The hydrogen-bonded assembly of 3-amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate and bis(3-amino-1H-pyrazol-2-ium) fumarate fumaric acid is two-dimensional, but that in the orthorhombic form of the simple salt 3-amino-1H-pyrazol-2-ium nitrate is three-dimensional.
Keywords: pyrazoles, organic salts, crystal structures, polymorphism, hydrogen bonding, supramolecular assembly
Abstract
Co-crystallization from methanol of 3-amino-1H-pyrazole with 3,5-dinitrobenzoic acid produces 3-amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate, C3H6N3 +·C7H3N2O6 −·H2O, (I), while similar co-crystallization of this pyrazole with an equimolar quantity of fumaric acid produces bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1), 2C3H6N3 +·C4H2O4 2−·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields a second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3 +·NO3 −, (III). In each of (I)–(III), the bond distances in the cation provide evidence for extensive delocalization of the positive charge. In each of (I) and (II), an extensive series of O—H⋯O and N—H⋯O hydrogen bonds links the components into complex sheets, while in the structure of (III), the ions are linked by multiple N—H⋯O hydrogen bonds into a three-dimensional arrangement. Comparisons are made with the structures of some related compounds.
Chemical context
Pyrazoles exhibit a very wide range of pharmacological and other biological activities, which have recently been extensively reviewed (Ansari et al., 2017 ▸; Karrouchi et al., 2018 ▸). Derivatives derived from 3-amino-1H-pyrazole have been reported as tyrosine kinase inhibitors, of potential use in cancer treatment (Feng et al., 2008 ▸) and as inhibitors of the intracellular phosphorylation of the heat-shock protein hsp27 (Velcicky et al., 2010 ▸). As part of a general study of novel pyrazole derivatives (Asma et al., 2018 ▸; Kiran Kumar et al., 2020 ▸; Shaibah et al., 2020a
▸,b
▸; Shreekanth et al., 2020 ▸), we have now synthesized two organic salts derived from 3-amino-1H-pyrazole, namely 3-amino-1-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) (Fig. 1 ▸ and Scheme) and bis(3-amino-1-pyrazol-2-ium) fumarate fumaric acid (II) (Fig. 2 ▸), whose molecular and supramolecular structures are reported here. Compounds (I) and (II) were readily prepared by co-crystallization of 3-amino-1H-pyrazole with an equimolar quantity of the appropriate organic acid. We have also isolated a second polymorph of 3-amino-1-pyrazol-2-ium nitrate (III). When crystallized from methanol, this compound forms an orthorhombic polymorph in space group Pna21; a monoclinic polymorph in space group P21/c, isolated from aqueous solution has recently been reported (Yamuna et al., 2020 ▸). Here we discuss the molecular and supramolecular structures of both polymorphs of the nitrate salt.
Figure 1.
The independent components in compound (I) showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
Figure 2.
The independent components in compound (II) showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with the suffix ‘a’ or ‘b’ are at the symmetry positions (1 − x, 1 − y, 1 − z) and (1 − x, −y, 1 − z), respectively.
Structural commentary
The salt 3-amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate crystallizes from methanol as a monohydrate, although methanol is absent from the crystal structure. The constitution of the salt (I) derived from fumaric acid is more complex: the structure contains a single cation, occupying a general position, along with a fumarate dianion and a neutral fumaric acid molecule, each lying across a centre of inversion, selected as those at (0.5, 0.5, 0.5) and (0.5, 0, 0.5), respectively, for the anionic and neutral components. The correct location of the H atom bonded to atom O31 (Fig. 2 ▸) was confirmed not only by refinement of the atomic coordinates for this H atom and by the final difference map, but also by the C—O distances in the two fumaric acid units, thus 1.2472 (17) and 1.2525 (15) Å in the anion, and 1.2136 (17) and 1.3065 (18) Å in the neutral fumaric acid molecule. Although the co-existence of equal numbers of fumarate anions and neutral fumaric acid molecules, as opposed to hydrogenfumarate anions, seems at first sight unexpected or even counter-intuitive, in fact a number of structures have been reported in which this combination is present, as noted below in Section 4.
Isolation of the nitrate salt from a methanol solution produces an orthorhombic form with space group Pna21; it has recently been reported [Yamuna et al., 2020 ▸; CSD (Groom et al., 2016 ▸) refcode NUKKOW], that crystallization of the nitrate salt from an aqueous solution provides a monoclinic polymorph with space group P21/c, which it is convenient to denote here as (IIIa). There is no obvious simple relationship between either the direct or the reduced cell dimensions for these two polymorphs.
For each of (I)–(III) it is possible to selected a compact asymmetric unit in which the components are linked by N—H⋯O hydrogen bonds (Figs. 1 ▸–3 ▸ ▸). Within the asymmetric unit of (II), there is a fairly short but markedly asymmetric O—H⋯O hydrogen bond (Table 2 ▸) linking the anionic and neutral fumaric fragments.
Figure 3.
The independent components in compound (III) showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
Table 2. Hydrogen bond parameters (Å, °).
| Compound | D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|---|
| (I) | O31—H31⋯O22i | 0.88 (3) | 1.87 (3) | 2.746 (2) | 175 (3) |
| O31—H32⋯O21ii | 0.75 (4) | 2.36 (3) | 2.989 (2) | 143 (3) | |
| N131—H131⋯O22 | 0.88 (2) | 2.08 (2) | 2.920 (2) | 159 (2) | |
| N131—H132⋯O25iii | 0.82 (2) | 2.31 (3) | 3.128 (2) | 171 (3) | |
| N11—H11⋯O31 | 0.89 (2) | 1.83 (2) | 2.707(2 | 169 (2) | |
| N12—H12⋯O21 | 1.00 (2) | 1.60 (2) | 2.5981 (19) | 177.9 (18) | |
| (II) | O31—H31⋯O21 | 0.90 (2) | 1.65 (2) | 2.5370 (15) | 169 (2) |
| N11—H11⋯O22 | 0.910 (18) | 1.796 (17) | 2.6989 (16) | 171.4 (17) | |
| N12—H12⋯O21 | 0.892 (17) | 2.172 (17) | 2.8267 (17) | 129.7(14 | |
| N12—H12⋯O32 | 0.892 (17) | 2.133 (17) | 2.8641 (16) | 138.6 (15) | |
| N131—H131⋯O32 | 0.82 (2) | 2.33 (3) | 3.052 (2) | 148 (2) | |
| N131—H132⋯O22iv | 0.908 (19) | 2.03 (2) | 2.8922 (18) | 159.4 (17) | |
| (III) | N11—H11⋯O23v | 0.93 (5) | 1.94 (5) | 2.860 (4) | 170 (3) |
| N12—H12⋯O21 | 0.76 (4) | 2.19 (4) | 2.914 (3) | 158 (3) | |
| N131—H131⋯O22 | 0.88 (5) | 2.16 (5) | 3.001 (4) | 159 (4) | |
| N131—H132⋯O21vi | 0.81 (5) | 2.36 (4) | 3.126 (4) | 157 (4) | |
| N131—H132⋯O23vi | 0.81 (5) | 2.50 (5) | 3.223 (4) | 148 (4) |
Symmetry codes: (i) x, 1 + y, z; (ii) −x, 2 − y, 1 − z; (iii) x, y, −1 + z; (iv) 2 − x, −
+ y,
− z; (v) 1 − x, 1 − y,
+ z; (vi)
− x, −
+ y, −
+ z.
