovirus infection in immunocompromised hosts. Clin Microbiol Infect. 2014;20(8):717–723. doi: 10.1111/1469-0691.12761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 297.Kamboj M, Son C, Cantu S, et al. Hospital-onset Clostridium difficile infection rates in persons with cancer or hematopoietic stem cell transplant: a C3IC network report. Infect Control Hosp Epidemiol. 2012;33(11):1162–1165. doi: 10.1086/668023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 298.Kamboj M, Sheahan A, Sun J, et al. Transmission of Clostridium difficile During Hospitalization for Allogeneic Stem Cell Transplant. Infect Control Hosp Epidemiol. 2016;37(1):8–15. doi: 10.1017/ice.2015.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 299.Plößer P. Clostridium difficile: Nachweis von Ribotyp 027 in Deutschschland – Clostridium difficile im Überblick – Hygienemaßnahmen. Hyg Med. 2007;32(10):403–405. [Google Scholar]
- 300.Schneider T, Eckmanns T, Ignatius R, Weist K, Liesenfeld O. Clostridium-difficile-assoziierte Diarrhö. Dtsch Arztebl. 2007;104(22):1588–1594. [Google Scholar]
- 301.Boyle NM, Magaret A, Stednick Z, et al. Evaluating risk factors for Clostridium difficile infection in adult and pediatric hematopoietic cell transplant recipients. Antimicrob Resist Infect Control. 2015;4:41. doi: 10.1186/s13756-015-0081-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 302.Bruminhent J, Wang ZX, Hu C, et al. Clostridium difficile colonization and disease in patients undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(9):1329–1334. doi: 10.1016/j.bbmt.2014.04.026. [DOI] [PubMed] [Google Scholar]
- 303.Kinnebrew MA, Lee YJ, Jenq RR, et al. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. Plos One. 2014;9(3):e90158. doi: 10.1371/journal.pone.0090158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 304.Simon A, Mock M, Graf N, von Muller L. Investigation of Clostridium difficile ribotypes in symptomatic patients of a German pediatric oncology center. Eur J Pediatr. 2018;177(3):403–408. doi: 10.1007/s00431-017-3070-1. [DOI] [PubMed] [Google Scholar]
- 305.Salamonowicz M, Ociepa T, Fraczkiewicz J, et al. Incidence, course, and outcome of Clostridium difficile infection in children with hematological malignancies or undergoing hematopoietic stem cell transplantation. Eur J Clin Microbiol Infect Dis. 2018;37(9):1805–1812. doi: 10.1007/s10096-018-3316-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 306.Risi GF, Tomascak V. Prevention of infection in the immunocompromised host. Am J Infect Control. 1998;26(6):594–604. doi: 10.1053/ic.1998.v26.a89371. [DOI] [PubMed] [Google Scholar]
- 307.McCullough A, Ruehrdanz A, Jenkins MA, et al. Measuring the Effects of an Animal-Assisted Intervention for Pediatric Oncology Patients and Their Parents: A Multisite Randomized Controlled Trial. J Pediatr Oncol Nurs. 2018;35(3):159–177. doi: 10.1177/1043454217748586. [DOI] [PubMed] [Google Scholar]
- 308.Schmitz A, Beermann M, MacKenzie CR, Fetz K, Schulz-Quach C. Animal-assisted therapy at a University Centre for Palliative Medicine—a qualitative content analysis of patient records. BMC Palliat Care. 2017;16(1):50. doi: 10.1186/s12904-017-0230-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 309.Ariza-Heredia EJ, Kontoyiannis DP. Our recommendations for avoiding exposure to fungi outside the hospital for patients with haematological cancers. Mycoses. 2014;57(6):336–341. doi: 10.1111/myc.12167. [DOI] [PubMed] [Google Scholar]
- 310.Böhme H, Fruth A, Rabsch W. Reptilien-assoziierte Salmonelleninfektionen bei Säuglingen und Kleinkindern in Deutschland. Klin Padiatr. 2009;221(02):60–64. doi: 10.1055/s-0028-1112156. [DOI] [PubMed] [Google Scholar]
- 311.Boost MV, O’Donoghue MM, Siu KH. Characterisation of methicillin-resistant Staphylococcus aureus isolates from dogs and their owners. Clin Microbiol Infect. 2007;13(7):731–733. doi: 10.1111/j.1469-0691.2007.01737.x. [DOI] [PubMed] [Google Scholar]
- 312.Gabriels P, Joosen H, Put E, Verhaegen J, Magerman K, Cartuyvels R. Recurrent Rhodococcus equi infection with fatal outcome in an immunocompetent patient. Eur J Clin Microbiol Infect Dis. 2006;25(1):46–48. doi: 10.1007/s10096-005-0068-9. [DOI] [PubMed] [Google Scholar]
- 313.Harris JR, Neil KP, Behravesh CB, Sotir MJ, Angulo FJ. Recent multistate outbreaks of human salmonella infections acquired from turtles: a continuing public health challenge. Clin Infect Dis. 2010;50(4):554–559. doi: 10.1086/649932. [DOI] [PubMed] [Google Scholar]
- 314.Morris DO, Lautenbach E, Zaoutis T, Leckerman K, Edelstein PH, Rankin SC. Potential for pet animals to harbour methicillin-resistant Staphylococcus aureus when residing with human MRSA patients. Zoonoses Public Health. 2012;59(4):286–293. doi: 10.1111/j.1863-2378.2011.01448.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 315.Simon A. Umgang mit Tierkontakten bei immunsupprimierten Kindern. Hyg Med. 2013;38(7/8):321–323. [Google Scholar]
- 316.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Surveillance von nosokomialen Infektionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2020;63(2):228–241. doi: 10.1007/s00103-019-03077-8. [DOI] [PubMed] [Google Scholar]
- 317.Bearman G, Doll M, Cooper K, Stevens MP. Hospital Infection Prevention: How Much Can We Prevent and How Hard Should We Try? Curr Infect Dis Rep. 2019;21(1):2. doi: 10.1007/s11908-019-0660-2. [DOI] [PubMed] [Google Scholar]
- 318.Horowitz HW. Infection control IV: Moving forward—infection preventionists’ scope of practice. Am J Infect Control. 2018;46(7):734–735. doi: 10.1016/j.ajic.2018.02.030. [DOI] [PubMed] [Google Scholar]
- 319.Vokes RA, Bearman G, Bazzoli GJ. Hospital-Acquired Infections Under Pay-for-Performance Systems: an Administrative Perspective on Management and Change. Curr Infect Dis Rep. 2018;20(9):35. doi: 10.1007/s11908-018-0638-5. [DOI] [PubMed] [Google Scholar]
