Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jan 1;77(Pt 1):34–41. doi: 10.1107/S2056989020015959

Two 3-amino-1H-pyrazol-2-ium salts containing organic anions, and an ortho­rhom­bic polymorph of 3-amino-1H-pyrazol-2-ium nitrate

Sreeramapura D Archana a, Channappa N Kavitha b, Hemmige S Yathirajan a,*, Sabine Foro c, Christopher Glidewell d
PMCID: PMC7784047  PMID: 33520279

The hydrogen-bonded assembly of 3-amino-1H-pyrazol-2-ium 3,5-di­nitro­benzoate monohydrate and bis­(3-amino-1H-pyrazol-2-ium) fumarate fumaric acid is two-dimensional, but that in the ortho­rhom­bic form of the simple salt 3-amino-1H-pyrazol-2-ium nitrate is three-dimensional.

Keywords: pyrazoles, organic salts, crystal structures, polymorphism, hydrogen bonding, supra­molecular assembly

Abstract

Co-crystallization from methanol of 3-amino-1H-pyrazole with 3,5-di­nitro­benzoic acid produces 3-amino-1H-pyrazol-2-ium 3,5-di­nitro­benzoate monohydrate, C3H6N3 +·C7H3N2O6 ·H2O, (I), while similar co-crystallization of this pyrazole with an equimolar qu­antity of fumaric acid produces bis­(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1), 2C3H6N3 +·C4H2O4 2−·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields a second, ortho­rhom­bic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3 +·NO3 , (III). In each of (I)–(III), the bond distances in the cation provide evidence for extensive delocalization of the positive charge. In each of (I) and (II), an extensive series of O—H⋯O and N—H⋯O hydrogen bonds links the components into complex sheets, while in the structure of (III), the ions are linked by multiple N—H⋯O hydrogen bonds into a three-dimensional arrangement. Comparisons are made with the structures of some related compounds.

Chemical context  

Pyrazoles exhibit a very wide range of pharmacological and other biological activities, which have recently been extensively reviewed (Ansari et al., 2017; Karrouchi et al., 2018). Derivatives derived from 3-amino-1H-pyrazole have been reported as tyrosine kinase inhibitors, of potential use in cancer treatment (Feng et al., 2008) and as inhibitors of the intra­cellular phospho­rylation of the heat-shock protein hsp27 (Velcicky et al., 2010). As part of a general study of novel pyrazole derivatives (Asma et al., 2018; Kiran Kumar et al., 2020; Shaibah et al., 2020a ,b ; Shreekanth et al., 2020), we have now synthesized two organic salts derived from 3-amino-1H-pyrazole, namely 3-amino-1-pyrazol-2-ium 3,5-di­nitro­benz­oate monohydrate (I) (Fig. 1 and Scheme) and bis­(3-amino-1-pyrazol-2-ium) fumarate fumaric acid (II) (Fig. 2), whose mol­ecular and supra­molecular structures are reported here. Compounds (I) and (II) were readily prepared by co-crystallization of 3-amino-1H-pyrazole with an equimolar qu­antity of the appropriate organic acid. We have also isolated a second polymorph of 3-amino-1-pyrazol-2-ium nitrate (III). When crystallized from methanol, this compound forms an ortho­rhom­bic polymorph in space group Pna21; a monoclinic polymorph in space group P21/c, isolated from aqueous solution has recently been reported (Yamuna et al., 2020). Here we discuss the mol­ecular and supra­molecular structures of both polymorphs of the nitrate salt.graphic file with name e-77-00034-scheme1.jpg

Figure 1.

Figure 1

The independent components in compound (I) showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The independent components in compound (II) showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with the suffix ‘a’ or ‘b’ are at the symmetry positions (1 − x, 1 − y, 1 − z) and (1 − x, −y, 1 − z), respectively.

Structural commentary  

The salt 3-amino-1H-pyrazol-2-ium 3,5-di­nitro­benzoate crystallizes from methanol as a monohydrate, although methanol is absent from the crystal structure. The constitution of the salt (I) derived from fumaric acid is more complex: the structure contains a single cation, occupying a general position, along with a fumarate dianion and a neutral fumaric acid mol­ecule, each lying across a centre of inversion, selected as those at (0.5, 0.5, 0.5) and (0.5, 0, 0.5), respectively, for the anionic and neutral components. The correct location of the H atom bonded to atom O31 (Fig. 2) was confirmed not only by refinement of the atomic coordinates for this H atom and by the final difference map, but also by the C—O distances in the two fumaric acid units, thus 1.2472 (17) and 1.2525 (15) Å in the anion, and 1.2136 (17) and 1.3065 (18) Å in the neutral fumaric acid mol­ecule. Although the co-existence of equal numbers of fumarate anions and neutral fumaric acid mol­ecules, as opposed to hydrogenfumarate anions, seems at first sight unexpected or even counter-intuitive, in fact a number of structures have been reported in which this combination is present, as noted below in Section 4.

Isolation of the nitrate salt from a methanol solution produces an ortho­rhom­bic form with space group Pna21; it has recently been reported [Yamuna et al., 2020; CSD (Groom et al., 2016) refcode NUKKOW], that crystallization of the nitrate salt from an aqueous solution provides a monoclinic polymorph with space group P21/c, which it is convenient to denote here as (IIIa). There is no obvious simple relationship between either the direct or the reduced cell dimensions for these two polymorphs.

For each of (I)–(III) it is possible to selected a compact asymmetric unit in which the components are linked by N—H⋯O hydrogen bonds (Figs. 1–3 ). Within the asymmetric unit of (II), there is a fairly short but markedly asymmetric O—H⋯O hydrogen bond (Table 2) linking the anionic and neutral fumaric fragments.

Figure 3.

Figure 3

The independent components in compound (III) showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Table 2. Hydrogen bond parameters (Å, °).