The bond distances within the cations exhibit some interesting features. In neutral 1H-pyrazole, the bonds corresponding to N12—C13 and C14—C15 in compounds (I)–(III) (cf. Figs. 1 ▸–3 ▸ ▸) are formally double bonds, while the other ring bonds are all formally single bonds. However, as shown in Table 1 ▸, which also includes data for the monoclinic polymorph (IIIa) (Yamuna et al., 2020 ▸) for comparison, in none of the cations discussed here does the range of the C—N distances exceed 0.03 Å, while the difference between the two C—C distances never exceeds 0.04 Å. These observations indicate that the positive charge is delocalized over all three of the N atoms, such that all three canonical forms (A)–(C) (Fig. 4 ▸) are significant contributors to the overall electronic structure of the cation.
Table 1. Selected bond distances (Å).
The data for the monoclinic polymorph (IIIa) are taken from Yamuna et al. (2020 ▸), but with the atom labels adjusted to match those used for (I)–(III).
| Parameter | (I) | (II) | (III) | (IIIa) |
|---|---|---|---|---|
| N11—N12 | 1.362 (2) | 1.3467 (17) | 1.351 (4) | 1.358 (2) |
| N12—C13 | 1.338 (2) | 1.3340 (17) | 1.336 (4) | 1.347 (2) |
| C13—C14 | 1.402 (2) | 1.391 (2) | 1.393 (4) | 1.403 (3) |
| C14—C15 | 1.365 (3) | 1.366 (2) | 1.367 (5) | 1.372 (2) |
| C15—N11 | 1.331 (2) | 1.3187 (19) | 1.334 (4) | 1.329 (3) |
| C13—N131 | 1.348 (2) | 1.3480 (19) | 1.338 (4) | 1.338 (2) |
Figure 4.
The three canonical forms that contribute to the electronic structure of the cations in compounds (I)–(III).
Supramolecular features
The supramolecular assembly in compounds (I)–(III) is dominated by N—H⋯O Hydrogen bonds together with O—H⋯O hydrogen bonds in (I) and (II) (Table 2 ▸). For the two-centre interactions, those having D—H⋯A angles significantly less than 140° have been discounted, as the associated interaction energies are likely to be negligible (Wood et al., 2009 ▸). Such contacts are better regarded as adventitious contacts that arise within the supramolecular arrangements dominated by the significant hydrogen bonds.
The two ionic components in compound (I) are linked by two N—H⋯O hydrogen bonds, forming an
(8) ring (Etter, 1990 ▸; Etter et al., 1990 ▸; Bernstein et al., 1995 ▸), and a third N—H⋯O links the water component to the ion pair, forming a three-component aggregate (Fig. 1 ▸). The hydrogen-bonded supramolecular assembly in compound (I) is two-dimensional. The O—H⋯O hydrogen bond involving atom H31 (Table 2 ▸) links the aggregates which are related by translation along [010] to form a
(9)
(9)[
(8)] chain of rings. In addition, the N—H⋯O hydrogen bond involving atom H132 links the ion pairs that are related by translation along [001] into a
(10)
(12)[
(8)] chain of rings. The combination of these two chain motifs generates a sheet lying parallel to (100) and containing
(8) and
(32) rings (Fig. 5 ▸). Finally, the second O—H⋯O hydrogen bond involving atom H32 links pairs of such sheets, which are related by inversion, to form a complex bilayer.
Figure 5.
Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
The supramolecular assembly in compound (II) is relatively straightforward. The single O—H⋯O hydrogen bonds links the fumarate ions and the fumaric acid molecules into a chain running parallel to the [010] direction, in which the anions and neutral molecules alternate (Fig. 6 ▸). Two chains of this type, which are related to one another by the c-glide planes, pass through each unit cell and they are linked by the cations, via a combination of N—H⋯O hydrogen bonds, to form a sheet lying parallel to (102), within which rings of
(6),
(6),
(7) and
(22) types are present (Fig. 7 ▸).
Figure 6.

Part of the crystal structure of compound (II), showing the formation of a chain of alternating fumarate ions and fumaric acid molecules. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the cations and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 − x, −y, 1 − z), (x, 1 + y, z) and (1 − x, 2 − y, 1 − z), respectively. The atoms O21 and O31 (without symmetry symbols) are components of the reference species at (x, y, z).
Figure 7.

Part of the crystal structure of compound (II), showing the formation of a sheet lying parallel to (102). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the cations and the H atoms bonded to C atoms have been omitted.
The ionic components in compound (III) are linked by two N—H⋯O hydrogen bonds to form an ion pair containing an
(8) ring (Fig. 3 ▸). Ion pairs of this type are linked by one two-centre N—H⋯O hydrogen bond and one three-centre N—H⋯(O)2 system into a three-dimensional framework structure, whose formation is readily analysed in terms of three simple one-dimensional sub-structures (Ferguson et al., 1998a
▸,b
▸; Gregson et al., 2000 ▸). The two-centre N—H⋯O hydrogen bond, acting alone, links ion pairs that are related by the 21 screw axis along [001], forming a
(7)
(9)[
(8) chain of rings running parallel to [001] (Fig. 8 ▸). The three-centre N—H⋯(O)2 hydrogen bond links ion pairs that are related by the n-glide plane to form a chain of alternating
(4) and
(8) rings running parallel to the [011] direction (Fig. 9 ▸). When the two-centre and three-centre systems act alternately, they link the ion pairs into a chain of rings running parallel to the [102] direction (Fig. 10 ▸). The combination of the chains along [001], [011] and [102] suffices to link all of the components into a three-dimensional framework structure.
Figure 8.
Part of the crystal structure of compound (III), showing the formation of a chain of rings running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
Figure 9.
Part of the crystal structure of compound (III), showing the formation of a chain of rings running parallel to [011]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
Figure 10.