- 320.Horowitz HW. Infection control: Public reporting, disincentives, and bad behavior. Am J Infect Control. 2015;43(9):989–991. doi: 10.1016/j.ajic.2015.02.033. [DOI] [PubMed] [Google Scholar]
- 321.Horowitz HW. Infection control II: A practical guide to getting to zero. Am J Infect Control. 2016;44(9):1075–1077. doi: 10.1016/j.ajic.2016.02.032. [DOI] [PubMed] [Google Scholar]
- 322.Williams MR, Costa SK, Zaramela LS, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med. 2019;11(490):eaat8329. doi: 10.1126/scitranslmed.aat8329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 323.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) Mitteilungen der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen (Umsetzung §23 IfSG) Bundesgesundheitsbl. 2001;44(5):523–536. [Google Scholar]
- 324.Ammann RA, Laws HJ, Schrey D, et al. Bloodstream infection in paediatric cancer centres—leukaemia and relapsed malignancies are independent risk factors. Eur J Pediatr. 2015;174(5):675–686. doi: 10.1007/s00431-015-2525-5. [DOI] [PubMed] [Google Scholar]
- 325.Dettenkofer M, Ebner W, Bertz H, et al. Surveillance of nosocomial infections in adult recipients of allogeneic and autologous bone marrow and peripheral blood stem-cell transplantation. Bone Marrow Transplant. 2003;31(9):795–801. doi: 10.1038/sj.bmt.1703920. [DOI] [PubMed] [Google Scholar]
- 326.Dettenkofer M, Wenzler-Rottele S, Babikir R, et al. Surveillance of nosocomial sepsis and pneumonia in patients with a bone marrow or peripheral blood stem cell transplant: a multicenter project. Clin Infect Dis. 2005;40(7):926–931. doi: 10.1086/428046. [DOI] [PubMed] [Google Scholar]
- 327.Simon A, Fleischhack G, Hasan C, Bode U, Engelhart S, Kramer MH. Surveillance for nosocomial and central line-related infections among pediatric hematology-oncology patients. Infect Control Hosp Epidemiol. 2000;21(9):592–596. doi: 10.1086/501809. [DOI] [PubMed] [Google Scholar]
- 328.Simon A, Fleischhack G. Surveillance nosokomialer Infektionen in der pädiatrischen Hämatologie/Onkologie. Klin Padiatr. 2001;213(S1):A106–A113. doi: 10.1055/s-2001-17507. [DOI] [PubMed] [Google Scholar]
- 329.Simon A, Furtwangler R, Graf N, et al. Surveillance of bloodstream infections in pediatric cancer centers—what have we learned and how do we move on? GMS Hyg Infect Control. 2016;11:Doc11. doi: 10.3205/dgkh000271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 330.Fraser TG, Gordon SM. CLABSI rates in immunocompromised patients: a valuable patient centered outcome? Clin Infect Dis. 2011;52(12):1446–1450. doi: 10.1093/cid/cir200. [DOI] [PubMed] [Google Scholar]
- 331.Sexton DJ, Chen LF, Anderson DJ. Current definitions of central line-associated bloodstream infection: is the emperor wearing clothes? Infect Control Hosp Epidemiol. 2010;31(12):1286–1289. doi: 10.1086/657583. [DOI] [PubMed] [Google Scholar]
- 332.Chaftari AM, Jordan M, Hachem R, et al. A clinical practical approach to the surveillance definition of central line-associated bloodstream infection in cancer patients with mucosal barrier injury. Am J Infect Control. 2016;44(8):931–934. doi: 10.1016/j.ajic.2016.03.011. [DOI] [PubMed] [Google Scholar]
- 333.Satwani P, Freedman JL, Chaudhury S, et al. A Multicenter Study of Bacterial Blood Stream Infections in Pediatric Allogeneic Hematopoietic Cell Transplantation Recipients: The Role of Acute Gastrointestinal Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2017;23(4):642–647. doi: 10.1016/j.bbmt.2017.01.073. [DOI] [PubMed] [Google Scholar]
- 334.Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med. 2018;24(12):1809–1814. doi: 10.1038/s41591-018-0202-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 335.Gyarmati P, Kjellander C, Aust C, Kalin M, Ohrmalm L, Giske CG. Bacterial Landscape of Bloodstream Infections in Neutropenic Patients via High Throughput Sequencing. Plos One. 2015;10(8):e0135756. doi: 10.1371/journal.pone.0135756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 336.Gopalakrishnan V, Jenq RR. Implicating or exonerating the gut microbiome in blood-borne infection. Nat Med. 2018;24(12):1788–1789. doi: 10.1038/s41591-018-0270-9. [DOI] [PubMed] [Google Scholar]
- 337.Allaway Z, Phillips RS, Thursky KA, Haeusler GM. Nonneutropenic fever in children with cancer: A scoping review of management and outcome. Pediatr Blood Cancer. 2019;66(6):e27634. doi: 10.1002/pbc.27634. [DOI] [PubMed] [Google Scholar]
- 338.Williams MR, Costa SK, Zaramela LS, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med. 2019;11:eaat8329. doi: 10.1126/scitranslmed.aat8329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 339.Shaw BE, Boswell T, Byrne JL, Yates C, Russell NH. Clinical impact of MRSA in a stem cell transplant unit: analysis before, during and after an MRSA outbreak. Bone Marrow Transplant. 2007;39(10):623–629. doi: 10.1038/sj.bmt.1705654. [DOI] [PubMed] [Google Scholar]
- 340.Miles-Jay A, Podczervinski S, Stednick ZJ, Pergam SA. Evaluation of routine pretransplantation screening for methicillin-resistant Staphylococcus aureus in hematopoietic cell transplant recipients. Am J Infect Control. 2015;43(1):89–91. doi: 10.1016/j.ajic.2014.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 341.Liss BJ, Vehreschild JJ, Cornely OA, et al. Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection. 2012;40(6):613–619. doi: 10.1007/s15010-012-0269-y. [DOI] [PubMed] [Google Scholar]
- 342.Ziakas PD, Pliakos EE, Zervou FN, Knoll BM, Rice LB, Mylonakis E. MRSA and VRE colonization in solid organ transplantation: a meta-analysis of published studies. Am J Transplant. 2014;14(8):1887–1894. doi: 10.1111/ajt.12784. [DOI] [PubMed] [Google Scholar]
- 343.Bert F, Larroque B, Dondero F, et al. Risk factors associated with preoperative fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in liver transplant recipients. Transpl Infect Dis. 2014;16(1):84–89. doi: 10.1111/tid.12169. [DOI] [PubMed] [Google Scholar]