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) O31—H31⋯O22i 0.88 (3) 1.87 (3) 2.746 (2) 175 (3)
  O31—H32⋯O21ii 0.75 (4) 2.36 (3) 2.989 (2) 143 (3)
  N131—H131⋯O22 0.88 (2) 2.08 (2) 2.920 (2) 159 (2)
  N131—H132⋯O25iii 0.82 (2) 2.31 (3) 3.128 (2) 171 (3)
  N11—H11⋯O31 0.89 (2) 1.83 (2) 2.707(2 169 (2)
  N12—H12⋯O21 1.00 (2) 1.60 (2) 2.5981 (19) 177.9 (18)
           
(II) O31—H31⋯O21 0.90 (2) 1.65 (2) 2.5370 (15) 169 (2)
  N11—H11⋯O22 0.910 (18) 1.796 (17) 2.6989 (16) 171.4 (17)
  N12—H12⋯O21 0.892 (17) 2.172 (17) 2.8267 (17) 129.7(14
  N12—H12⋯O32 0.892 (17) 2.133 (17) 2.8641 (16) 138.6 (15)
  N131—H131⋯O32 0.82 (2) 2.33 (3) 3.052 (2) 148 (2)
  N131—H132⋯O22iv 0.908 (19) 2.03 (2) 2.8922 (18) 159.4 (17)
           
(III) N11—H11⋯O23v 0.93 (5) 1.94 (5) 2.860 (4) 170 (3)
  N12—H12⋯O21 0.76 (4) 2.19 (4) 2.914 (3) 158 (3)
  N131—H131⋯O22 0.88 (5) 2.16 (5) 3.001 (4) 159 (4)
  N131—H132⋯O21vi 0.81 (5) 2.36 (4) 3.126 (4) 157 (4)
  N131—H132⋯O23vi 0.81 (5) 2.50 (5) 3.223 (4) 148 (4)

Symmetry codes: (i) x, 1 + y, z; (ii) −x, 2 − y, 1 − z; (iii) x, y, −1 + z; (iv) 2 − x, −Inline graphic + y, Inline graphic − z; (v) 1 − x, 1 − y, Inline graphic + z; (vi) Inline graphic − x, −Inline graphic + y, −Inline graphic + z.

The bond distances within the cations exhibit some inter­esting features. In neutral 1H-pyrazole, the bonds corresponding to N12—C13 and C14—C15 in compounds (I)–(III) (cf. Figs. 1–3 ) are formally double bonds, while the other ring bonds are all formally single bonds. However, as shown in Table 1, which also includes data for the monoclinic polymorph (IIIa) (Yamuna et al., 2020) for comparison, in none of the cations discussed here does the range of the C—N distances exceed 0.03 Å, while the difference between the two C—C distances never exceeds 0.04 Å. These observations indicate that the positive charge is delocalized over all three of the N atoms, such that all three canonical forms (A)–(C) (Fig. 4) are significant contributors to the overall electronic structure of the cation.

Table 1. Selected bond distances (Å).

The data for the monoclinic polymorph (IIIa) are taken from Yamuna et al. (2020), but with the atom labels adjusted to match those used for (I)–(III).

Parameter (I) (II) (III) (IIIa)
N11—N12 1.362 (2) 1.3467 (17) 1.351 (4) 1.358 (2)
N12—C13 1.338 (2) 1.3340 (17) 1.336 (4) 1.347 (2)
C13—C14 1.402 (2) 1.391 (2) 1.393 (4) 1.403 (3)
C14—C15 1.365 (3) 1.366 (2) 1.367 (5) 1.372 (2)
C15—N11 1.331 (2) 1.3187 (19) 1.334 (4) 1.329 (3)
C13—N131 1.348 (2) 1.3480 (19) 1.338 (4) 1.338 (2)

Figure 4.

Figure 4

The three canonical forms that contribute to the electronic structure of the cations in compounds (I)–(III).

Supra­molecular features  

The supra­molecular assembly in compounds (I)–(III) is dominated by N—H⋯O Hydrogen bonds together with O—H⋯O hydrogen bonds in (I) and (II) (Table 2). For the two-centre inter­actions, those having D—H⋯A angles significantly less than 140° have been discounted, as the associated inter­action energies are likely to be negligible (Wood et al., 2009). Such contacts are better regarded as adventitious contacts that arise within the supra­molecular arrangements dominated by the significant hydrogen bonds.

The two ionic components in compound (I) are linked by two N—H⋯O hydrogen bonds, forming an Inline graphic(8) ring (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995), and a third N—H⋯O links the water component to the ion pair, forming a three-component aggregate (Fig. 1). The hydrogen-bonded supra­molecular assembly in compound (I) is two-dimensional. The O—H⋯O hydrogen bond involving atom H31 (Table 2) links the aggregates which are related by translation along [010] to form a Inline graphic(9)Inline graphic(9)[Inline graphic(8)] chain of rings. In addition, the N—H⋯O hydrogen bond involving atom H132 links the ion pairs that are related by translation along [001] into a Inline graphic(10)Inline graphic(12)[Inline graphic(8)] chain of rings. The combination of these two chain motifs generates a sheet lying parallel to (100) and containing Inline graphic(8) and Inline graphic(32) rings (Fig. 5). Finally, the second O—H⋯O hydrogen bond involving atom H32 links pairs of such sheets, which are related by inversion, to form a complex bilayer.

Figure 5.

Figure 5

Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

The supra­molecular assembly in compound (II) is relatively straightforward. The single O—H⋯O hydrogen bonds links the fumarate ions and the fumaric acid mol­ecules into a chain running parallel to the [010] direction, in which the anions and neutral mol­ecules alternate (Fig. 6). Two chains of this type, which are related to one another by the c-glide planes, pass through each unit cell and they are linked by the cations, via a combination of N—H⋯O hydrogen bonds, to form a sheet lying parallel to (102), within which rings of Inline graphic(6), Inline graphic(6), Inline graphic(7) and Inline graphic(22) types are present (Fig. 7).

Figure 6.

Figure 6

Part of the crystal structure of compound (II), showing the formation of a chain of alternating fumarate ions and fumaric acid mol­ecules. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the cations and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 − x, −y, 1 − z), (x, 1 + y, z) and (1 − x, 2 − y, 1 − z), respectively. The atoms O21 and O31 (without symmetry symbols) are components of the reference species at (x, y, z).

Figure 7.

Figure 7

Part of the crystal structure of compound (II), showing the formation of a sheet lying parallel to (102). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the cations and the H atoms bonded to C atoms have been omitted.