Part of the crystal structure of compound (III), showing the formation of a chain of rings running parallel to [102]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
Database survey
As noted above in Section 2, a monoclinic polymorph of the nitrate salt, denoted (IIIa) has recently been reported, but without any analysis or description of the supramolecular assembly (Yamuna et al., 2020 ▸). As found in the orthorhombic polymorph (III), the ions in (IIIa) are linked by two N—H⋯O hydrogen bonds to form an ion pair characterized by an
(8) motif. Two further N—H⋯O hydrogen bonds link these ion pairs into a sheet lying parallel to (10
), in which rings of
(8),
(14) and
(26) types are present (Fig. 11 ▸). Sheets of this type are linked by a C—H⋯O hydrogen bond to form a three-dimensional framework structure. In the picrate salt, the ions are linked into sheets by a combination of N—H⋯O and C—H⋯O hydrogen bonds (Infantes et al., 1999 ▸). In the hydrogen succinate salt, a combination of O—H⋯O and N—H⋯O hydrogen bonds links the ions into sheets containing
(8),
(12) and
(20) rings (Yamuna et al., 2014 ▸). The structure of the trifluoroacetate, which crystallizes with Z′ = 2, and with disorder in each of the independent anions, contains only N—H⋯O hydrogen bonds, which link the ions into complex sheets (Yamuna et al., 2013 ▸). We also note that the structure of tetrakis(3-amino-1H-pyrazol-2-ium) bis(μ-chloro)octachlorodibismuth, (C3H6N3)4(Bi2Cl10), has been reported (Ferjani & Boughzala, 2018 ▸).
Figure 11.
Part of the crystal structure of the monoclinic polymorph (IIIa) of 3-amino-1H-pyrazol-2-ium nitrate showing the formation of a hydrogen-bonded sheet parallel to (10
). The deposited coordinates (Yamuna et al., 2020 ▸) have been used. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
A number of structures have been reported in which fumarate dianions co-exist in equal numbers with neutral fumaric acid molecules, as found here for compound (II). Recently reported examples include the salts formed with 2-amino-5-methylpyridine (Hemamalini & Fun, 2010 ▸), N,N′,N′′-triisopropylguanidine (Said et al., 2012 ▸), 2-aminopyridine (Dong et al., 2013 ▸; Solovyov, 2016 ▸) and di-n-butylamine (Tang et al., 2015 ▸). We also note a rather earlier report on the structure of a salt formed by [tris(phenanthroline)cobalt(II)] in which all three possible forms fumarate(2−), hydrogenfumarate(1−) and neutral fumaric acid are present in the molar ratio 1:2:3 (Liu et al., 2003 ▸).
Synthesis and crystallization
The synthesis of compounds (I)–(III) employed commercially available 3-amino-1H-pyrazole, which was used as received. For the synthesis of compounds (I) and (II), a solution of 3-amino-1H-pyrazole (100 mg, 1.20 mmol) in ethanol (10 ml) was mixed with a solution of the appropriate acid, 3,5-dinitrobenzoic acid (255 mg, 20 mmol) for (I) or fumaric acid (139 mg, 1.20 mmol) for (II), also in methanol (10 ml): for (III), a dilute solution of nitric acid in methanol (1:3, v/v, 10 ml) was added to a solution of 3-amino-1H-pyrazole (100 mg, 1.20 mmol) in ethanol (10 ml). Each of these mixtures was stirred at ambient temperature for 15 min and then set aside to crystallize at ambient temperature and in the presence of air. After one week, the resulting crystals were collected by filtration and dried in air: m.p. (I) 418–423 K, (II) 383–388 K, (III) 385–390 K. Crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.
Refinement
Crystal data, data collection and refinement details are summarized in Table 3 ▸. For compound (I), one low-angle reflection (1,0,0) that had been attenuated by the beam stop was omitted from the refinement. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å and U iso(H) = 1.2U eq(C). For the H atoms bonded to N or O atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N) or 1.5U eq(O). In the absence of significant resonant scattering, it was not possible to determine the correct orientation of the structure of (III) relative to the polar axis direction, although this has no chemical significance.
Table 3. Experimental details.
| (I) | (II) | (III) | |
|---|---|---|---|
| Crystal data | |||
| Chemical formula | C7H3N2O6 +·C3H6N3 −·H2O | 2C3H6N3 +·C4H2O4 2−·C4H4O4 | C3H6N3 +·NO3 − |
| M r | 313.24 | 398.34 | 146.12 |
| Crystal system, space group | Triclinic, P
|
Monoclinic, P21/c | Orthorhombic, P n a21 |
| Temperature (K) | 296 | 296 | 296 |
| a, b, c (Å) | 6.6864 (7), 8.1857 (9), 12.649 (1) | 8.5410 (4), 14.0507 (7), 7.5137 (4) | 7.270 (1), 9.907 (2), 8.551 (2) |
| α, β, γ (°) | 79.424 (9), 85.583 (9), 75.586 (9) | 90, 98.827 (6), 90 | 90, 90, 90 |
| V (Å3) | 658.78 (12) | 891.02 (8) | 615.9 (2) |
| Z | 2 | 2 | 4 |
| Radiation type | Mo Kα | Mo Kα | Mo Kα |
| μ (mm−1) | 0.14 | 0.12 | 0.14 |
| Crystal size (mm) | 0.50 × 0.40 × 0.04 | 0.44 × 0.38 × 0.30 | 0.50 × 0.24 × 0.20 |
| Data collection | |||
| Diffractometer | Oxford Diffraction Xcalibur with Sapphire CCD | Oxford Diffraction Xcalibur with Sapphire CCD | Oxford Diffraction Xcalibur with Sapphire CCD |
| Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009 ▸) | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009 ▸) | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009 ▸) |
| T min, T max | 0.886, 0.995 | 0.897, 0.964 | 0.911, 0.973 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 4597, 2805, 2093 | 3658, 1909, 1413 | 2221, 942, 806 |
| R int | 0.014 | 0.016 | 0.020 |
| (sin θ/λ)max (Å−1) | 0.651 | 0.651 | 0.656 |
| Refinement | |||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.044, 0.114, 1.04 | 0.037, 0.110, 1.07 | 0.036, 0.092, 1.11 |
| No. of reflections | 2805 | 1909 | 942 |
| No. of parameters | 217 | 143 | 103 |
| No. of restraints | 0 | 0 | 1 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.21, −0.23 | 0.16, −0.17 | 0.15, −0.15 |
Supplementary Material
Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S2056989020015959/dx2033sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020015959/dx2033Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020015959/dx2033IIsup3.hkl
Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989020015959/dx2033IIIsup4.hkl
Supporting information file. DOI: 10.1107/S2056989020015959/dx2033Isup5.cml
Supporting information file. DOI: 10.1107/S2056989020015959/dx2033IIIsup6.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
SDA thanks the University of Mysore for research facilities.