- 344.Webb BJ, Healy R, Majers J, et al. Prediction of Bloodstream Infection Due to Vancomycin-Resistant Enterococcus in Patients Undergoing Leukemia Induction or Hematopoietic Stem-Cell Transplantation. Clin Infect Dis. 2017;64(12):1753–1759. doi: 10.1093/cid/cix232. [DOI] [PubMed] [Google Scholar]
- 345.Averbuch D, Orasch C, Cordonnier C, et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica. 2013;98(12):1826–1835. doi: 10.3324/haematol.2013.091025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 346.Baker TM, Satlin MJ. The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies. Leuk Lymphoma. 2016;57(10):2245–2258. doi: 10.1080/10428194.2016.1193859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 347.Friedman ND, Carmeli Y, Walton AL, Schwaber MJ. Carbapenem-Resistant Enterobacteriaceae: A Strategic Roadmap for Infection Control. Infect Control Hosp Epidemiol. 2017;38(5):580–594. doi: 10.1017/ice.2017.42. [DOI] [PubMed] [Google Scholar]
- 348.Holland T, Fowler VG, Jr, Shelburne SA., 3rd Invasive gram-positive bacterial infection in cancer patients. Clin Infect Dis. 2014;59(Suppl 5):S331–S334. doi: 10.1093/cid/ciu598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 349.Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–796. doi: 10.1016/S1473-3099(13)70190-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 350.Trubiano JA, Worth LJ, Thursky KA, Slavin MA. The prevention and management of infections due to multidrug resistant organisms in haematology patients. Br J Clin Pharmacol. 2015;79(2):195–207. doi: 10.1111/bcp.12310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 351.Heidenreich D, Kreil S, Jawhar M, et al. Course of colonization by multidrug-resistant organisms after allogeneic hematopoietic cell transplantation. Ann Hematol. 2018;97(12):2501–2508. doi: 10.1007/s00277-018-3475-6. [DOI] [PubMed] [Google Scholar]
- 352.Heidenreich D, Kreil S, Nolte F, Hofmann WK, Miethke T, Klein SA. Multidrug-resistant organisms in allogeneic hematopoietic cell transplantation. Eur J Haematol. 2017;98(5):485–492. doi: 10.1111/ejh.12859. [DOI] [PubMed] [Google Scholar]
- 353.Bartoletti M, Giannella M, Tedeschi S, Viale P. Multidrug-Resistant Bacterial Infections in Solid Organ Transplant Candidates and Recipients. Infect Dis Clin North Am. 2018;32(3):551–580. doi: 10.1016/j.idc.2018.04.004. [DOI] [PubMed] [Google Scholar]
- 354.Rohde AM, Wiese-Posselt M, Zweigner J, et al. High admission prevalence of fluoroquinolone resistance in third-generation cephalosporin-resistant Enterobacteriaceae in German university hospitals. J Antimicrob Chemother. 2018;73(6):1688–1691. doi: 10.1093/jac/dky040. [DOI] [PubMed] [Google Scholar]
- 355.Seo GH, Kim MJ, Seo S, et al. Cancer-specific incidence rates of tuberculosis: A 5-year nationwide population-based study in a country with an intermediate tuberculosis burden. Med (baltimore) 2016;95(38):e4919. doi: 10.1097/MD.0000000000004919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 356.Simonsen DFFD, Horsburgh CR. Increased risk of active tuberculosis after cancer diagnosis. J Infect Chemother. 2017;74:590–598. doi: 10.1016/j.jinf.2017.03.012. [DOI] [PubMed] [Google Scholar]
- 357.Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2013) Aspekte der mikrobiologischen Diagnostik im Rahmen der Prävention von nosokomialen Infektionen. Epid Bull(19):171–172
- 358.Neumann S, Krause SW, Maschmeyer G, Schiel X, von Lilienfeld-Toal M. Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematological malignancies and solid tumors : guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO) Ann Hematol. 2013;92(4):433–442. doi: 10.1007/s00277-013-1698-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 359.Baden LR, Swaminathan S, Angarone M, et al. Prevention and Treatment of Cancer-Related Infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2016;14(7):882–913. doi: 10.6004/jnccn.2016.0093. [DOI] [PubMed] [Google Scholar]
- 360.Tacconelli E, Sifakis F, Harbarth S, et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18(3):e99–e106. doi: 10.1016/S1473-3099(17)30485-1. [DOI] [PubMed] [Google Scholar]
- 361.Rangaraj G, Granwehr BP, Jiang Y, Hachem R, Raad I. Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer. 2010;116(4):967–973. doi: 10.1002/cncr.24812. [DOI] [PubMed] [Google Scholar]
- 362.Mikulska M, Cordonnier C. Fluoroquinolone prophylaxis during neutropenia: what can we expect nowadays? Clin Microbiol Infect. 2018;24(7):678–679. doi: 10.1016/j.cmi.2018.02.031. [DOI] [PubMed] [Google Scholar]
- 363.Verlinden A, Jansens H, Goossens H, et al. Clinical and microbiological impact of discontinuation of fluoroquinolone prophylaxis in patients with prolonged profound neutropenia. Eur J Haematol. 2014;93(4):302–308. doi: 10.1111/ejh.12345. [DOI] [PubMed] [Google Scholar]
- 364.Haeusler GM, Slavin MA. Fluoroquinolone prophylaxis: worth the cost? Leuk Lymphoma. 2013;54(4):677–678. doi: 10.3109/10428194.2012.736988. [DOI] [PubMed] [Google Scholar]
- 365.Saini L, Rostein C, Atenafu EG, Brandwein JM. Ambulatory consolidation chemotherapy for acute myeloid leukemia with antibacterial prophylaxis is associated with frequent bacteremia and the emergence of fluoroquinolone resistant E. Coli. BMC Infect Dis. 2013;13:284. doi: 10.1186/1471-2334-13-284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 366.Lehrnbecher T, Fisher BT, Phillips B, et al. Guideline for Antibacterial Prophylaxis Administration in Pediatric Cancer and Hematopoietic Stem Cell Transplantation. Clin Infect Dis. 2020;71(1):226–236. doi: 10.1093/cid/ciz1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 367.Egan G, Robinson PD, Martinez JPD, et al. Efficacy of antibiotic prophylaxis in patients with cancer and hematopoietic stem cell transplantation recipients: A systematic review of randomized trials. Cancer Med. 2019;8(10):4536–4546. doi: 10.1002/cam4.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 368.Elishoov H, Or R, Strauss N, Engelhard D. Nosocomial colonization, septicemia, and Hickman/Broviac catheter-related infections in bone marrow transplant recipients. A 5-year prospective study. Medicine (Baltimore) 1998;77(2):83–101. doi: 10.1097/00005792-199803000-00002. [DOI] [PubMed] [Google Scholar]