The ionic components in compound (III) are linked by two N—H⋯O hydrogen bonds to form an ion pair containing an Inline graphic(8) ring (Fig. 3). Ion pairs of this type are linked by one two-centre N—H⋯O hydrogen bond and one three-centre N—H⋯(O)2 system into a three-dimensional framework structure, whose formation is readily analysed in terms of three simple one-dimensional sub-structures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). The two-centre N—H⋯O hydrogen bond, acting alone, links ion pairs that are related by the 21 screw axis along [001], forming a Inline graphic(7)Inline graphic(9)[Inline graphic(8) chain of rings running parallel to [001] (Fig. 8). The three-centre N—H⋯(O)2 hydrogen bond links ion pairs that are related by the n-glide plane to form a chain of alternating Inline graphic(4) and Inline graphic(8) rings running parallel to the [011] direction (Fig. 9). When the two-centre and three-centre systems act alternately, they link the ion pairs into a chain of rings running parallel to the [102] direction (Fig. 10). The combination of the chains along [001], [011] and [102] suffices to link all of the components into a three-dimensional framework structure.

Figure 8.

Figure 8

Part of the crystal structure of compound (III), showing the formation of a chain of rings running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Figure 9.

Figure 9

Part of the crystal structure of compound (III), showing the formation of a chain of rings running parallel to [011]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Figure 10.

Figure 10

Part of the crystal structure of compound (III), showing the formation of a chain of rings running parallel to [102]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Database survey  

As noted above in Section 2, a monoclinic polymorph of the nitrate salt, denoted (IIIa) has recently been reported, but without any analysis or description of the supra­molecular assembly (Yamuna et al., 2020). As found in the ortho­rhom­bic polymorph (III), the ions in (IIIa) are linked by two N—H⋯O hydrogen bonds to form an ion pair characterized by an Inline graphic(8) motif. Two further N—H⋯O hydrogen bonds link these ion pairs into a sheet lying parallel to (10Inline graphic), in which rings of Inline graphic(8), Inline graphic(14) and Inline graphic(26) types are present (Fig. 11). Sheets of this type are linked by a C—H⋯O hydrogen bond to form a three-dimensional framework structure. In the picrate salt, the ions are linked into sheets by a combination of N—H⋯O and C—H⋯O hydrogen bonds (Infantes et al., 1999). In the hydrogen succinate salt, a combination of O—H⋯O and N—H⋯O hydrogen bonds links the ions into sheets containing Inline graphic(8), Inline graphic(12) and Inline graphic(20) rings (Yamuna et al., 2014). The structure of the tri­fluoro­acetate, which crystallizes with Z′ = 2, and with disorder in each of the independent anions, contains only N—H⋯O hydrogen bonds, which link the ions into complex sheets (Yamuna et al., 2013). We also note that the structure of tetra­kis­(3-amino-1H-pyrazol-2-ium) bis­(μ-chloro)­octa­chloro­dibismuth, (C3H6N3)4(Bi2Cl10), has been reported (Ferjani & Boughzala, 2018).

Figure 11.

Figure 11

Part of the crystal structure of the monoclinic polymorph (IIIa) of 3-amino-1H-pyrazol-2-ium nitrate showing the formation of a hydrogen-bonded sheet parallel to (10Inline graphic). The deposited coordinates (Yamuna et al., 2020) have been used. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

A number of structures have been reported in which fumarate dianions co-exist in equal numbers with neutral fumaric acid mol­ecules, as found here for compound (II). Recently reported examples include the salts formed with 2-amino-5-methyl­pyridine (Hemamalini & Fun, 2010), N,N′,N′′-triisoprop­ylguanidine (Said et al., 2012), 2-amino­pyridine (Dong et al., 2013; Solovyov, 2016) and di-n-butyl­amine (Tang et al., 2015). We also note a rather earlier report on the structure of a salt formed by [tris­(phenan­thro­line)cobalt(II)] in which all three possible forms fumarate(2−), hydrogenfumarate(1−) and neutral fumaric acid are present in the molar ratio 1:2:3 (Liu et al., 2003).

Synthesis and crystallization  

The synthesis of compounds (I)–(III) employed commercially available 3-amino-1H-pyrazole, which was used as received. For the synthesis of compounds (I) and (II), a solution of 3-amino-1H-pyrazole (100 mg, 1.20 mmol) in ethanol (10 ml) was mixed with a solution of the appropriate acid, 3,5-di­nitro­benzoic acid (255 mg, 20 mmol) for (I) or fumaric acid (139 mg, 1.20 mmol) for (II), also in methanol (10 ml): for (III), a dilute solution of nitric acid in methanol (1:3, v/v, 10 ml) was added to a solution of 3-amino-1H-pyrazole (100 mg, 1.20 mmol) in ethanol (10 ml). Each of these mixtures was stirred at ambient temperature for 15 min and then set aside to crystallize at ambient temperature and in the presence of air. After one week, the resulting crystals were collected by filtration and dried in air: m.p. (I) 418–423 K, (II) 383–388 K, (III) 385–390 K. Crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.

Refinement  

Crystal data, data collection and refinement details are summarized in Table 3. For compound (I), one low-angle reflection (1,0,0) that had been attenuated by the beam stop was omitted from the refinement. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å and U iso(H) = 1.2U eq(C). For the H atoms bonded to N or O atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N) or 1.5U eq(O). In the absence of significant resonant scattering, it was not possible to determine the correct orientation of the structure of (III) relative to the polar axis direction, although this has no chemical significance.