supplementary crystallographic information
3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Crystal data
| C7H3N2O6+·C3H6N3−·H2O | Z = 2 |
| Mr = 313.24 | F(000) = 324 |
| Triclinic, P1 | Dx = 1.579 Mg m−3 |
| a = 6.6864 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 8.1857 (9) Å | Cell parameters from 2812 reflections |
| c = 12.649 (1) Å | θ = 2.6–27.8° |
| α = 79.424 (9)° | µ = 0.14 mm−1 |
| β = 85.583 (9)° | T = 296 K |
| γ = 75.586 (9)° | Plate, yellow |
| V = 658.78 (12) Å3 | 0.50 × 0.40 × 0.04 mm |
3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Data collection
| Oxford Diffraction Xcalibur with Sapphire CCD diffractometer | 2805 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 2093 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.014 |
| ω scans | θmax = 27.5°, θmin = 2.6° |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −8→8 |
| Tmin = 0.886, Tmax = 0.995 | k = −5→10 |
| 4597 measured reflections | l = −16→16 |
3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Refinement
| Refinement on F2 | Primary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2176P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max < 0.001 |
| 2805 reflections | Δρmax = 0.21 e Å−3 |
| 217 parameters | Δρmin = −0.23 e Å−3 |
| 0 restraints |
3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N11 | 0.1394 (3) | 0.94340 (19) | 0.24519 (12) | 0.0395 (4) | |
| H11 | 0.113 (3) | 1.014 (3) | 0.2934 (17) | 0.047* | |
| N12 | 0.1901 (2) | 0.77011 (18) | 0.27559 (11) | 0.0341 (3) | |
| H12 | 0.208 (3) | 0.716 (2) | 0.3528 (16) | 0.041* | |
| C13 | 0.2255 (3) | 0.6994 (2) | 0.18655 (13) | 0.0337 (4) | |
| C14 | 0.1959 (3) | 0.8317 (2) | 0.09726 (14) | 0.0427 (4) | |
| H14 | 0.2097 | 0.8204 | 0.0250 | 0.051* | |
| C15 | 0.1428 (3) | 0.9803 (2) | 0.13825 (15) | 0.0449 (5) | |
| H15 | 0.1136 | 1.0900 | 0.0978 | 0.054* | |
| N131 | 0.2838 (3) | 0.5283 (2) | 0.19133 (15) | 0.0499 (5) | |
| H131 | 0.293 (4) | 0.462 (3) | 0.255 (2) | 0.060* | |
| H132 | 0.293 (4) | 0.493 (3) | 0.134 (2) | 0.060* | |
| C21 | 0.2746 (3) | 0.3820 (2) | 0.60721 (13) | 0.0309 (4) | |
| C22 | 0.3285 (3) | 0.2041 (2) | 0.62773 (14) | 0.0344 (4) | |
| H22 | 0.3511 | 0.1424 | 0.5713 | 0.041* | |
| C23 | 0.3480 (3) | 0.1200 (2) | 0.73307 (14) | 0.0346 (4) | |
| C24 | 0.3153 (3) | 0.2053 (2) | 0.81972 (14) | 0.0347 (4) | |
| H24 | 0.3301 | 0.1471 | 0.8901 | 0.042* | |
| C25 | 0.2594 (3) | 0.3818 (2) | 0.79622 (13) | 0.0335 (4) | |
| C26 | 0.2404 (3) | 0.4721 (2) | 0.69249 (13) | 0.0335 (4) | |
| H26 | 0.2052 | 0.5911 | 0.6799 | 0.040* | |
| C27 | 0.2520 (3) | 0.4756 (2) | 0.49231 (13) | 0.0335 (4) | |
| O21 | 0.2332 (2) | 0.63592 (15) | 0.47770 (10) | 0.0440 (3) | |
| O22 | 0.2511 (2) | 0.39164 (17) | 0.42035 (10) | 0.0500 (4) | |
| N23 | 0.4084 (3) | −0.0685 (2) | 0.75456 (14) | 0.0476 (4) | |
| O23 | 0.4093 (4) | −0.14396 (19) | 0.67999 (14) | 0.0821 (6) | |
| O24 | 0.4524 (3) | −0.13973 (19) | 0.84632 (13) | 0.0700 (5) | |
| N25 | 0.2209 (3) | 0.4769 (2) | 0.88647 (12) | 0.0452 (4) | |
| O25 | 0.2652 (3) | 0.3964 (2) | 0.97622 (12) | 0.0811 (6) | |
| O26 | 0.1477 (3) | 0.63024 (19) | 0.86825 (12) | 0.0647 (5) | |
| O31 | 0.0837 (3) | 1.1210 (2) | 0.41012 (14) | 0.0608 (5) | |
| H31 | 0.140 (5) | 1.208 (4) | 0.409 (2) | 0.091* | |
| H32 | −0.017 (5) | 1.144 (4) | 0.440 (3) | 0.091* |
3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N11 | 0.0506 (10) | 0.0299 (8) | 0.0369 (8) | −0.0063 (7) | −0.0022 (7) | −0.0071 (6) |
| N12 | 0.0438 (9) | 0.0300 (7) | 0.0283 (7) | −0.0085 (6) | −0.0021 (6) | −0.0045 (6) |
| C13 | 0.0346 (9) | 0.0390 (9) | 0.0286 (8) | −0.0084 (7) | −0.0026 (7) | −0.0088 (7) |
| C14 | 0.0484 (12) | 0.0495 (11) | 0.0282 (9) | −0.0092 (9) | −0.0051 (8) | −0.0038 (8) |
| C15 | 0.0502 (12) | 0.0409 (11) | 0.0384 (10) | −0.0082 (9) | −0.0069 (8) | 0.0049 (8) |
| N131 | 0.0781 (13) | 0.0369 (9) | 0.0348 (9) | −0.0079 (8) | −0.0033 (9) | −0.0135 (7) |
| C21 | 0.0326 (9) | 0.0321 (9) | 0.0287 (8) | −0.0090 (7) | −0.0019 (7) | −0.0050 (6) |
| C22 | 0.0385 (10) | 0.0327 (9) | 0.0332 (9) | −0.0078 (7) | −0.0004 (7) | −0.0100 (7) |
| C23 | 0.0346 (10) | 0.0276 (8) | 0.0395 (9) | −0.0056 (7) | −0.0012 (7) | −0.0027 (7) |
| C24 | 0.0352 (10) | 0.0375 (9) | 0.0292 (8) | −0.0082 (7) | −0.0026 (7) | 0.0001 (7) |
| C25 | 0.0356 (10) | 0.0375 (9) | 0.0293 (8) | −0.0086 (7) | −0.0014 (7) | −0.0106 (7) |
| C26 | 0.0384 (10) | 0.0272 (8) | 0.0337 (9) | −0.0055 (7) | −0.0021 (7) | −0.0047 (7) |