- 369.Cohen ML, Murphy MT, Counts GW, Buckner CD, Clift RA, Meyers JD. Prediction by surveillance cultures of bacteremia among neutropenic patients treated in a protective environment. J Infect Dis. 1983;147(5):789–793. doi: 10.1093/infdis/147.5.789. [DOI] [PubMed] [Google Scholar]
- 370.Daw MA, Munnelly P, McCann SR, Daly PA, Falkiner FR, Keane CT. Value of surveillance cultures in the management of neutropenic patients. Eur J Clin Microbiol Infect Dis. 1988;7(6):742–747. doi: 10.1007/BF01975040. [DOI] [PubMed] [Google Scholar]
- 371.de Jong PJ, de Jong MD, Kuijper EJ, van der Lelie H. The value of surveillance cultures in neutropenic patients receiving selective intestinal decontamination. Scand J Infect Dis. 1993;25(1):107–113. [PubMed] [Google Scholar]
- 372.Feld R. The role of surveillance cultures in patients likely to develop chemotherapy-induced mucositis. Support Care Cancer. 1997;5(5):371–375. doi: 10.1007/s005200050094. [DOI] [PubMed] [Google Scholar]
- 373.Baier C, Linderkamp C, Beilken A, et al. Influenza and respiratory syncytial virus screening for the detection of asymptomatically infected patients in hematology and oncology. GMS Hyg Infect Control. 2018;13:Doc08. doi: 10.3205/dgkh000314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 374.Hermann B, Lehners N, Brodhun M, et al. Influenza virus infections in patients with malignancies—characteristics and outcome of the season 2014/15. A survey conducted by the Infectious Diseases Working Party (AGIHO) of the German Society of Haematology and Medical Oncology (DGHO) Eur J Clin Microbiol Infect Dis. 2017;36(3):565–573. doi: 10.1007/s10096-016-2833-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 375.French CE, McKenzie BC, Coope C, et al. Risk of nosocomial respiratory syncytial virus infection and effectiveness of control measures to prevent transmission events: a systematic review. Influenza Other Respir Viruses. 2016;10(4):268–290. doi: 10.1111/irv.12379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 376.Aichinger E, Schnitzler P, Heeg K et al (2014) Contributing and Terminating Factors of a Large RSV Outbreak in an Adult Hematology and Transplant Unit. PLoS Curr. 10.1371/currents.outbreaks.3bc85b2a508d205ecc4a5534ecb1f9be [DOI] [PMC free article] [PubMed]
- 377.Inkster T, Ferguson K, Edwardson A, Gunson R, Soutar R. Consecutive yearly outbreaks of respiratory syncytial virus in a haemato-oncology ward and efficacy of infection control measures. J Hosp Infect. 2017;96(4):353–359. doi: 10.1016/j.jhin.2017.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 378.Jensen TO, Stelzer-Braid S, Willenborg C, et al. Outbreak of respiratory syncytial virus (RSV) infection in immunocompromised adults on a hematology ward. J Med Virol. 2016;88(10):1827–1831. doi: 10.1002/jmv.24521. [DOI] [PubMed] [Google Scholar]
- 379.Gudiol C, Verdaguer R, Dominguez AM, Fernandez-Sevilla A, Carratala J. Outbreak of Legionnaires’ disease in immunosuppressed patients at a cancer centre: usefulness of universal urine antigen testing and early levofloxacin therapy. Clin Microbiol Infect. 2007;13(11):1125–1128. doi: 10.1111/j.1469-0691.2007.01805.x. [DOI] [PubMed] [Google Scholar]
- 380.Deutschen Gesellschaft für Pädiatrische Infektiologie (DGPI) (2018) S2k Leitlinie „Antibiotic Stewardship – Konzeption und Umsetzung in der stationären Kinder- und Jugendmedizin“. AWMF-Registernummer 048/15. https://www.awmf.org/uploads/tx_szleitlinien/048-015l_S2k_Antibiotic-Stewardship-ABS-Konzeption-Umsetzung-stationaere-Kinder-Jugendmedizin_2019-01.pdf. Zugegriffen: 1. Nov. 2020
- 381.de With K, Wilke K, Kern WV et al (2019) S3-Leitlinie. Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF-Registernummer 092-001 – update 2018 (Stand: 31.01.2019). https://www.awmf.org/leitlinien/detail/ll/092-001.html. Zugegriffen: 1. Nov. 2020
- 382.Dik JH, Poelman R, Friedrich AW, Niesters HGM, Rossen JWA, Sinha B. Integrated Stewardship Model Comprising Antimicrobial, Infection Prevention, and Diagnostic Stewardship (AID Stewardship) J Clin Microbiol. 2017;55(11):3306–3307. doi: 10.1128/JCM.01283-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 383.Dik JW, Poelman R, Friedrich AW, et al. An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID) Future Microbiol. 2016;11(1):93–102. doi: 10.2217/fmb.15.99. [DOI] [PubMed] [Google Scholar]
- 384.Manning ML, Septimus EJ, Ashley ESD, et al. Antimicrobial Stewardship and Infection Prevention-Leveraging the Synergy: A Position Paper Update. Infect Control Hosp Epidemiol. 2018;39(4):467–472. doi: 10.1017/ice.2018.33. [DOI] [PubMed] [Google Scholar]
- 385.Mielke M. Die Rolle der Infektionsprävention bei der Eindämmung der Antibiotikaresistenzentwicklung. Jede vermiedene Infektion trägt zur Reduktion des Antibiotikaeinsatzes bei. Bundesgesundheitsbl. 2018;61(5):553–561. doi: 10.1007/s00103-018-2720-4. [DOI] [PubMed] [Google Scholar]
- 386.Septimus EJ. Antimicrobial Resistance: An Antimicrobial/Diagnostic Stewardship and Infection Prevention Approach. Med Clin North Am. 2018;102(5):819–829. doi: 10.1016/j.mcna.2018.04.005. [DOI] [PubMed] [Google Scholar]
- 387.Schelenz S, Nwaka D, Hunter PR. Longitudinal surveillance of bacteraemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance. J Antimicrob Chemother. 2013;68(6):1431–1438. doi: 10.1093/jac/dkt002. [DOI] [PubMed] [Google Scholar]
- 388.Iacob S, Iacob DG. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front Microbiol. 2019;10:1676. doi: 10.3389/fmicb.2019.01676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 389.Araoka H, Fujii T, Izutsu K, et al. Rapidly progressive fatal hemorrhagic pneumonia caused by Stenotrophomonas maltophilia in hematologic malignancy. Transpl Infect Dis. 2012;14(4):355–363. doi: 10.1111/j.1399-3062.2011.00710.x. [DOI] [PubMed] [Google Scholar]