Table 3. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C7H3N2O6 +·C3H6N3 ·H2O 2C3H6N3 +·C4H2O4 2−·C4H4O4 C3H6N3 +·NO3
M r 313.24 398.34 146.12
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c Orthorhombic, P n a21
Temperature (K) 296 296 296
a, b, c (Å) 6.6864 (7), 8.1857 (9), 12.649 (1) 8.5410 (4), 14.0507 (7), 7.5137 (4) 7.270 (1), 9.907 (2), 8.551 (2)
α, β, γ (°) 79.424 (9), 85.583 (9), 75.586 (9) 90, 98.827 (6), 90 90, 90, 90
V3) 658.78 (12) 891.02 (8) 615.9 (2)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.14 0.12 0.14
Crystal size (mm) 0.50 × 0.40 × 0.04 0.44 × 0.38 × 0.30 0.50 × 0.24 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.886, 0.995 0.897, 0.964 0.911, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 4597, 2805, 2093 3658, 1909, 1413 2221, 942, 806
R int 0.014 0.016 0.020
(sin θ/λ)max−1) 0.651 0.651 0.656
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.114, 1.04 0.037, 0.110, 1.07 0.036, 0.092, 1.11
No. of reflections 2805 1909 942
No. of parameters 217 143 103
No. of restraints 0 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.23 0.16, −0.17 0.15, −0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S2056989020015959/dx2033sup1.cif

e-77-00034-sup1.cif (402.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020015959/dx2033Isup2.hkl

e-77-00034-Isup2.hkl (224.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020015959/dx2033IIsup3.hkl

e-77-00034-IIsup3.hkl (153.5KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989020015959/dx2033IIIsup4.hkl

Supporting information file. DOI: 10.1107/S2056989020015959/dx2033Isup5.cml

Supporting information file. DOI: 10.1107/S2056989020015959/dx2033IIIsup6.cml

CCDC references: 2048572, 2048571, 2048570

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

SDA thanks the University of Mysore for research facilities.

supplementary crystallographic information

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Crystal data

C7H3N2O6+·C3H6N3·H2O Z = 2
Mr = 313.24 F(000) = 324
Triclinic, P1 Dx = 1.579 Mg m3
a = 6.6864 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.1857 (9) Å Cell parameters from 2812 reflections
c = 12.649 (1) Å θ = 2.6–27.8°
α = 79.424 (9)° µ = 0.14 mm1
β = 85.583 (9)° T = 296 K
γ = 75.586 (9)° Plate, yellow
V = 658.78 (12) Å3 0.50 × 0.40 × 0.04 mm

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 2805 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2093 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.014
ω scans θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −8→8
Tmin = 0.886, Tmax = 0.995 k = −5→10
4597 measured reflections l = −16→16

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2176P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2805 reflections Δρmax = 0.21 e Å3
217 parameters Δρmin = −0.23 e Å3
0 restraints

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.1394 (3) 0.94340 (19) 0.24519 (12) 0.0395 (4)
H11 0.113 (3) 1.014 (3) 0.2934 (17) 0.047*
N12 0.1901 (2) 0.77011 (18) 0.27559 (11) 0.0341 (3)
H12 0.208 (3) 0.716 (2) 0.3528 (16) 0.041*
C13 0.2255 (3) 0.6994 (2) 0.18655 (13) 0.0337 (4)
C14 0.1959 (3) 0.8317 (2) 0.09726 (14) 0.0427 (4)
H14 0.2097 0.8204 0.0250 0.051*
C15 0.1428 (3) 0.9803 (2) 0.13825 (15) 0.0449 (5)
H15 0.1136 1.0900 0.0978 0.054*
N131 0.2838 (3) 0.5283 (2) 0.19133 (15) 0.0499 (5)
H131 0.293 (4) 0.462 (3) 0.255 (2) 0.060*
H132 0.293 (4) 0.493 (3) 0.134 (2) 0.060*
C21 0.2746 (3) 0.3820 (2) 0.60721 (13) 0.0309 (4)
C22 0.3285 (3) 0.2041 (2) 0.62773 (14) 0.0344 (4)
H22 0.3511 0.1424 0.5713 0.041*
C23 0.3480 (3) 0.1200 (2) 0.73307 (14) 0.0346 (4)
C24 0.3153 (3) 0.2053 (2) 0.81972 (14) 0.0347 (4)
H24 0.3301 0.1471 0.8901 0.042*
C25 0.2594 (3) 0.3818 (2) 0.79622 (13) 0.0335 (4)
C26 0.2404 (3) 0.4721 (2) 0.69249 (13) 0.0335 (4)
H26 0.2052 0.5911 0.6799 0.040*
C27 0.2520 (3) 0.4756 (2) 0.49231 (13) 0.0335 (4)
O21 0.2332 (2) 0.63592 (15) 0.47770 (10) 0.0440 (3)
O22 0.2511 (2) 0.39164 (17) 0.42035 (10) 0.0500 (4)
N23 0.4084 (3) −0.0685 (2) 0.75456 (14) 0.0476 (4)
O23 0.4093 (4) −0.14396 (19) 0.67999 (14) 0.0821 (6)
O24 0.4524 (3) −0.13973 (19) 0.84632 (13) 0.0700 (5)
N25 0.2209 (3) 0.4769 (2) 0.88647 (12) 0.0452 (4)
O25 0.2652 (3) 0.3964 (2) 0.97622 (12) 0.0811 (6)
O26 0.1477 (3) 0.63024 (19) 0.86825 (12) 0.0647 (5)
O31 0.0837 (3) 1.1210 (2) 0.41012 (14) 0.0608 (5)
H31 0.140 (5) 1.208 (4) 0.409 (2) 0.091*
H32 −0.017 (5) 1.144 (4) 0.440 (3) 0.091*