| C27 | 0.0372 (10) | 0.0350 (9) | 0.0287 (8) | −0.0098 (7) | −0.0007 (7) | −0.0053 (7) |
| O21 | 0.0691 (9) | 0.0320 (7) | 0.0302 (6) | −0.0130 (6) | −0.0038 (6) | −0.0016 (5) |
| O22 | 0.0813 (11) | 0.0418 (7) | 0.0299 (7) | −0.0185 (7) | −0.0023 (6) | −0.0082 (6) |
| N23 | 0.0546 (11) | 0.0311 (8) | 0.0531 (10) | −0.0081 (7) | 0.0028 (8) | −0.0018 (7) |
| O23 | 0.1407 (18) | 0.0345 (8) | 0.0655 (11) | −0.0093 (9) | 0.0088 (11) | −0.0153 (8) |
| O24 | 0.0983 (14) | 0.0407 (8) | 0.0623 (10) | −0.0127 (8) | −0.0172 (9) | 0.0144 (7) |
| N25 | 0.0543 (11) | 0.0494 (10) | 0.0346 (8) | −0.0127 (8) | 0.0017 (7) | −0.0148 (7) |
| O25 | 0.1324 (17) | 0.0746 (12) | 0.0301 (8) | −0.0065 (11) | −0.0122 (9) | −0.0142 (7) |
| O26 | 0.0950 (13) | 0.0461 (9) | 0.0547 (9) | −0.0108 (8) | 0.0045 (8) | −0.0243 (7) |
| O31 | 0.0825 (13) | 0.0466 (9) | 0.0590 (10) | −0.0185 (9) | −0.0006 (8) | −0.0201 (7) |
3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Geometric parameters (Å, º)
| N11—C15 | 1.331 (2) | C22—H22 | 0.9300 |
| N11—N12 | 1.362 (2) | C23—C24 | 1.380 (2) |
| N11—H11 | 0.89 (2) | C23—N23 | 1.473 (2) |
| N12—C13 | 1.338 (2) | C24—C25 | 1.380 (2) |
| N12—H12 | 0.999 (19) | C24—H24 | 0.9300 |
| C13—N131 | 1.348 (2) | C25—C26 | 1.381 (2) |
| C13—C14 | 1.402 (2) | C25—N25 | 1.468 (2) |
| C14—C15 | 1.365 (3) | C26—H26 | 0.9300 |
| C14—H14 | 0.9300 | C27—O22 | 1.238 (2) |
| C15—H15 | 0.9300 | C27—O21 | 1.267 (2) |
| N131—H131 | 0.88 (2) | N23—O23 | 1.217 (2) |
| N131—H132 | 0.82 (3) | N23—O24 | 1.222 (2) |
| C21—C26 | 1.389 (2) | N25—O26 | 1.214 (2) |
| C21—C22 | 1.390 (2) | N25—O25 | 1.221 (2) |
| C21—C27 | 1.513 (2) | O31—H31 | 0.89 (3) |
| C22—C23 | 1.383 (2) | O31—H32 | 0.74 (3) |
| C15—N11—N12 | 108.82 (15) | C21—C22—H22 | 120.4 |
| C15—N11—H11 | 129.5 (13) | C24—C23—C22 | 122.72 (15) |
| N12—N11—H11 | 121.7 (13) | C24—C23—N23 | 118.18 (15) |
| C13—N12—N11 | 108.10 (14) | C22—C23—N23 | 119.10 (16) |
| C13—N12—H12 | 130.2 (11) | C23—C24—C25 | 116.41 (15) |
| N11—N12—H12 | 121.5 (11) | C23—C24—H24 | 121.8 |
| N12—C13—N131 | 121.65 (16) | C25—C24—H24 | 121.8 |
| N12—C13—C14 | 108.13 (15) | C24—C25—C26 | 123.17 (15) |
| N131—C13—C14 | 130.21 (17) | C24—C25—N25 | 117.91 (15) |
| C15—C14—C13 | 105.77 (16) | C26—C25—N25 | 118.91 (15) |
| C15—C14—H14 | 127.1 | C25—C26—C21 | 118.86 (15) |
| C13—C14—H14 | 127.1 | C25—C26—H26 | 120.6 |
| N11—C15—C14 | 109.19 (16) | C21—C26—H26 | 120.6 |
| N11—C15—H15 | 125.4 | O22—C27—O21 | 125.03 (16) |
| C14—C15—H15 | 125.4 | O22—C27—C21 | 118.32 (15) |
| C13—N131—H131 | 118.8 (15) | O21—C27—C21 | 116.64 (14) |
| C13—N131—H132 | 116.5 (17) | O23—N23—O24 | 123.95 (17) |
| H131—N131—H132 | 124 (2) | O23—N23—C23 | 117.99 (17) |
| C26—C21—C22 | 119.64 (15) | O24—N23—C23 | 118.06 (17) |
| C26—C21—C27 | 120.66 (15) | O26—N25—O25 | 123.56 (17) |
| C22—C21—C27 | 119.70 (15) | O26—N25—C25 | 118.69 (15) |
| C23—C22—C21 | 119.19 (16) | O25—N25—C25 | 117.74 (16) |
| C23—C22—H22 | 120.4 | H31—O31—H32 | 104 (3) |
| C15—N11—N12—C13 | 0.1 (2) | N25—C25—C26—C21 | −179.30 (15) |
| N11—N12—C13—N131 | 178.47 (17) | C22—C21—C26—C25 | −0.5 (3) |
| N11—N12—C13—C14 | −0.1 (2) | C27—C21—C26—C25 | 178.99 (15) |
| N12—C13—C14—C15 | 0.1 (2) | C26—C21—C27—O22 | −168.58 (17) |
| N131—C13—C14—C15 | −178.3 (2) | C22—C21—C27—O22 | 10.9 (3) |
| N12—N11—C15—C14 | 0.0 (2) | C26—C21—C27—O21 | 10.7 (2) |
| C13—C14—C15—N11 | 0.0 (2) | C22—C21—C27—O21 | −169.82 (16) |
| C26—C21—C22—C23 | −0.3 (3) | C24—C23—N23—O23 | 170.02 (19) |
| C27—C21—C22—C23 | −179.78 (16) | C22—C23—N23—O23 | −10.7 (3) |
| C21—C22—C23—C24 | 0.3 (3) | C24—C23—N23—O24 | −9.2 (3) |
| C21—C22—C23—N23 | −179.00 (16) | C22—C23—N23—O24 | 170.15 (18) |
| C22—C23—C24—C25 | 0.5 (3) | C24—C25—N25—O26 | −171.16 (18) |
| N23—C23—C24—C25 | 179.83 (15) | C26—C25—N25—O26 | 9.5 (3) |
| C23—C24—C25—C26 | −1.4 (3) | C24—C25—N25—O25 | 9.0 (3) |
| C23—C24—C25—N25 | 179.28 (16) | C26—C25—N25—O25 | −170.37 (19) |
| C24—C25—C26—C21 | 1.4 (3) |
3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O31—H31···O22i | 0.88 (3) | 1.87 (3) | 2.746 (2) | 175 (3) |
| O31—H32···O21ii | 0.75 (4) | 2.36 (3) | 2.989 (2) | 143 (3) |
| N131—H131···O22 | 0.88 (2) | 2.08 (2) | 2.920 (2) | 159 (2) |
| N131—H132···O25iii | 0.82 (2) | 2.31 (3) | 3.128 (2) | 171 (3) |
| N11—H11···O31 | 0.89 (2) | 1.83 (2) | 2.707 (2) | 169 (2) |
| N12—H12···O21 | 1.00 (2) | 1.60 (2) | 2.5981 (19) | 177.9 (18) |
| N12—H12···O22 | 1.00 (2) | 2.586 (17) | 3.244 (2) | 123.3 (13) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+2, −z+1; (iii) x, y, z−1.