- 390.Arnan M, Gudiol C, Calatayud L, et al. Risk factors for, and clinical relevance of, faecal extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) carriage in neutropenic patients with haematological malignancies. Eur J Clin Microbiol Infect Dis. 2011;30(3):355–360. doi: 10.1007/s10096-010-1093-x. [DOI] [PubMed] [Google Scholar]
- 391.Averbuch D, Avaky C, Harit M, et al. Non-fermentative Gram-negative rods bacteremia in children with cancer: a 14-year single-center experience. Infection. 2017;45(3):327–334. doi: 10.1007/s15010-017-0988-1. [DOI] [PubMed] [Google Scholar]
- 392.Averbuch D, Cordonnier C, Livermore DM, et al. (2013) Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4. Haematologica. 2011;98(12):1836–1847. doi: 10.3324/haematol.2013.091330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 393.Bhusal Y, Mihu CN, Tarrand JJ, Rolston KV. Incidence of fluoroquinolone-resistant and extended-spectrum beta-lactamase-producing Escherichia coli at a comprehensive cancer center in the United States. Chemotherapy. 2011;57(4):335–338. doi: 10.1159/000329661. [DOI] [PubMed] [Google Scholar]
- 394.Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012;25(1):2–41. doi: 10.1128/CMR.00019-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 395.Carattoli A, Fortini D, Galetti R, et al. Isolation of NDM-1-producing Pseudomonas aeruginosa sequence type ST235 from a stem cell transplant patient in Italy, May 2013. Euro Surveill. 2013;18(46):20633. doi: 10.2807/1560-7917.es2013.18.46.20633. [DOI] [PubMed] [Google Scholar]
- 396.Ciofi Degli AM, Bernaschi P, Carletti M, et al. An outbreak of extremely drug-resistant Pseudomonas aeruginosa in a tertiary care pediatric hospital in Italy. BMC Infect Dis. 2014;14:494. doi: 10.1186/1471-2334-14-494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 397.Fukuta Y, Muder RR, Agha ME, et al. Risk factors for acquisition of multidrug-resistant Acinetobacter baumannii among cancer patients. Am J Infect Control. 2013;41(12):1249–1252. doi: 10.1016/j.ajic.2013.04.003. [DOI] [PubMed] [Google Scholar]
- 398.Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol. 2018;41:76–82. doi: 10.1016/j.mib.2017.11.030. [DOI] [PubMed] [Google Scholar]
- 399.Gudiol C, Bodro M, Simonetti A, et al. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect. 2013;19(5):474–479. doi: 10.1111/j.1469-0691.2012.03879.x. [DOI] [PubMed] [Google Scholar]
- 400.Gudiol C, Calatayud L, Garcia-Vidal C, et al. Bacteraemia due to extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother. 2010;65(2):333–341. doi: 10.1093/jac/dkp411. [DOI] [PubMed] [Google Scholar]
- 401.Haeusler GM, Mechinaud F, Daley AJ, et al. Antibiotic-resistant Gram-negative bacteremia in pediatric oncology patients—risk factors and outcomes. Pediatr Infect Dis J. 2013;32(7):723–726. doi: 10.1097/INF.0b013e31828aebc8. [DOI] [PubMed] [Google Scholar]
- 402.Kim SB, Min YH, Cheong JW, et al. Incidence and risk factors for carbapenem- and multidrug-resistant Acinetobacter baumannii bacteremia in hematopoietic stem cell transplantation recipients. Scand J Infect Dis. 2014;46(2):81–88. doi: 10.3109/00365548.2013.857042. [DOI] [PubMed] [Google Scholar]
- 403.Perez F, Adachi J, Bonomo RA. Antibiotic-resistant gram-negative bacterial infections in patients with cancer. Clin Infect Dis. 2014;59(Suppl 5):S335–S339. doi: 10.1093/cid/ciu612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 404.Snitkin ES, Zelazny AM, Thomas PJ et al (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4(148):148ra116 [DOI] [PMC free article] [PubMed]
- 405.Tada K, Kurosawa S, Hiramoto N, et al. Stenotrophomonas maltophilia infection in hematopoietic SCT recipients: high mortality due to pulmonary hemorrhage. Bone Marrow Transplant. 2013;48(1):74–79. doi: 10.1038/bmt.2012.87. [DOI] [PubMed] [Google Scholar]
- 406.Tschudin-Sutter S, Lucet JC, Mutters NT, Tacconelli E, Zahar JR, Harbarth S. Contact Precautions for Preventing Nosocomial Transmission of Extended-Spectrum beta Lactamase-Producing Escherichia coli: A Point/Counterpoint Review. Clin Infect Dis. 2017;65(2):342–347. doi: 10.1093/cid/cix258. [DOI] [PubMed] [Google Scholar]
- 407.von Lilienfeld-Toal M, Maschmeyer G. Challenges in Infectious Diseases for Haematologists. Oncol Res Treat. 2018;41(6):406–410. doi: 10.1159/000487439. [DOI] [PubMed] [Google Scholar]
- 408.Yeo CL, Chan DS, Earnest A, et al. Prospective audit and feedback on antibiotic prescription in an adult hematology-oncology unit in Singapore. Eur J Clin Microbiol Infect Dis. 2012;31(4):583–590. doi: 10.1007/s10096-011-1351-6. [DOI] [PubMed] [Google Scholar]
- 409.Yeo CL, Wu JE, Chung GW, Chan DS, Fisher D, Hsu LY. Specialist trainees on rotation cannot replace dedicated consultant clinicians for antimicrobial stewardship of specialty disciplines. Antimicrob Resist Infect Control. 2012;1(1):36. doi: 10.1186/2047-2994-1-36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 410.Trecarichi EM, Tumbarello M, Spanu T, et al. Incidence and clinical impact of extended-spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J Infect. 2009;58(4):299–307. doi: 10.1016/j.jinf.2009.02.002. [DOI] [PubMed] [Google Scholar]
- 411.Aguiar EB, Maciel LC, Halpern M, et al. Outcome of bacteremia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae after solid organ transplantation. Transplant Proc. 2014;46(6):1753–1756. doi: 10.1016/j.transproceed.2014.05.003. [DOI] [PubMed] [Google Scholar]
- 412.Mikulska M, Del Bono V, Bruzzi P, et al. Mortality after bloodstream infections in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Infection. 2012;40(3):271–278. doi: 10.1007/s15010-011-0229-y. [DOI] [PubMed] [Google Scholar]
- 413.Tang Y, Wu X, Cheng Q, Li X. Inappropriate initial antimicrobial therapy for hematological malignancies patients with Gram-negative bloodstream infections. Infection. 2020;48(1):109–116. doi: 10.1007/s15010-019-01370-x. [DOI] [PubMed] [Google Scholar]