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0506 (10) 0.0299 (8) 0.0369 (8) −0.0063 (7) −0.0022 (7) −0.0071 (6)
N12 0.0438 (9) 0.0300 (7) 0.0283 (7) −0.0085 (6) −0.0021 (6) −0.0045 (6)
C13 0.0346 (9) 0.0390 (9) 0.0286 (8) −0.0084 (7) −0.0026 (7) −0.0088 (7)
C14 0.0484 (12) 0.0495 (11) 0.0282 (9) −0.0092 (9) −0.0051 (8) −0.0038 (8)
C15 0.0502 (12) 0.0409 (11) 0.0384 (10) −0.0082 (9) −0.0069 (8) 0.0049 (8)
N131 0.0781 (13) 0.0369 (9) 0.0348 (9) −0.0079 (8) −0.0033 (9) −0.0135 (7)
C21 0.0326 (9) 0.0321 (9) 0.0287 (8) −0.0090 (7) −0.0019 (7) −0.0050 (6)
C22 0.0385 (10) 0.0327 (9) 0.0332 (9) −0.0078 (7) −0.0004 (7) −0.0100 (7)
C23 0.0346 (10) 0.0276 (8) 0.0395 (9) −0.0056 (7) −0.0012 (7) −0.0027 (7)
C24 0.0352 (10) 0.0375 (9) 0.0292 (8) −0.0082 (7) −0.0026 (7) 0.0001 (7)
C25 0.0356 (10) 0.0375 (9) 0.0293 (8) −0.0086 (7) −0.0014 (7) −0.0106 (7)
C26 0.0384 (10) 0.0272 (8) 0.0337 (9) −0.0055 (7) −0.0021 (7) −0.0047 (7)
C27 0.0372 (10) 0.0350 (9) 0.0287 (8) −0.0098 (7) −0.0007 (7) −0.0053 (7)
O21 0.0691 (9) 0.0320 (7) 0.0302 (6) −0.0130 (6) −0.0038 (6) −0.0016 (5)
O22 0.0813 (11) 0.0418 (7) 0.0299 (7) −0.0185 (7) −0.0023 (6) −0.0082 (6)
N23 0.0546 (11) 0.0311 (8) 0.0531 (10) −0.0081 (7) 0.0028 (8) −0.0018 (7)
O23 0.1407 (18) 0.0345 (8) 0.0655 (11) −0.0093 (9) 0.0088 (11) −0.0153 (8)
O24 0.0983 (14) 0.0407 (8) 0.0623 (10) −0.0127 (8) −0.0172 (9) 0.0144 (7)
N25 0.0543 (11) 0.0494 (10) 0.0346 (8) −0.0127 (8) 0.0017 (7) −0.0148 (7)
O25 0.1324 (17) 0.0746 (12) 0.0301 (8) −0.0065 (11) −0.0122 (9) −0.0142 (7)
O26 0.0950 (13) 0.0461 (9) 0.0547 (9) −0.0108 (8) 0.0045 (8) −0.0243 (7)
O31 0.0825 (13) 0.0466 (9) 0.0590 (10) −0.0185 (9) −0.0006 (8) −0.0201 (7)

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Geometric parameters (Å, º)

N11—C15 1.331 (2) C22—H22 0.9300
N11—N12 1.362 (2) C23—C24 1.380 (2)
N11—H11 0.89 (2) C23—N23 1.473 (2)
N12—C13 1.338 (2) C24—C25 1.380 (2)
N12—H12 0.999 (19) C24—H24 0.9300
C13—N131 1.348 (2) C25—C26 1.381 (2)
C13—C14 1.402 (2) C25—N25 1.468 (2)
C14—C15 1.365 (3) C26—H26 0.9300
C14—H14 0.9300 C27—O22 1.238 (2)
C15—H15 0.9300 C27—O21 1.267 (2)
N131—H131 0.88 (2) N23—O23 1.217 (2)
N131—H132 0.82 (3) N23—O24 1.222 (2)
C21—C26 1.389 (2) N25—O26 1.214 (2)
C21—C22 1.390 (2) N25—O25 1.221 (2)
C21—C27 1.513 (2) O31—H31 0.89 (3)
C22—C23 1.383 (2) O31—H32 0.74 (3)
C15—N11—N12 108.82 (15) C21—C22—H22 120.4
C15—N11—H11 129.5 (13) C24—C23—C22 122.72 (15)
N12—N11—H11 121.7 (13) C24—C23—N23 118.18 (15)
C13—N12—N11 108.10 (14) C22—C23—N23 119.10 (16)
C13—N12—H12 130.2 (11) C23—C24—C25 116.41 (15)
N11—N12—H12 121.5 (11) C23—C24—H24 121.8
N12—C13—N131 121.65 (16) C25—C24—H24 121.8
N12—C13—C14 108.13 (15) C24—C25—C26 123.17 (15)
N131—C13—C14 130.21 (17) C24—C25—N25 117.91 (15)
C15—C14—C13 105.77 (16) C26—C25—N25 118.91 (15)
C15—C14—H14 127.1 C25—C26—C21 118.86 (15)
C13—C14—H14 127.1 C25—C26—H26 120.6
N11—C15—C14 109.19 (16) C21—C26—H26 120.6
N11—C15—H15 125.4 O22—C27—O21 125.03 (16)
C14—C15—H15 125.4 O22—C27—C21 118.32 (15)
C13—N131—H131 118.8 (15) O21—C27—C21 116.64 (14)
C13—N131—H132 116.5 (17) O23—N23—O24 123.95 (17)
H131—N131—H132 124 (2) O23—N23—C23 117.99 (17)
C26—C21—C22 119.64 (15) O24—N23—C23 118.06 (17)
C26—C21—C27 120.66 (15) O26—N25—O25 123.56 (17)
C22—C21—C27 119.70 (15) O26—N25—C25 118.69 (15)
C23—C22—C21 119.19 (16) O25—N25—C25 117.74 (16)
C23—C22—H22 120.4 H31—O31—H32 104 (3)
C15—N11—N12—C13 0.1 (2) N25—C25—C26—C21 −179.30 (15)
N11—N12—C13—N131 178.47 (17) C22—C21—C26—C25 −0.5 (3)
N11—N12—C13—C14 −0.1 (2) C27—C21—C26—C25 178.99 (15)
N12—C13—C14—C15 0.1 (2) C26—C21—C27—O22 −168.58 (17)
N131—C13—C14—C15 −178.3 (2) C22—C21—C27—O22 10.9 (3)
N12—N11—C15—C14 0.0 (2) C26—C21—C27—O21 10.7 (2)
C13—C14—C15—N11 0.0 (2) C22—C21—C27—O21 −169.82 (16)
C26—C21—C22—C23 −0.3 (3) C24—C23—N23—O23 170.02 (19)
C27—C21—C22—C23 −179.78 (16) C22—C23—N23—O23 −10.7 (3)
C21—C22—C23—C24 0.3 (3) C24—C23—N23—O24 −9.2 (3)
C21—C22—C23—N23 −179.00 (16) C22—C23—N23—O24 170.15 (18)
C22—C23—C24—C25 0.5 (3) C24—C25—N25—O26 −171.16 (18)
N23—C23—C24—C25 179.83 (15) C26—C25—N25—O26 9.5 (3)
C23—C24—C25—C26 −1.4 (3) C24—C25—N25—O25 9.0 (3)
C23—C24—C25—N25 179.28 (16) C26—C25—N25—O25 −170.37 (19)
C24—C25—C26—C21 1.4 (3)