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Crystal data
| 2C3H6N3+·C4H2O42−·C4H4O4 | F(000) = 416 |
| Mr = 398.34 | Dx = 1.485 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.5410 (4) Å | Cell parameters from 1910 reflections |
| b = 14.0507 (7) Å | θ = 3.1–27.9° |
| c = 7.5137 (4) Å | µ = 0.12 mm−1 |
| β = 98.827 (6)° | T = 296 K |
| V = 891.02 (8) Å3 | Block, yellow |
| Z = 2 | 0.44 × 0.38 × 0.30 mm |
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Data collection
| Oxford Diffraction Xcalibur with Sapphire CCD diffractometer | 1909 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 1413 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.016 |
| ω scans | θmax = 27.5°, θmin = 3.1° |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −10→8 |
| Tmin = 0.897, Tmax = 0.964 | k = −18→7 |
| 3658 measured reflections | l = −9→9 |
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0632P)2 + 0.0649P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.110 | (Δ/σ)max < 0.001 |
| S = 1.07 | Δρmax = 0.16 e Å−3 |
| 1909 reflections | Δρmin = −0.17 e Å−3 |
| 143 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.011 (3) |
| Primary atom site location: difference Fourier map |
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N11 | 0.99750 (15) | 0.35914 (9) | 0.31532 (18) | 0.0470 (3) | |
| H11 | 0.929 (2) | 0.4025 (13) | 0.350 (2) | 0.056* | |
| N12 | 0.96429 (14) | 0.26559 (9) | 0.32111 (17) | 0.0424 (3) | |
| H12 | 0.874 (2) | 0.2459 (12) | 0.355 (2) | 0.051* | |
| N131 | 1.08253 (19) | 0.11913 (10) | 0.2752 (2) | 0.0621 (4) | |
| H131 | 1.000 (3) | 0.0955 (15) | 0.298 (3) | 0.074* | |
| H132 | 1.147 (2) | 0.0843 (14) | 0.215 (3) | 0.074* | |
| C13 | 1.08323 (16) | 0.21506 (10) | 0.27297 (19) | 0.0409 (3) | |
| C14 | 1.19608 (17) | 0.27973 (11) | 0.2328 (2) | 0.0488 (4) | |
| H14 | 1.2919 | 0.2659 | 0.1943 | 0.059* | |
| C15 | 1.13683 (18) | 0.36775 (11) | 0.2619 (2) | 0.0515 (4) | |
| H15 | 1.1872 | 0.4251 | 0.2462 | 0.062* | |
| C21 | 0.66915 (15) | 0.41618 (9) | 0.45088 (19) | 0.0388 (3) | |
| O21 | 0.68480 (13) | 0.32808 (7) | 0.44357 (18) | 0.0628 (4) | |
| O22 | 0.77359 (11) | 0.47336 (7) | 0.41820 (16) | 0.0524 (3) | |
| C22 | 0.51841 (15) | 0.45462 (9) | 0.50057 (18) | 0.0384 (3) | |
| H22 | 0.4460 | 0.4114 | 0.5345 | 0.046* | |
| C31 | 0.63476 (16) | 0.10443 (10) | 0.4570 (2) | 0.0432 (4) | |
| O31 | 0.53859 (13) | 0.17395 (8) | 0.48097 (19) | 0.0656 (4) | |
| H31 | 0.580 (3) | 0.2323 (17) | 0.471 (3) | 0.098* | |
| O32 | 0.76437 (13) | 0.11540 (7) | 0.41269 (17) | 0.0590 (3) | |
| C32 | 0.57247 (16) | 0.00849 (10) | 0.4868 (2) | 0.0429 (4) | |
| H32 | 0.6409 | −0.0430 | 0.4868 | 0.051* |
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N11 | 0.0421 (7) | 0.0359 (7) | 0.0670 (8) | 0.0031 (5) | 0.0209 (6) | −0.0044 (6) |
| N12 | 0.0325 (6) | 0.0388 (7) | 0.0599 (8) | 0.0000 (5) | 0.0200 (5) | −0.0029 (5) |
| N131 | 0.0584 (9) | 0.0416 (8) | 0.0929 (12) | 0.0036 (6) | 0.0326 (8) | −0.0120 (7) |
| C13 | 0.0358 (7) | 0.0425 (8) | 0.0462 (8) | 0.0050 (6) | 0.0116 (6) | −0.0062 (6) |
| C14 | 0.0350 (7) | 0.0561 (10) | 0.0596 (9) | 0.0010 (6) | 0.0208 (7) | −0.0072 (7) |
| C15 | 0.0449 (8) | 0.0460 (9) | 0.0683 (10) | −0.0069 (6) | 0.0233 (7) | −0.0027 (7) |
| C21 | 0.0351 (7) | 0.0283 (7) | 0.0561 (8) | 0.0010 (5) | 0.0175 (6) | 0.0006 (6) |
| O21 | 0.0511 (6) | 0.0257 (5) | 0.1215 (10) | 0.0008 (4) | 0.0448 (7) | −0.0020 (5) |
| O22 | 0.0398 (5) | 0.0306 (5) | 0.0944 (8) | −0.0007 (4) | 0.0350 (5) | 0.0023 (5) |
| C22 | 0.0330 (6) | 0.0310 (6) | 0.0551 (8) | −0.0008 (5) | 0.0190 (6) | 0.0013 (6) |
| C31 | 0.0381 (7) | 0.0369 (8) | 0.0576 (9) | −0.0018 (6) | 0.0174 (6) | 0.0022 (6) |
| O31 | 0.0489 (7) | 0.0344 (6) | 0.1225 (11) | −0.0015 (5) | 0.0418 (7) | 0.0041 (6) |
| O32 | 0.0444 (6) | 0.0429 (6) | 0.0973 (9) | −0.0043 (5) | 0.0352 (6) | 0.0035 (6) |
| C32 | 0.0391 (7) | 0.0344 (7) | 0.0584 (9) | 0.0009 (6) | 0.0179 (6) | 0.0036 (6) |
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Geometric parameters (Å, º)
| N11—C15 | 1.3187 (19) | C21—O21 | 1.2472 (17) |
| N11—N12 | 1.3467 (17) | C21—O22 | 1.2525 (15) |
| N11—H11 | 0.910 (18) | C21—C22 | 1.4953 (17) |
| N12—C13 | 1.3340 (16) | C22—C22i | 1.313 (3) |
| N12—H12 | 0.888 (17) | C22—H22 | 0.9300 |
| N131—C13 | 1.3480 (19) | C31—O32 | 1.2136 (17) |
| N131—H131 | 0.82 (2) | C31—O31 | 1.3065 (18) |
| N131—H132 | 0.90 (2) | C31—C32 | 1.4789 (19) |
| C13—C14 | 1.391 (2) | O31—H31 | 0.90 (2) |
| C14—C15 | 1.366 (2) | C32—C32ii | 1.305 (3) |
| C14—H14 | 0.9300 | C32—H32 | 0.9300 |
| C15—H15 | 0.9300 | ||
| C15—N11—N12 | 107.69 (12) | N11—C15—H15 | 125.1 |
| C15—N11—H11 | 132.6 (11) | C14—C15—H15 | 125.1 |
| N12—N11—H11 | 119.7 (11) | O21—C21—O22 | 122.93 (12) |
| C13—N12—N11 | 109.74 (11) | O21—C21—C22 | 118.15 (11) |