- 414.Shono Y, Docampo MD, Peled JU et al (2016) Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med 8(339):339ra371 [DOI] [PMC free article] [PubMed]
- 415.Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota—a systematic review. J Infect. 2019;79(6):471–489. doi: 10.1016/j.jinf.2019.10.008. [DOI] [PubMed] [Google Scholar]
- 416.Palacios-Baena ZR, Gutierrez-Gutierrez B, Calbo E, et al. Empiric Therapy With Carbapenem-Sparing Regimens for Bloodstream Infections due to Extended-Spectrum beta-Lactamase-Producing Enterobacteriaceae: Results From the INCREMENT Cohort. Clin Infect Dis. 2017;65(10):1615–1623. doi: 10.1093/cid/cix606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 417.Short E, Esterly J, Postelnick M, Ong J, McLaughlin M. Disposition of linezolid or daptomycin in Enterococcal bloodstream infections according to vancomycin resistant Enterococcus colonization. Antimicrob Resist Infect Control. 2014;3(1):37. doi: 10.1186/2047-2994-3-37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 418.Kamboj M, Cohen N, Huang YT, et al. Impact of Empiric Treatment for Vancomycin-Resistant Enterococcus in Colonized Patients Early after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019;25(3):594–598. doi: 10.1016/j.bbmt.2018.11.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 419.Cervantes J. Use your antibiotics wisely. Consequences to the intestinal microbiome. FEMS Microbiol Lett. 2016;363(nw081):10. doi: 10.1093/femsle/fnw081. [DOI] [PubMed] [Google Scholar]
- 420.Martinez-Nadal G, Puerta-Alcalde P, Gudiol C, et al. Inappropriate Empirical Antibiotic Treatment in High-risk Neutropenic Patients With Bacteremia in the Era of Multidrug Resistance. Clin Infect Dis. 2020;70(6):1068–1074. doi: 10.1093/cid/ciz319. [DOI] [PubMed] [Google Scholar]
- 421.Trubiano JA, Beekmann SE, Worth LJ, et al. Improving Antimicrobial Stewardship by Antibiotic Allergy Delabeling: Evaluation of Knowledge, Attitude, and Practices Throughout the Emerging Infections Network. Open Forum Infect Dis. 2016;3(3):ofw153. doi: 10.1093/ofid/ofw153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 422.Trubiano JA, Chen C, Cheng AC, Grayson ML, Slavin MA, Thursky KA. Antimicrobial allergy ‘labels’ drive inappropriate antimicrobial prescribing: lessons for stewardship. J Antimicrob Chemother. 2016;71(6):1715–1722. doi: 10.1093/jac/dkw008. [DOI] [PubMed] [Google Scholar]
- 423.Trubiano JA, Slavin MA, Thursky KA, Grayson ML, Phillips EJ. Beta-Lactam and Sulfonamide Allergy Testing Should Be a Standard of Care in Immunocompromised Hosts. J Allergy Clin Immunol Pract. 2019;7(7):2151–2153. doi: 10.1016/j.jaip.2019.05.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 424.Stover KR, Barber KE, Wagner JL. Allergic Reactions and Cross-Reactivity Potential with Beta-Lactamase Inhibitors. Pharm (basel) 2019;7(3):77. doi: 10.3390/pharmacy7030077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 425.Stover KR, Bland CM, Gallagher JC. The Point of Antimicrobial Susceptibility Testing Is to Inform Antimicrobial Prescribing. Clin Infect Dis. 2017;64(1):103–104. doi: 10.1093/cid/ciw686. [DOI] [PubMed] [Google Scholar]
- 426.Stone CA, Jr., Trubiano J, Coleman DT, Rukasin CRF, Phillips EJ. The challenge of de-labeling penicillin allergy. Allergy. 2020;75(2):273–288. doi: 10.1111/all.13848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 427.Huang KG, Cluzet V, Hamilton K, Fadugba O. The Impact of Reported Beta-Lactam Allergy in Hospitalized Patients With Hematologic Malignancies Requiring Antibiotics. Clin Infect Dis. 2018;67(1):27–33. doi: 10.1093/cid/ciy037. [DOI] [PubMed] [Google Scholar]
- 428.Agrawal S, Barnes R, Bruggemann RJ, Rautemaa-Richardson R, Warris A (2016) The role of the multidisciplinary team in antifungal stewardship. J Antimicrob Chemother 71(Suppl 2):ii37–ii42 [DOI] [PubMed]
- 429.Aguado JM, Silva JT, Bouza E (2016) Conclusion and future perspectives on antifungal stewardship. J Antimicrob Chemother 71(Suppl 2):ii43–ii44 [DOI] [PubMed]
- 430.Farmakiotis D, Kontoyiannis DP. Epidemiology of antifungal resistance in human pathogenic yeasts: current viewpoint and practical recommendations for management. Int J Antimicrob Agents. 2017;50(3):318–324. doi: 10.1016/j.ijantimicag.2017.05.019. [DOI] [PubMed] [Google Scholar]
- 431.Hamdy RF, Zaoutis TE, Seo SK. Antifungal stewardship considerations for adults and pediatrics. Virulence. 2017;8(6):658–672. doi: 10.1080/21505594.2016.1226721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 432.Lachenmayr SJ, Berking S, Horns H, Strobach D, Ostermann H, Berger K. Antifungal treatment in haematological and oncological patients: Need for quality assessment in routine care. Mycoses. 2018;61(7):464–471. doi: 10.1111/myc.12768. [DOI] [PubMed] [Google Scholar]
- 433.Mellinghoff SC, Hartmann P, Cornely FB, et al. Analyzing candidemia guideline adherence identifies opportunities for antifungal stewardship. Eur J Clin Microbiol Infect Dis. 2018;37(8):1563–1571. doi: 10.1007/s10096-018-3285-8. [DOI] [PubMed] [Google Scholar]
- 434.Micallef C, Aliyu SH, Santos R, Brown NM, Rosembert D, Enoch DA. Introduction of an antifungal stewardship programme targeting high-cost antifungals at a tertiary hospital in Cambridge, England. J Antimicrob Chemother. 2015;70(6):1908–1911. doi: 10.1093/jac/dkv040. [DOI] [PubMed] [Google Scholar]
- 435.Micallef C, Ashiru-Oredope D, Hansraj S, et al. An investigation of antifungal stewardship programmes in England. J Med Microbiol. 2017;66(11):1581–1589. doi: 10.1099/jmm.0.000612. [DOI] [PubMed] [Google Scholar]
- 436.Munoz P, Bouza E, group Cs (2016) The current treatment landscape: the need for antifungal stewardship programmes. J Antimicrob Chemother 71(suppl 2):ii5–ii12 [DOI] [PubMed]
- 437.Ruhnke M. Antifungal stewardship in invasive Candida infections. Clin Microbiol Infect. 2014;20(Suppl 6):11–18. doi: 10.1111/1469-0691.12622. [DOI] [PubMed] [Google Scholar]