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O31—H31···O22i 0.88 (3) 1.87 (3) 2.746 (2) 175 (3)
O31—H32···O21ii 0.75 (4) 2.36 (3) 2.989 (2) 143 (3)
N131—H131···O22 0.88 (2) 2.08 (2) 2.920 (2) 159 (2)
N131—H132···O25iii 0.82 (2) 2.31 (3) 3.128 (2) 171 (3)
N11—H11···O31 0.89 (2) 1.83 (2) 2.707 (2) 169 (2)
N12—H12···O21 1.00 (2) 1.60 (2) 2.5981 (19) 177.9 (18)
N12—H12···O22 1.00 (2) 2.586 (17) 3.244 (2) 123.3 (13)

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+2, −z+1; (iii) x, y, z−1.

Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Crystal data

2C3H6N3+·C4H2O42·C4H4O4 F(000) = 416
Mr = 398.34 Dx = 1.485 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.5410 (4) Å Cell parameters from 1910 reflections
b = 14.0507 (7) Å θ = 3.1–27.9°
c = 7.5137 (4) Å µ = 0.12 mm1
β = 98.827 (6)° T = 296 K
V = 891.02 (8) Å3 Block, yellow
Z = 2 0.44 × 0.38 × 0.30 mm

Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 1909 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1413 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→8
Tmin = 0.897, Tmax = 0.964 k = −18→7
3658 measured reflections l = −9→9

Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.0649P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.16 e Å3
1909 reflections Δρmin = −0.17 e Å3
143 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.011 (3)
Primary atom site location: difference Fourier map

Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.99750 (15) 0.35914 (9) 0.31532 (18) 0.0470 (3)
H11 0.929 (2) 0.4025 (13) 0.350 (2) 0.056*
N12 0.96429 (14) 0.26559 (9) 0.32111 (17) 0.0424 (3)
H12 0.874 (2) 0.2459 (12) 0.355 (2) 0.051*
N131 1.08253 (19) 0.11913 (10) 0.2752 (2) 0.0621 (4)
H131 1.000 (3) 0.0955 (15) 0.298 (3) 0.074*
H132 1.147 (2) 0.0843 (14) 0.215 (3) 0.074*
C13 1.08323 (16) 0.21506 (10) 0.27297 (19) 0.0409 (3)
C14 1.19608 (17) 0.27973 (11) 0.2328 (2) 0.0488 (4)
H14 1.2919 0.2659 0.1943 0.059*
C15 1.13683 (18) 0.36775 (11) 0.2619 (2) 0.0515 (4)
H15 1.1872 0.4251 0.2462 0.062*
C21 0.66915 (15) 0.41618 (9) 0.45088 (19) 0.0388 (3)
O21 0.68480 (13) 0.32808 (7) 0.44357 (18) 0.0628 (4)
O22 0.77359 (11) 0.47336 (7) 0.41820 (16) 0.0524 (3)
C22 0.51841 (15) 0.45462 (9) 0.50057 (18) 0.0384 (3)
H22 0.4460 0.4114 0.5345 0.046*
C31 0.63476 (16) 0.10443 (10) 0.4570 (2) 0.0432 (4)
O31 0.53859 (13) 0.17395 (8) 0.48097 (19) 0.0656 (4)
H31 0.580 (3) 0.2323 (17) 0.471 (3) 0.098*
O32 0.76437 (13) 0.11540 (7) 0.41269 (17) 0.0590 (3)
C32 0.57247 (16) 0.00849 (10) 0.4868 (2) 0.0429 (4)
H32 0.6409 −0.0430 0.4868 0.051*

Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0421 (7) 0.0359 (7) 0.0670 (8) 0.0031 (5) 0.0209 (6) −0.0044 (6)
N12 0.0325 (6) 0.0388 (7) 0.0599 (8) 0.0000 (5) 0.0200 (5) −0.0029 (5)
N131 0.0584 (9) 0.0416 (8) 0.0929 (12) 0.0036 (6) 0.0326 (8) −0.0120 (7)
C13 0.0358 (7) 0.0425 (8) 0.0462 (8) 0.0050 (6) 0.0116 (6) −0.0062 (6)
C14 0.0350 (7) 0.0561 (10) 0.0596 (9) 0.0010 (6) 0.0208 (7) −0.0072 (7)
C15 0.0449 (8) 0.0460 (9) 0.0683 (10) −0.0069 (6) 0.0233 (7) −0.0027 (7)
C21 0.0351 (7) 0.0283 (7) 0.0561 (8) 0.0010 (5) 0.0175 (6) 0.0006 (6)
O21 0.0511 (6) 0.0257 (5) 0.1215 (10) 0.0008 (4) 0.0448 (7) −0.0020 (5)
O22 0.0398 (5) 0.0306 (5) 0.0944 (8) −0.0007 (4) 0.0350 (5) 0.0023 (5)
C22 0.0330 (6) 0.0310 (6) 0.0551 (8) −0.0008 (5) 0.0190 (6) 0.0013 (6)
C31 0.0381 (7) 0.0369 (8) 0.0576 (9) −0.0018 (6) 0.0174 (6) 0.0022 (6)
O31 0.0489 (7) 0.0344 (6) 0.1225 (11) −0.0015 (5) 0.0418 (7) 0.0041 (6)
O32 0.0444 (6) 0.0429 (6) 0.0973 (9) −0.0043 (5) 0.0352 (6) 0.0035 (6)
C32 0.0391 (7) 0.0344 (7) 0.0584 (9) 0.0009 (6) 0.0179 (6) 0.0036 (6)

Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Geometric parameters (Å, º)