| C13—N12—H12 | 129.7 (11) | O22—C21—C22 | 118.92 (12) |
| N11—N12—H12 | 120.5 (11) | C22i—C22—C21 | 124.31 (15) |
| C13—N131—H131 | 114.4 (15) | C22i—C22—H22 | 117.8 |
| C13—N131—H132 | 122.1 (13) | C21—C22—H22 | 117.8 |
| H131—N131—H132 | 119 (2) | O32—C31—O31 | 124.20 (14) |
| N12—C13—N131 | 121.59 (13) | O32—C31—C32 | 121.45 (13) |
| N12—C13—C14 | 107.03 (13) | O31—C31—C32 | 114.34 (12) |
| N131—C13—C14 | 131.33 (13) | C31—O31—H31 | 113.7 (15) |
| C15—C14—C13 | 105.71 (12) | C32ii—C32—C31 | 124.14 (17) |
| C15—C14—H14 | 127.1 | C32ii—C32—H32 | 117.9 |
| C13—C14—H14 | 127.1 | C31—C32—H32 | 117.9 |
| N11—C15—C14 | 109.82 (14) | ||
| C15—N11—N12—C13 | 0.58 (17) | C13—C14—C15—N11 | −0.23 (19) |
| N11—N12—C13—N131 | 177.04 (15) | O21—C21—C22—C22i | −174.42 (18) |
| N11—N12—C13—C14 | −0.71 (17) | O22—C21—C22—C22i | 5.4 (3) |
| N12—C13—C14—C15 | 0.57 (17) | O32—C31—C32—C32ii | −171.39 (19) |
| N131—C13—C14—C15 | −176.88 (17) | O31—C31—C32—C32ii | 8.1 (3) |
| N12—N11—C15—C14 | −0.20 (19) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O31—H31···O21 | 0.90 (2) | 1.65 (2) | 2.5370 (15) | 169 (2) |
| N11—H11···O21 | 0.910 (18) | 2.527 (17) | 3.0070 (17) | 113.4 (13) |
| N11—H11···O22 | 0.910 (18) | 1.796 (17) | 2.6989 (16) | 171.4 (17) |
| N12—H12···O21 | 0.892 (17) | 2.172 (17) | 2.8267 (17) | 129.7 (14) |
| N12—H12···O32 | 0.892 (17) | 2.133 (17) | 2.8641 (16) | 138.6 (15) |
| N131—H131···O32 | 0.82 (2) | 2.33 (3) | 3.052 (2) | 148 (2) |
| N131—H132···O22iii | 0.908 (19) | 2.03 (2) | 2.8922 (18) | 159.4 (17) |
Symmetry code: (iii) −x+2, y−1/2, −z+1/2.
3-Amino-1H-pyrazol-2-ium nitrate (III) . Crystal data
| C3H6N3+·NO3− | Dx = 1.576 Mg m−3 |
| Mr = 146.12 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pna21 | Cell parameters from 942 reflections |
| a = 7.270 (1) Å | θ = 3.2–27.8° |
| b = 9.907 (2) Å | µ = 0.14 mm−1 |
| c = 8.551 (2) Å | T = 296 K |
| V = 615.9 (2) Å3 | Needle, yellow |
| Z = 4 | 0.50 × 0.24 × 0.20 mm |
| F(000) = 304 |
3-Amino-1H-pyrazol-2-ium nitrate (III) . Data collection
| Oxford Diffraction Xcalibur with Sapphire CCD diffractometer | 942 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 806 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.020 |
| ω scans | θmax = 27.8°, θmin = 3.2° |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −5→9 |
| Tmin = 0.911, Tmax = 0.973 | k = −12→12 |
| 2221 measured reflections | l = −11→4 |
3-Amino-1H-pyrazol-2-ium nitrate (III) . Refinement
| Refinement on F2 | Primary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.055P)2 + 0.0228P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.11 | (Δ/σ)max < 0.001 |
| 942 reflections | Δρmax = 0.15 e Å−3 |
| 103 parameters | Δρmin = −0.15 e Å−3 |
| 1 restraint |
3-Amino-1H-pyrazol-2-ium nitrate (III) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
3-Amino-1H-pyrazol-2-ium nitrate (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N11 | 0.4618 (4) | 0.1812 (2) | 0.6198 (4) | 0.0508 (6) | |
| H11 | 0.503 (5) | 0.195 (3) | 0.721 (6) | 0.061* | |
| N12 | 0.4203 (3) | 0.2766 (2) | 0.5126 (3) | 0.0439 (6) | |
| H12 | 0.431 (4) | 0.352 (4) | 0.528 (4) | 0.053* | |
| C13 | 0.3503 (3) | 0.2185 (3) | 0.3849 (3) | 0.0397 (6) | |
| C14 | 0.3453 (4) | 0.0800 (2) | 0.4129 (4) | 0.0445 (7) | |
| H14 | 0.3025 | 0.0135 | 0.3454 | 0.053* | |
| C15 | 0.4162 (4) | 0.0616 (3) | 0.5595 (5) | 0.0522 (8) | |
| H15 | 0.4303 | −0.0212 | 0.6092 | 0.063* | |
| N131 | 0.2968 (4) | 0.2904 (3) | 0.2604 (4) | 0.0577 (7) | |
| H131 | 0.349 (5) | 0.370 (5) | 0.246 (5) | 0.069* | |
| H132 | 0.264 (5) | 0.249 (4) | 0.183 (6) | 0.069* | |
| N21 | 0.3928 (3) | 0.6297 (2) | 0.4171 (3) | 0.0451 (6) | |
| O21 | 0.3536 (3) | 0.56587 (19) | 0.5376 (3) | 0.0641 (7) | |
| O22 | 0.4480 (3) | 0.57038 (18) | 0.2981 (3) | 0.0560 (6) | |
| O23 | 0.3784 (4) | 0.75575 (19) | 0.4165 (3) | 0.0699 (7) |
3-Amino-1H-pyrazol-2-ium nitrate (III) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N11 | 0.0619 (14) | 0.0457 (13) | 0.0448 (15) | −0.0068 (10) | −0.0035 (13) | −0.0023 (12) |
| N12 | 0.0500 (13) | 0.0315 (10) | 0.0501 (15) | −0.0048 (9) | 0.0029 (13) | −0.0092 (12) |
| C13 | 0.0375 (11) | 0.0358 (12) | 0.0457 (18) | −0.0010 (10) | 0.0045 (11) | −0.0072 (13) |
| C14 | 0.0480 (13) | 0.0321 (13) | 0.0534 (18) | −0.0053 (11) | 0.0010 (15) | −0.0091 (12) |
| C15 | 0.0575 (16) | 0.0362 (13) | 0.063 (2) | −0.0052 (12) | 0.0044 (16) | 0.0008 (14) |
| N131 | 0.0694 (16) | 0.0474 (15) | 0.0562 (18) | −0.0059 (12) | −0.0124 (14) | −0.0010 (13) |
| N21 | 0.0601 (13) | 0.0324 (11) | 0.0427 (13) | 0.0020 (9) | −0.0002 (12) | 0.0005 (12) |
| O21 | 0.1067 (18) | 0.0398 (10) | 0.0457 (13) | 0.0027 (10) | 0.0150 (14) | 0.0043 (10) |
| O22 | 0.0818 (14) | 0.0380 (10) | 0.0482 (13) | −0.0002 (9) | 0.0104 (12) | −0.0067 (10) |