- 438.Schwartz IS, Patterson TF. The Emerging Threat of Antifungal Resistance in Transplant Infectious Diseases. Curr Infect Dis Rep. 2018;20(3):2. doi: 10.1007/s11908-018-0608-y. [DOI] [PubMed] [Google Scholar]
- 439.Valerio M, Munoz P, Rodriguez-Gonzalez C, Sanjurjo M, Guinea J, Bouza E. Training should be the first step toward an antifungal stewardship program. Enferm Infecc Microbiol Clin. 2015;33(4):221–227. doi: 10.1016/j.eimc.2014.04.016. [DOI] [PubMed] [Google Scholar]
- 440.Valerio M, Munoz P, Rodriguez CG et al (2015) Antifungal stewardship in a tertiary-care institution: a bedside intervention. Clin Microbiol Infect 21(5)492.e1–492.e9 [DOI] [PubMed]
- 441.Valerio M, Rodriguez-Gonzalez CG, Munoz P, et al. Evaluation of antifungal use in a tertiary care institution: antifungal stewardship urgently needed. J Antimicrob Chemother. 2014;69(7):1993–1999. doi: 10.1093/jac/dku053. [DOI] [PubMed] [Google Scholar]
- 442.Valerio M, Vena A, Bouza E, et al. How much European prescribing physicians know about invasive fungal infections management? BMC Infect Dis. 2015;15:80. doi: 10.1186/s12879-015-0809-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 443.Wattal C, Chakrabarti A, Oberoi JK, et al. Issues in antifungal stewardship: an opportunity that should not be lost. J Antimicrob Chemother. 2017;72(4):969–974. doi: 10.1093/jac/dkw506. [DOI] [PubMed] [Google Scholar]
- 444.Lachenmayr SJ, Strobach D, Berking S, Horns H, Berger K, Ostermann H. Improving quality of antifungal use through antifungal stewardship interventions. Infection. 2019;47(4):603–610. doi: 10.1007/s15010-019-01288-4. [DOI] [PubMed] [Google Scholar]
- 445.Seo SK, Lo K, Abbo LM. Current State of Antimicrobial Stewardship at Solid Organ and Hematopoietic Cell Transplant Centers in the United States. Infect Control Hosp Epidemiol. 2016;37(10):1195–1200. doi: 10.1017/ice.2016.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 446.Abbo LM, Ariza-Heredia EJ. Antimicrobial stewardship in immunocompromised hosts. Infect Dis Clin North Am. 2014;28(2):263–279. doi: 10.1016/j.idc.2014.01.008. [DOI] [PubMed] [Google Scholar]
- 447.Cordonnier C, Pautas C, Maury S, et al. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis. 2009;48(8):1042–1051. doi: 10.1086/597395. [DOI] [PubMed] [Google Scholar]
- 448.Cordonnier C, Robin C, Alanio A, Bretagne S. Antifungal pre-emptive strategy for high-risk neutropenic patients: why the story is still ongoing. Clin Microbiol Infect. 2014;20(Suppl 6):27–35. doi: 10.1111/1469-0691.12428. [DOI] [PubMed] [Google Scholar]
- 449.Dumford DM, Skalweit M. Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host. Infect Dis Clin North Am. 2016;30(2):465–489. doi: 10.1016/j.idc.2016.02.008. [DOI] [PubMed] [Google Scholar]
- 450.Gyssens IC, Kern WV, Livermore DM, Ecil ajvoEEI, ESCMID Eo (2013) The role of antibiotic stewardship in limiting antibacterial resistance among hematology patients. Haematologica 98(12):1821–1825 [DOI] [PMC free article] [PubMed]
- 451.Hamandi B, Husain S, Humar A, Papadimitropoulos EA. Impact of infectious disease consultation on the clinical and economic outcomes of solid organ transplant recipients admitted for infectious complications. Clin Infect Dis. 2014;59(8):1074–1082. doi: 10.1093/cid/ciu522. [DOI] [PubMed] [Google Scholar]
- 452.la Martire G, Robin C, Oubaya N, et al. De-escalation and discontinuation strategies in high-risk neutropenic patients: an interrupted time series analyses of antimicrobial consumption and impact on outcome. Eur J Clin Microbiol Infect Dis. 2018;37(10):1931–1940. doi: 10.1007/s10096-018-3328-1. [DOI] [PubMed] [Google Scholar]
- 453.Lortholary O, Lefort A, Tod M, et al. Pharmacodynamics and pharmacokinetics of antibacterial drugs in the management of febrile neutropenia. Lancet Infect Dis. 2008;8(10):612–620. doi: 10.1016/S1473-3099(08)70228-7. [DOI] [PubMed] [Google Scholar]
- 454.Mokart D, Slehofer G, Lambert J, et al. De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med. 2014;40(1):41–49. doi: 10.1007/s00134-013-3148-9. [DOI] [PubMed] [Google Scholar]
- 455.Paskovaty A, Pastores SM, Gedrimaite Z, Kostelecky N, Riedel ER, Seo SK. Antimicrobial de-escalation in septic cancer patients: is it safe to back down? Intensive Care Med. 2015;41(11):2022–2023. doi: 10.1007/s00134-015-4016-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 456.Reinecke J, Lowas S, Snowden J, Neemann K. Blood Stream Infections and Antibiotic Utilization in Pediatric Leukemia Patients With Febrile Neutropenia. J Pediatr Hematol Oncol. 2019;41(4):251–255. doi: 10.1097/MPH.0000000000001279. [DOI] [PubMed] [Google Scholar]
- 457.Rosa R, Simkins J, Camargo JF, Martinez O, Abbo LM. Solid organ transplant antibiograms: an opportunity for antimicrobial stewardship. Diagn Microbiol Infect Dis. 2016;86(4):460–463. doi: 10.1016/j.diagmicrobio.2016.08.018. [DOI] [PubMed] [Google Scholar]
- 458.Rosa RG, Dos SRP, Goldani LZ. Mortality related to coagulase-negative staphylococcal bacteremia in febrile neutropenia: A cohort study. Can J Infect Dis Med Microbiol. 2014;25(1):e14–e17. doi: 10.1155/2014/702621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 459.Rosa RG, Goldani LZ. Cohort study of the impact of time to antibiotic administration on mortality in patients with febrile neutropenia. Antimicrob Agents Chemother. 2014;58(7):3799–3803. doi: 10.1128/AAC.02561-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 460.Rosa RG, Goldani LZ, dos Santos RP (2014) Association between adherence to an antimicrobial stewardship program and mortality among hospitalised cancer patients with febrile neutropaenia: a prospective cohort study. BMC Infect Dis 14:286 [DOI] [PMC free article] [PubMed]
- 461.Tverdek FP, Rolston KV, Chemaly RF. Antimicrobial stewardship in patients with cancer. Pharmacotherapy. 2012;32(8):722–734. doi: 10.1002/j.1875-9114.2012.01162.x. [DOI] [PubMed] [Google Scholar]
- 462.Vicente M, Al-Nahedh M, Parsad S, Knoebel RW, Pisano J, Pettit NN. Impact of a clinical pathway on appropriate empiric vancomycin use in cancer patients with febrile neutropenia. J Oncol Pharm Pract. 2017;23(8):575–581. doi: 10.1177/1078155216668672. [DOI] [PubMed] [Google Scholar]
- 463.Wattier RL, Levy ER, Sabnis AJ, Dvorak CC, Auerbach AD. Reducing Second Gram-Negative Antibiotic Therapy on Pediatric Oncology and Hematopoietic Stem Cell Transplantation Services. Infect Control Hosp Epidemiol. 2017;38(9):1039–1047. doi: 10.1017/ice.2017.118. [DOI] [PubMed] [Google Scholar]
- 464.Zhu LL, Zhou Q. Optimal infusion rate in antimicrobial therapy explosion of evidence in the last five years. Infect Drug Resist. 2018;11:1105–1117. doi: 10.2147/IDR.S167616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 465.Robilotti E, Holubar M, Seo SK, Deresinski S. Feasibility and applicability of antimicrobial stewardship in immunocompromised patients. Curr Opin Infect Dis. 2017;30(4):346–353. doi: 10.1097/QCO.0000000000000380. [DOI] [PubMed] [Google Scholar]
- 466.Puerta-Alcalde P, Cardozo C, Suárez-Lledó M, et al. Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship de-escalation strategies. Clin Microbiol Infect. 2019;25(4):447–453. doi: 10.1016/j.cmi.2018.07.026. [DOI] [PubMed] [Google Scholar]
- 467.Abele-Horn M, de With K, Seifert J, et al. Strukturelle und personelle Voraussetzungen für die Sicherung einer rationalen Antiinfektivaverordnung in Krankenhäusern. Bundesgesundheitsbl. 2020;63(6):749–760. doi: 10.1007/s00103-020-03152-5. [DOI] [PubMed] [Google Scholar]
- 468.Sax H, Clack L, Touveneau S, Jantarada Fda L, Pittet D, Zingg W. Implementation of infection control best practice in intensive care units throughout Europe: a mixed-method evaluation study. Implement Sci. 2013;8:24. doi: 10.1186/1748-5908-8-24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 469.Storr J, Twyman A, Zingg W, et al. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrob Resist Infect Control. 2017;6:6. doi: 10.1186/s13756-016-0149-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 470.Goff DA, Kullar R, Bauer KA, File TM., Jr. Eight Habits of Highly Effective Antimicrobial Stewardship Programs to Meet the Joint Commission Standards for Hospitals. Clin Infect Dis. 2017;64(8):1134–1139. doi: 10.1093/cid/cix065. [DOI] [PubMed] [Google Scholar]
- 471.Kern W, Fellhauer M, Hug M, et al. Recent antibiotic use in German acute care hospitals—From benchmarking to improved prescribing and quality care. Dtsch Med Wochenschr. 2015;140:e237–e246. doi: 10.1055/s-0041-105938. [DOI] [PubMed] [Google Scholar]
- 472.Thern J, de With K, Strauss R, Steib-Bauert M, Weber N, Kern WV. Selection of hospital antimicrobial prescribing quality indicators: a consensus among German antibiotic stewardship (ABS) networkers. Infection. 2014;42(2):351–362. doi: 10.1007/s15010-013-0559-z. [DOI] [PubMed] [Google Scholar]
- 473.Davies HD. Infectious Complications With the Use of Biologic Response Modifiers in Infants and Children. Pediatrics. 2016;138(2):e20161209. doi: 10.1542/peds.2016-1209. [DOI] [PubMed] [Google Scholar]
- 474.Reinwald M, Silva JT, Mueller NJ, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors) Clin Microbiol Infect. 2018;24(Suppl 2):S53–S70. doi: 10.1016/j.cmi.2018.02.009. [DOI] [PubMed] [Google Scholar]
- 475.Baddley JW, Cantini F, Goletti D et al (2018) ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [I]: anti-tumor necrosis factor-alpha agents). Clin Microbiol Infect 24 (Suppl 2):S10–S20 [DOI] [PubMed]
- 476.Drgona L, Gudiol C, Lanini S, Salzberger B, Ippolito G, Mikulska M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4) Clin Microbiol Infect. 2018;24(Suppl 2):S83–S94. doi: 10.1016/j.cmi.2018.03.022. [DOI] [PubMed] [Google Scholar]
- 477.Mikulska M, Lanini S, Gudiol C, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid cells surface antigens [I]: CD19, CD20 and CD52) Clin Microbiol Infect. 2018;24(Suppl 2):S71–S82. doi: 10.1016/j.cmi.2018.02.003. [DOI] [PubMed] [Google Scholar]
- 478.Ioannou P, Vamvoukaki R, Samonis G. Rhodotorula species infections in humans: A systematic review. Mycoses. 2019;62(2):90–100. doi: 10.1111/myc.12856. [DOI] [PubMed] [Google Scholar]
- 479.Potenza L, Chitasombat MN, Klimko N, et al. Rhodotorula infection in haematological patient: Risk factors and outcome. Mycoses. 2019;62(3):223–229. doi: 10.1111/myc.12875. [DOI] [PubMed] [Google Scholar]
- 480.Fabiani S, Fortunato S, Petrini M, Bruschi F. Allogeneic hematopoietic stem cell transplant recipients and parasitic diseases: A review of the literature of clinical cases and perspectives to screen and follow-up active and latent chronic infections. Transpl Infect Dis. 2017 doi: 10.1111/tid.12669. [DOI] [PubMed] [Google Scholar]
- 481.Peixoto D, Prestes DP. Parasitic Infections of the Stem Cell Transplant Recipient and the Hematologic Malignancy Patient, Including Toxoplasmosis and Strongyloidiasis. Infect Dis Clin North Am. 2019;33(2):567–591. doi: 10.1016/j.idc.2019.02.009. [DOI] [PubMed] [Google Scholar]
- 482.Michel BA, Hunder GG, Bloch DA, Calabrese LH. Hypersensitivity vasculitis and Henoch-Schonlein purpura: a comparison between the 2 disorders. J Rheumatol. 1992;19(5):721–728. [PubMed] [Google Scholar]
- 483.Chang HJ, Miller HL, Watkins N, et al. An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonization of health care workers’ pet dogs. N Engl J Med. 1998;338(11):706–711. doi: 10.1056/NEJM199803123381102. [DOI] [PubMed] [Google Scholar]
- 484. Bundeszentrale für gesundheitliche Aufklärung (BZgA) (o.D.) Hygiene und Tiere. https://www.infektionsschutz.de/hygienetipps/hygiene-und-tiere.html. Zugegriffen: 1. Nov. 2020
- 485.Institut für Hygiene und Öffentliche Gesundheit der Universität Bonn (2007) Hygiene-Tipps für Kids – Umgang mit Tieren. Institut für Hygiene und Öffentliche Gesundheit (IHPH), Bonn, , https://hygiene-tipps-fuer-kids.de/files/download/pdf/Elternseiten/3_6_TiereMerkblatt.pdf. Zugegriffen: 1. Nov. 2020