N11—C15 1.3187 (19) C21—O21 1.2472 (17)
N11—N12 1.3467 (17) C21—O22 1.2525 (15)
N11—H11 0.910 (18) C21—C22 1.4953 (17)
N12—C13 1.3340 (16) C22—C22i 1.313 (3)
N12—H12 0.888 (17) C22—H22 0.9300
N131—C13 1.3480 (19) C31—O32 1.2136 (17)
N131—H131 0.82 (2) C31—O31 1.3065 (18)
N131—H132 0.90 (2) C31—C32 1.4789 (19)
C13—C14 1.391 (2) O31—H31 0.90 (2)
C14—C15 1.366 (2) C32—C32ii 1.305 (3)
C14—H14 0.9300 C32—H32 0.9300
C15—H15 0.9300
C15—N11—N12 107.69 (12) N11—C15—H15 125.1
C15—N11—H11 132.6 (11) C14—C15—H15 125.1
N12—N11—H11 119.7 (11) O21—C21—O22 122.93 (12)
C13—N12—N11 109.74 (11) O21—C21—C22 118.15 (11)
C13—N12—H12 129.7 (11) O22—C21—C22 118.92 (12)
N11—N12—H12 120.5 (11) C22i—C22—C21 124.31 (15)
C13—N131—H131 114.4 (15) C22i—C22—H22 117.8
C13—N131—H132 122.1 (13) C21—C22—H22 117.8
H131—N131—H132 119 (2) O32—C31—O31 124.20 (14)
N12—C13—N131 121.59 (13) O32—C31—C32 121.45 (13)
N12—C13—C14 107.03 (13) O31—C31—C32 114.34 (12)
N131—C13—C14 131.33 (13) C31—O31—H31 113.7 (15)
C15—C14—C13 105.71 (12) C32ii—C32—C31 124.14 (17)
C15—C14—H14 127.1 C32ii—C32—H32 117.9
C13—C14—H14 127.1 C31—C32—H32 117.9
N11—C15—C14 109.82 (14)
C15—N11—N12—C13 0.58 (17) C13—C14—C15—N11 −0.23 (19)
N11—N12—C13—N131 177.04 (15) O21—C21—C22—C22i −174.42 (18)
N11—N12—C13—C14 −0.71 (17) O22—C21—C22—C22i 5.4 (3)
N12—C13—C14—C15 0.57 (17) O32—C31—C32—C32ii −171.39 (19)
N131—C13—C14—C15 −176.88 (17) O31—C31—C32—C32ii 8.1 (3)
N12—N11—C15—C14 −0.20 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O31—H31···O21 0.90 (2) 1.65 (2) 2.5370 (15) 169 (2)
N11—H11···O21 0.910 (18) 2.527 (17) 3.0070 (17) 113.4 (13)
N11—H11···O22 0.910 (18) 1.796 (17) 2.6989 (16) 171.4 (17)
N12—H12···O21 0.892 (17) 2.172 (17) 2.8267 (17) 129.7 (14)
N12—H12···O32 0.892 (17) 2.133 (17) 2.8641 (16) 138.6 (15)
N131—H131···O32 0.82 (2) 2.33 (3) 3.052 (2) 148 (2)
N131—H132···O22iii 0.908 (19) 2.03 (2) 2.8922 (18) 159.4 (17)

Symmetry code: (iii) −x+2, y−1/2, −z+1/2.

3-Amino-1H-pyrazol-2-ium nitrate (III) . Crystal data

C3H6N3+·NO3 Dx = 1.576 Mg m3
Mr = 146.12 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 942 reflections
a = 7.270 (1) Å θ = 3.2–27.8°
b = 9.907 (2) Å µ = 0.14 mm1
c = 8.551 (2) Å T = 296 K
V = 615.9 (2) Å3 Needle, yellow
Z = 4 0.50 × 0.24 × 0.20 mm
F(000) = 304

3-Amino-1H-pyrazol-2-ium nitrate (III) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 942 independent reflections
Radiation source: Enhance (Mo) X-ray Source 806 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω scans θmax = 27.8°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −5→9
Tmin = 0.911, Tmax = 0.973 k = −12→12
2221 measured reflections l = −11→4

3-Amino-1H-pyrazol-2-ium nitrate (III) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.055P)2 + 0.0228P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
942 reflections Δρmax = 0.15 e Å3
103 parameters Δρmin = −0.15 e Å3
1 restraint

3-Amino-1H-pyrazol-2-ium nitrate (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Amino-1H-pyrazol-2-ium nitrate (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.4618 (4) 0.1812 (2) 0.6198 (4) 0.0508 (6)
H11 0.503 (5) 0.195 (3) 0.721 (6) 0.061*
N12 0.4203 (3) 0.2766 (2) 0.5126 (3) 0.0439 (6)
H12 0.431 (4) 0.352 (4) 0.528 (4) 0.053*
C13 0.3503 (3) 0.2185 (3) 0.3849 (3) 0.0397 (6)
C14 0.3453 (4) 0.0800 (2) 0.4129 (4) 0.0445 (7)
H14 0.3025 0.0135 0.3454 0.053*
C15 0.4162 (4) 0.0616 (3) 0.5595 (5) 0.0522 (8)
H15 0.4303 −0.0212 0.6092 0.063*
N131 0.2968 (4) 0.2904 (3) 0.2604 (4) 0.0577 (7)
H131 0.349 (5) 0.370 (5) 0.246 (5) 0.069*
H132 0.264 (5) 0.249 (4) 0.183 (6) 0.069*
N21 0.3928 (3) 0.6297 (2) 0.4171 (3) 0.0451 (6)
O21 0.3536 (3) 0.56587 (19) 0.5376 (3) 0.0641 (7)
O22 0.4480 (3) 0.57038 (18) 0.2981 (3) 0.0560 (6)
O23 0.3784 (4) 0.75575 (19) 0.4165 (3) 0.0699 (7)

3-Amino-1H-pyrazol-2-ium nitrate (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0619 (14) 0.0457 (13) 0.0448 (15) −0.0068 (10) −0.0035 (13) −0.0023 (12)
N12 0.0500 (13) 0.0315 (10) 0.0501 (15) −0.0048 (9) 0.0029 (13) −0.0092 (12)
C13 0.0375 (11) 0.0358 (12) 0.0457 (18) −0.0010 (10) 0.0045 (11) −0.0072 (13)
C14 0.0480 (13) 0.0321 (13) 0.0534 (18) −0.0053 (11) 0.0010 (15) −0.0091 (12)
C15 0.0575 (16) 0.0362 (13) 0.063 (2) −0.0052 (12) 0.0044 (16) 0.0008 (14)
N131 0.0694 (16) 0.0474 (15) 0.0562 (18) −0.0059 (12) −0.0124 (14) −0.0010 (13)
N21 0.0601 (13) 0.0324 (11) 0.0427 (13) 0.0020 (9) −0.0002 (12) 0.0005 (12)
O21 0.1067 (18) 0.0398 (10) 0.0457 (13) 0.0027 (10) 0.0150 (14) 0.0043 (10)
O22 0.0818 (14) 0.0380 (10) 0.0482 (13) −0.0002 (9) 0.0104 (12) −0.0067 (10)
O23 0.1188 (18) 0.0274 (9) 0.0635 (16) 0.0089 (10) 0.0148 (15) −0.0002 (11)