| O23 | 0.1188 (18) | 0.0274 (9) | 0.0635 (16) | 0.0089 (10) | 0.0148 (15) | −0.0002 (11) |
3-Amino-1H-pyrazol-2-ium nitrate (III) . Geometric parameters (Å, º)
| N11—C15 | 1.334 (4) | C14—H14 | 0.9300 |
| N11—N12 | 1.351 (4) | C15—H15 | 0.9300 |
| N11—H11 | 0.93 (5) | N131—H131 | 0.88 (4) |
| N12—C13 | 1.336 (4) | N131—H132 | 0.82 (5) |
| N12—H12 | 0.76 (4) | N21—O22 | 1.241 (4) |
| C13—N131 | 1.338 (4) | N21—O21 | 1.242 (3) |
| C13—C14 | 1.393 (4) | N21—O23 | 1.253 (3) |
| C14—C15 | 1.367 (5) | ||
| C15—N11—N12 | 107.7 (3) | C13—C14—H14 | 126.9 |
| C15—N11—H11 | 125 (2) | N11—C15—C14 | 109.3 (3) |
| N12—N11—H11 | 127 (2) | N11—C15—H15 | 125.4 |
| C13—N12—N11 | 109.8 (2) | C14—C15—H15 | 125.4 |
| C13—N12—H12 | 127 (3) | C13—N131—H131 | 118 (3) |
| N11—N12—H12 | 123 (3) | C13—N131—H132 | 117 (3) |
| N12—C13—N131 | 122.1 (2) | H131—N131—H132 | 118 (4) |
| N12—C13—C14 | 107.1 (3) | O22—N21—O21 | 120.9 (2) |
| N131—C13—C14 | 130.8 (3) | O22—N21—O23 | 119.7 (3) |
| C15—C14—C13 | 106.2 (3) | O21—N21—O23 | 119.4 (3) |
| C15—C14—H14 | 126.9 | ||
| C15—N11—N12—C13 | −0.5 (3) | N131—C13—C14—C15 | −179.6 (3) |
| N11—N12—C13—N131 | 179.8 (3) | N12—N11—C15—C14 | 0.1 (3) |
| N11—N12—C13—C14 | 0.6 (3) | C13—C14—C15—N11 | 0.3 (3) |
| N12—C13—C14—C15 | −0.6 (3) |
3-Amino-1H-pyrazol-2-ium nitrate (III) . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N11—H11···O22i | 0.93 (5) | 2.44 (3) | 2.968 (3) | 116 (3) |
| N11—H11···O23i | 0.93 (5) | 1.94 (5) | 2.860 (4) | 170 (3) |
| N12—H12···O21 | 0.76 (4) | 2.19 (4) | 2.914 (3) | 158 (3) |
| N12—H12···O22i | 0.76 (4) | 2.59 (3) | 3.029 (3) | 119 (3) |
| N131—H131···O22 | 0.88 (5) | 2.16 (5) | 3.001 (4) | 159 (4) |
| N131—H132···O21ii | 0.81 (5) | 2.36 (4) | 3.126 (4) | 157 (4) |
| N131—H132···O23ii | 0.81 (5) | 2.50 (5) | 3.223 (4) | 148 (4) |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) −x+1/2, y−1/2, z−1/2.
Funding Statement
This work was funded by University Grants Commission grant .
References
- Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.
- Asma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783–1789. [DOI] [PMC free article] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Dong, S., Tao, Y., Shen, X. & Pan, Z. (2013). Acta Cryst. C69, 896–900. [DOI] [PubMed]
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Feng, Y., Guan, H., Kan, Y., Ioannidis, S., Peng, B., Su, M., Wang, B., Wang, T. & Zhang, H.-J. (2008). US Patent US20080287475A1.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
- Ferjani, H. & Boughzala, H. (2018). Russ. J. Inorg. Chem. 63, 349–356.
- Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093–o2094. [DOI] [PMC free article] [PubMed]
- Infantes, L., Foces-Foces, C., Claramunt, R. M., López, C. & Eiguero, J. (1999). J. Heterocycl. Chem. 36, 595–600.
- Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–210. [DOI] [PMC free article] [PubMed]
- Kiran Kumar, H., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 683–691. [DOI] [PMC free article] [PubMed]
- Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Said, F. F., Ali, B. F., Richeson, D. & Korobkov, I. (2012). Acta Cryst. E68, o1906. [DOI] [PMC free article] [PubMed]
- Shaibah, M. A. E., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020b). Acta Cryst. E76, 360–365. [DOI] [PMC free article] [PubMed]
- Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 48–52. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shreekanth, T. K., Yathirajan, H. S., Kalluraya, B., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1605–1610. [DOI] [PMC free article] [PubMed]
- Solovyov, L. A. (2016). Acta Cryst. B72, 738–743. [DOI] [PubMed]
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Tang, Y., Sun, Z., Ji, C., Li, L., Zhang, S., Chen, T. & Luo, J. (2015). Cryst. Growth Des. 15, 457–464.
- Velcicky, J., Feifel, R., Hawtin, S., Heng, R., Huppertz, C., Koch, G., Kroemer, M., Moebitz, H., Revesz, L., Scheufler, C. & Schlapbach, A. (2010). Bioorg. Med. Chem. Lett. 20, 1293–1297. [DOI] [PubMed]
- Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.
- Yamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425–o1426. [DOI] [PMC free article] [PubMed]
- Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o221–o222. [DOI] [PMC free article] [PubMed]
- Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S2056989020015959/dx2033sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020015959/dx2033Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020015959/dx2033IIsup3.hkl
Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989020015959/dx2033IIIsup4.hkl
Supporting information file. DOI: 10.1107/S2056989020015959/dx2033Isup5.cml
Supporting information file. DOI: 10.1107/S2056989020015959/dx2033IIIsup6.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report