3-Amino-1H-pyrazol-2-ium nitrate (III) . Geometric parameters (Å, º)

N11—C15 1.334 (4) C14—H14 0.9300
N11—N12 1.351 (4) C15—H15 0.9300
N11—H11 0.93 (5) N131—H131 0.88 (4)
N12—C13 1.336 (4) N131—H132 0.82 (5)
N12—H12 0.76 (4) N21—O22 1.241 (4)
C13—N131 1.338 (4) N21—O21 1.242 (3)
C13—C14 1.393 (4) N21—O23 1.253 (3)
C14—C15 1.367 (5)
C15—N11—N12 107.7 (3) C13—C14—H14 126.9
C15—N11—H11 125 (2) N11—C15—C14 109.3 (3)
N12—N11—H11 127 (2) N11—C15—H15 125.4
C13—N12—N11 109.8 (2) C14—C15—H15 125.4
C13—N12—H12 127 (3) C13—N131—H131 118 (3)
N11—N12—H12 123 (3) C13—N131—H132 117 (3)
N12—C13—N131 122.1 (2) H131—N131—H132 118 (4)
N12—C13—C14 107.1 (3) O22—N21—O21 120.9 (2)
N131—C13—C14 130.8 (3) O22—N21—O23 119.7 (3)
C15—C14—C13 106.2 (3) O21—N21—O23 119.4 (3)
C15—C14—H14 126.9
C15—N11—N12—C13 −0.5 (3) N131—C13—C14—C15 −179.6 (3)
N11—N12—C13—N131 179.8 (3) N12—N11—C15—C14 0.1 (3)
N11—N12—C13—C14 0.6 (3) C13—C14—C15—N11 0.3 (3)
N12—C13—C14—C15 −0.6 (3)

3-Amino-1H-pyrazol-2-ium nitrate (III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11···O22i 0.93 (5) 2.44 (3) 2.968 (3) 116 (3)
N11—H11···O23i 0.93 (5) 1.94 (5) 2.860 (4) 170 (3)
N12—H12···O21 0.76 (4) 2.19 (4) 2.914 (3) 158 (3)
N12—H12···O22i 0.76 (4) 2.59 (3) 3.029 (3) 119 (3)
N131—H131···O22 0.88 (5) 2.16 (5) 3.001 (4) 159 (4)
N131—H132···O21ii 0.81 (5) 2.36 (4) 3.126 (4) 157 (4)
N131—H132···O23ii 0.81 (5) 2.50 (5) 3.223 (4) 148 (4)

Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) −x+1/2, y−1/2, z−1/2.

Funding Statement

This work was funded by University Grants Commission grant .

References

  1. Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.
  2. Asma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783–1789. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Dong, S., Tao, Y., Shen, X. & Pan, Z. (2013). Acta Cryst. C69, 896–900. [DOI] [PubMed]
  5. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Feng, Y., Guan, H., Kan, Y., Ioannidis, S., Peng, B., Su, M., Wang, B., Wang, T. & Zhang, H.-J. (2008). US Patent US20080287475A1.
  8. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  9. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  10. Ferjani, H. & Boughzala, H. (2018). Russ. J. Inorg. Chem. 63, 349–356.
  11. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093–o2094. [DOI] [PMC free article] [PubMed]
  14. Infantes, L., Foces-Foces, C., Claramunt, R. M., López, C. & Eiguero, J. (1999). J. Heterocycl. Chem. 36, 595–600.
  15. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–210. [DOI] [PMC free article] [PubMed]
  16. Kiran Kumar, H., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 683–691. [DOI] [PMC free article] [PubMed]
  17. Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299.
  18. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  19. Said, F. F., Ali, B. F., Richeson, D. & Korobkov, I. (2012). Acta Cryst. E68, o1906. [DOI] [PMC free article] [PubMed]
  20. Shaibah, M. A. E., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020b). Acta Cryst. E76, 360–365. [DOI] [PMC free article] [PubMed]
  21. Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 48–52. [DOI] [PMC free article] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Shreekanth, T. K., Yathirajan, H. S., Kalluraya, B., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1605–1610. [DOI] [PMC free article] [PubMed]
  25. Solovyov, L. A. (2016). Acta Cryst. B72, 738–743. [DOI] [PubMed]
  26. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  27. Tang, Y., Sun, Z., Ji, C., Li, L., Zhang, S., Chen, T. & Luo, J. (2015). Cryst. Growth Des. 15, 457–464.
  28. Velcicky, J., Feifel, R., Hawtin, S., Heng, R., Huppertz, C., Koch, G., Kroemer, M., Moebitz, H., Revesz, L., Scheufler, C. & Schlapbach, A. (2010). Bioorg. Med. Chem. Lett. 20, 1293–1297. [DOI] [PubMed]
  29. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.
  30. Yamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425–o1426. [DOI] [PMC free article] [PubMed]
  31. Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o221–o222. [DOI] [PMC free article] [PubMed]
  32. Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S2056989020015959/dx2033sup1.cif

e-77-00034-sup1.cif (402.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020015959/dx2033Isup2.hkl

e-77-00034-Isup2.hkl (224.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020015959/dx2033IIsup3.hkl

e-77-00034-IIsup3.hkl (153.5KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989020015959/dx2033IIIsup4.hkl

Supporting information file. DOI: 10.1107/S2056989020015959/dx2033Isup5.cml

Supporting information file. DOI: 10.1107/S2056989020015959/dx2033IIIsup6.cml

CCDC references: 2048572, 2048571, 2048570

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES