In the crystal of the title compound, corrugated layers of molecules extending along the ab plane are generated by C—H⋯O hydrogen bonds.
Keywords: crystal structure, Covid-19, DFT, Hirshfeld surface analysis, oxazolidine, quinoline, Molecular docking
Abstract
In the molecular structure of the title compound, C20H21N3O7, the quinoline ring system is slightly bent, with a dihedral angle between the phenyl and the pyridine rings of 3.47 (7)°. In the crystal, corrugated layers of molecules extending along the ab plane are generated by C—H⋯O hydrogen bonds. The intermolecular interactions were quantified by Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are from H⋯H (42.3%), H⋯O/O⋯H (34.5%) and H⋯C/ C⋯H (17.6%) contacts. Molecular orbital calculations providing electron-density plots of the HOMO and LUMO as well as molecular electrostatic potentials (MEP) were computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set. A molecular docking study between the title molecule and the COVID-19 main protease (PDB ID: 6LU7) was performed, showing that it is a good agent because of its affinity and ability to adhere to the active sites of the protein.
Chemical context
Quinoline and its derivatives have attracted the interest of synthetic and biological chemists because of their interesting chemical and pharmacological properties (Chu et al., 2019 ▸), including antibacterial (Bouzian et al., 2020 ▸), anticancer (Tang et al., 2018 ▸), antitubercular (Xu et al., 2017 ▸), anti-COVID19 (Gao et al., 2020 ▸), antimalarial (Hu et al., 2017 ▸), antileishmanial (Palit et al., 2009 ▸) and anti-inflammatory (Pinz et al., 2016 ▸) activities. Furthermore, many studies have shown that quinoline derivatives are good corrosion inhibitors (Douche et al. 2020 ▸).
In a continuation of our research work devoted to the syntheses and crystal structures of quinoline derivatives (Bouzian et al., 2019a ▸), we report herein the molecular and crystal structures, Hirshfeld surface analysis, DFT and molecular docking investigation of 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl 2-[2-(2-oxo-1,3-oxazolidin-3-yl)ethoxy]quinoline-4-carboxylate.
Structural commentary
In the title molecule (Fig. 1 ▸), the phenyl and pyridine rings of the quinoline system are slightly bent, with a dihedral angle between their mean planes of 3.47 (7)°. The oxazolidine ring (N2/O2/C12–C14) adopts an envelope conformation, with puckering parameters of Q(2) = 0.112 (2) Å and φ(2) = 115.3 (10)°. The C14 atom is at the envelope flap position, and it deviates from the least-square plane through the remaining four atoms by 0.070 (2) Å. The other oxazolidine ring (N3/O7/C18–C20) has a twisted conformation along the C20—C19 bond, with puckering parameters Q(2) = 0.1732 (18) Å and φ(2) = 299.7 (6)°. The dihedral angles between the mean planes of the oxazolidine rings and the quinoline ring systems are 38.04 (9)° for (N2/O2/C12–C14) and 57.34 (8)° for (N3/O7/C18–C20). The molecular conformation is stabilized by an intramolecular C20—H20B⋯O4 contact (Fig. 1 ▸, Table 1 ▸), producing an S(8) ring motif.
Figure 1.
The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is indicated by a dashed line.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C2—H2⋯O4 | 0.969 (19) | 2.335 (18) | 2.919 (2) | 118.1 (13) |
| C20—H20B⋯O4 | 0.98 (2) | 2.52 (2) | 3.275 (2) | 133.7 (15) |
| C11—H11A⋯O3i | 1.026 (19) | 2.486 (19) | 3.262 (2) | 131.8 (13) |
| C17—H17A⋯O6ii | 0.98 (2) | 2.53 (2) | 3.219 (2) | 127.0 (15) |
| C19—H19B⋯O3iii | 0.90 (3) | 2.51 (3) | 3.157 (2) | 129 (2) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Supramolecular features
In the crystal, C11—H11A⋯O3i and C17—H17A⋯O6ii hydrogen bonds between methylene groups and carbonyl O atoms as well as C19—H19B⋯O3iii hydrogen bonds lead to the formation of corrugated layers extending parallel to (001) (Fig. 2 ▸, Table 1 ▸). Notable C—H⋯π and π–π interactions are not observed.
Figure 2.
The crystal packing of the title compound, with C11—H11A⋯O3i, C17—H17A⋯O6ii and C19—H19B⋯O3iii interactions shown as black, blue and green dashed lines, respectively.
Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016 ▸) using ethyl quinoline-4-carboxylate as the main skeleton revealed the presence of ten structures with different substituents on the quinoline ring. The three structures most similar to the title compound are ethyl 2-(2,4,5-trimethoxyphenyl)quinoline-4-carboxylate (OJAGUD; Shrungesh Kumar et al., 2015 ▸), ethyl 2-(3,5-difluorophenyl)quinoline-4-carboxylate (UHUHAI; Sunitha et al., 2015 ▸) and ethyl 6-chloro-2-ethoxyquinoline-4-carboxylate (XOFGAD; Bouzian et al., 2019b ▸). In OJAGUD, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.028 Å) and the trimethoxybenzene ring is 43.38 (5)°. A short intramolecular C—H⋯O contact closes an S(6) ring. In the crystal structure, inversion dimers linked by pairs of weak C—H⋯O interactions generate R 2 2(6) loops. In UHUHAI, the two rings of the quinoline system have a dihedral angle of 2.28 (8)° between their mean planes. The plane of the attached benzene ring is inclined to the plane of the quinoline system by 7.65 (7)°. There is a short intramolecular C—H⋯O contact involving the carbonyl group. In XOFGAD, the molecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-ethoxyquinoline mean plane. There is an intramolecular C— H⋯O hydrogen bond forming an S(6) graph-set motif. Weak intermolecular π–π interactions are observed in this crystal structure.
Hirshfeld surface analysis
Hirshfeld surface analysis was used to quantify the intermolecular contacts of the title compound, using Crystal Explorer (Turner et al., 2017 ▸). The Hirshfeld surface was generated with a standard (high) surface resolution and with the three-dimensional d norm surface plotted over a fixed colour scale of −0.1538 (red) to 1.1337 (blue) a.u. (Fig. 3 ▸ a). The pale-red spots symbolize short contacts and negative d norm values on the surface and correspond to the C—H⋯O interactions (Table 1 ▸). The shape-index map of the title molecule was generated in the range −1 to 1 Å (Fig. 3 ▸ b). The convex blue regions symbolize hydrogen-donor groups and the concave red regions hydrogen-acceptor groups. The absence of adjacent red and blue triangles in the shape-index map, which generally indicate π–π interactions, reveals that this kind of interaction is not present in the title compound. The curvedness map was generated in the range −4.0 to 4.0 Å (Fig. 3 ▸ c). It shows large regions of green with a relatively flat (i.e. planar) surface area while the blue regions demonstrate areas of curvature. The overall two-dimensional fingerprint plot is illustrated in Fig. 4 ▸ a, with those delineated into H⋯H, H⋯O/O⋯H, H⋯C/ C⋯H, H⋯N/N⋯H and C⋯N/N⋯C contacts associated with their relative contributions to the Hirshfeld surface given in Fig. 4 ▸ a–f, respectively. The most important intermolecular interactions are H⋯H, contributing 42.3% to the overall crystal packing. H⋯O/O⋯H contacts arising from intermolecular C—H⋯O hydrogen bonding (Table 1 ▸) make a 34.5% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region d e + d i ∼2.35 Å (Fig. 4 ▸ c). The pair of wings in the fingerprint plot delineated into H⋯C/ C⋯H contacts (17.6% contribution to the Hirshfeld surface) have a nearly symmetrical distribution of points, with the tips at d e + d i ∼2.54 Å. The contributions of the other contacts to the Hirshfeld surface are negligible, i.e. H⋯N/N⋯H of 2.0% and C⋯N/N⋯C of 1.2%.
Figure 3.
(a) d norm mapped on the Hirshfeld surface to visualize the intermolecular interactions, (b) shape-index map of the title compound and (c) curvedness map of the title compound using a range from −4 to 4 Å.
Figure 4.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/ C⋯H, (e) H⋯N/N⋯H and (f) C⋯N/N⋯C interactions.
Frontier molecular orbital analyses
The energy levels for the title compound were computed on basis of density functional theory (DFT) using the standard B3LYP functional and 6–311G++ (d,p) basis-set calculations (Becke, 1993 ▸) as implemented in GAUSSIAN 09 (Frisch et al., 2009 ▸). The HOMO (highest occupied molecular orbital) acts as an electron donor and the LUMO (lowest occupied molecular orbital) as an electron acceptor. The energy levels, energy gaps, the ionization potential (IP), electron affinity (EA), the chemical potential (μ), the electronegativity (χ), chemical hardness (η), chemical softness (σ), and the electrophilicity index (ω) are given in Table 2 ▸. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5 ▸. If a molecule has a large HOMO–LUMO energy gap, it can be considered as hard with a low polarizability and a low chemical reactivity. Based on the numerical values collated in Table 2 ▸, the title compound can be classified as a hard material with a HOMO–LUMO energy gap of 4.2907 eV.
Table 2. Calculated frontier molecular orbital energies (eV).
| FMO | Energy |
|---|---|
| E(HOMO) | −6.2102 |
| E(LUMO) | −1.9195 |
| Energy gap (ΔE) | 4.2907 |
| Ionization potential (IP) | 6.2102 |
| Electron affinity (EA) | 1.9195 |
| Chemical potential (μ) | –4.0649 |
| Electronegativity (χ) | 4.0649 |
| Chemical hardness (η) | 2.1454 |
| Chemical softness (σ) | 0.2331 |
| Electrophilicity index (ω) | 3.8509 |
Figure 5.
Molecular orbital energy levels of the title compound.
Molecular electrostatic potentials
The molecular electrostatic potential (MEP) map (Fig. 6 ▸) was calculated at the B3LYP/6-311G++ (d,p) level of theory. In the MEP diagram, the molecular electrostatic potential is in the range −7.122 e−2 to 7.122 e−2, and the different electrostatic potentials at the surface of the molecule are represented by different colours. Electrostatic potentials increase in the order of red < yellow < green < blue, and red indicates the electron-rich region and blue indicates the electron-deficient region. As shown in Fig. 6 ▸, the carbonyl groups are surrounded by negative charges, indicating some possible nucleophilic attack sites. In addition, the positive charge regions are located on the H atoms.
Figure 6.
Theoretical molecular electrostatic potential surface calculated at the DFT/B3LYP/6–311 G++ (d,p) basis set level.
Molecular docking study
A molecular docking study was performed to determine possible intermolecular interactions between the COVID-19 main protease (PDB ID: 6LU7) and the title molecule. The crystal structure of COVID-19 main protease in a complex with an inhibitor N3 was taken from the RSCB Protein Data Bank (PDB ID: 6LU7; Jin et al., 2020 ▸). The molecular docking study was carried out using PyRx AutoDock Vina Wizard. The intermolecular interactions between the title compound and the target protein were visualized by using the Discovery Studio 2020 Client program (Biovia, 2017 ▸). The active sites of this target protein are residues LYS102, VAL104, GLN110, THR111, ASN151, ASP153 and SER158. Grid box sizes were determined as 25 × 25 × 25 Å3 and x, y, z centers: −10.865636, 12.146782, and 68.902236. The binding affinity energy values and their r.m.s.d. (root-mean-square deviation) values for nine different poses of the ligand docked onto receptor 6LU7 are listed in Table 3 ▸. According to the affinity binding energies, the best binding was determined with −6.3 (kcal mol−1) energy and nine active hydrogen-bonding sites. The 2D and 3D visuals of the intermolecular interactions for the best binding pose of the title compound docked into macromolecule 6LU7 can be seen in Fig. 7 ▸. Table 4 ▸ lists details of intermolecular hydrogen-bonding interactions between the title molecule and the macromolecule 6LU7. Additionally in Fig. 7 ▸, π–σ and alkyl interactions and their bonding distances are shown. The title molecule appears to be a good agent because of its affinity and ability to adhere to the active sites of the protein.
Table 3. The list of binding affinities and r.m.s.d. values of different sites in protein (6LU7) of the title compound.
| Ligand | Affinity (kcal mol−1) | r.m.s.d./ub | r.m.s.d./Ib |
|---|---|---|---|
| 6LU7_ligand | −6.3 | 0.0 | 0.0 |
| 6LU7_ligand | −6.1 | 4.8 | 2.164 |
| 6LU7_ligand | −5.8 | 20.521 | 17.722 |
| 6LU7_ligand | −5.7 | 20.874 | 18.477 |
| 6LU7_ligand | −5.7 | 20.28 | 17.737 |
| 6LU7_ligand | −5.6 | 21.789 | 19.301 |
| 6LU7_ligand | −5.6 | 20.948 | 18.265 |
| 6LU7_ligand | −5.5 | 21.63 | 19.349 |
| 6LU7_ligand | −5.4 | 21.972 | 19.381 |
Figure 7.
Three- and two-dimensional visuals of the intermolecular interactions for the best binding pose of the title compound docking with the residues of macromolecule 6LU7.
Table 4. The intermolecular hydrogen-bonding interactions with the distances (Å) between the title molecule and the macromolecule 6LU7.
| Residue group | Ligand group | Distance | Hydrogen bond |
|---|---|---|---|
| NH3 group in LYS102 | O atom in ethyl acetate | 2.55 | Conventional |
| NH2 group in GLN110 | O atom in oxazolidine | 2.55 | Conventional |
| NH group in THR111 | O atom in oxazolidine | 1.92 | Conventional |
| OH group in THR111 | O atom in oxazolidine | 2.28 | Conventional |
| O atom in THR111 | CH2 group in 1-methoxypropane | 3.55 | Carbon |
| NH2 group in ASN151 | O atom in 1-methoxypropane | 2.71 | Conventional |
| O atom in ASP153 | CH2 group in ethyl acetate | 2.79 | Carbon |
| OH group in SER158 | O atom in ethyl acetate | 2.12 | Conventional |
| OH group in SER158 | O atom in oxazolidine | 2.60 | Conventional |
Synthesis and crystallization
A solution of 0.8 g (4.23 mmol) of 2-oxo-1,2-dihydroquinoline-4-carboxylic acid in 30 ml of DMF was mixed with 1.5 g (8.46 mmol) bis(2-chloroethyl)amine hydrochloride, 2.33 g (16,92 mmol) K2CO3 and 0.13 g (0.423 mmol) tetra-n-butylammonium bromide (TBAB). The reaction mixture was stirred at 363 K for 9 h in DMF. After removal of formed salts by filtration, DMF was evaporated under reduced pressure, and the residue obtained was dissolved in dichloromethane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. The resulting mixture was chromatographed on a silica gel column [eluent: ethyl acetate/hexane (2/8 v/v)]. Colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 5 ▸. Hydrogen atoms were discernible from difference Fourier maps and were refined freely.
Table 5. Experimental details.
| Crystal data | |
| Chemical formula | C20H21N3O7 |
| M r | 415.40 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 150 |
| a, b, c (Å) | 6.0686 (5), 19.2791 (15), 16.3795 (13) |
| β (°) | 94.185 (4) |
| V (Å3) | 1911.2 (3) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 0.93 |
| Crystal size (mm) | 0.23 × 0.08 × 0.05 |
| Data collection | |
| Diffractometer | Bruker D8 VENTURE PHOTON 100 CMOS |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 14512, 3711, 3072 |
| R int | 0.042 |
| (sin θ/λ)max (Å−1) | 0.618 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.038, 0.094, 1.05 |
| No. of reflections | 3711 |
| No. of parameters | 356 |
| H-atom treatment | All H-atom parameters refined |
| Δρmax, Δρmin (e Å−3) | 0.22, −0.19 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020015960/wm5588sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020015960/wm5588Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020015960/wm5588Isup3.cml
CCDC reference: 2048734
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C20H21N3O7 | F(000) = 872 |
| Mr = 415.40 | Dx = 1.444 Mg m−3 |
| Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
| a = 6.0686 (5) Å | Cell parameters from 9277 reflections |
| b = 19.2791 (15) Å | θ = 3.6–72.3° |
| c = 16.3795 (13) Å | µ = 0.93 mm−1 |
| β = 94.185 (4)° | T = 150 K |
| V = 1911.2 (3) Å3 | Column, colourless |
| Z = 4 | 0.23 × 0.08 × 0.05 mm |
Data collection
| Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3711 independent reflections |
| Radiation source: INCOATEC IµS micro–focus source | 3072 reflections with I > 2σ(I) |
| Detector resolution: 10.4167 pixels mm-1 | Rint = 0.042 |
| ω scans | θmax = 72.3°, θmin = 3.6° |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −7→6 |
| k = −21→23 | |
| 14512 measured reflections | l = −20→18 |
Refinement
| Refinement on F2 | Hydrogen site location: difference Fourier map |
| Least-squares matrix: full | All H-atom parameters refined |
| R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.6581P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.094 | (Δ/σ)max < 0.001 |
| S = 1.05 | Δρmax = 0.22 e Å−3 |
| 3711 reflections | Δρmin = −0.19 e Å−3 |
| 356 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.0026 (2) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.37759 (18) | 0.21379 (5) | 0.57549 (6) | 0.0312 (3) | |
| O2 | 0.7629 (2) | 0.08767 (7) | 0.44369 (8) | 0.0493 (3) | |
| O3 | 0.7633 (2) | 0.07204 (8) | 0.57987 (8) | 0.0506 (3) | |
| O4 | 1.1362 (2) | 0.34395 (7) | 0.75827 (7) | 0.0530 (4) | |
| O5 | 1.07647 (17) | 0.32859 (5) | 0.62287 (6) | 0.0297 (2) | |
| O6 | 0.68920 (19) | 0.45136 (7) | 0.59441 (7) | 0.0426 (3) | |
| O7 | 0.76696 (19) | 0.50976 (7) | 0.71190 (7) | 0.0410 (3) | |
| N1 | 0.4550 (2) | 0.18848 (6) | 0.71212 (8) | 0.0307 (3) | |
| N2 | 0.4425 (2) | 0.08645 (7) | 0.49889 (8) | 0.0292 (3) | |
| N3 | 1.0450 (2) | 0.48184 (6) | 0.63804 (8) | 0.0284 (3) | |
| C1 | 0.7992 (3) | 0.23409 (7) | 0.78094 (9) | 0.0275 (3) | |
| C2 | 0.9438 (3) | 0.23392 (9) | 0.85269 (10) | 0.0355 (4) | |
| C3 | 0.8913 (3) | 0.19732 (9) | 0.92045 (10) | 0.0410 (4) | |
| C4 | 0.6930 (3) | 0.16004 (9) | 0.92016 (10) | 0.0409 (4) | |
| C5 | 0.5501 (3) | 0.15931 (9) | 0.85188 (10) | 0.0367 (4) | |
| C6 | 0.6007 (3) | 0.19519 (8) | 0.78029 (9) | 0.0295 (3) | |
| C7 | 0.5068 (2) | 0.21938 (7) | 0.64584 (9) | 0.0273 (3) | |
| C8 | 0.6967 (3) | 0.26216 (7) | 0.63962 (9) | 0.0270 (3) | |
| C9 | 0.8405 (3) | 0.27009 (7) | 0.70638 (9) | 0.0263 (3) | |
| C10 | 0.2011 (3) | 0.16344 (8) | 0.57237 (10) | 0.0316 (3) | |
| C11 | 0.2925 (3) | 0.09066 (8) | 0.56362 (10) | 0.0296 (3) | |
| C12 | 0.6613 (3) | 0.08141 (8) | 0.51449 (10) | 0.0343 (4) | |
| C13 | 0.5965 (4) | 0.09582 (12) | 0.37669 (12) | 0.0521 (5) | |
| C14 | 0.3811 (4) | 0.10463 (13) | 0.41522 (11) | 0.0503 (5) | |
| C15 | 1.0341 (3) | 0.31748 (8) | 0.70093 (9) | 0.0296 (3) | |
| C16 | 1.2533 (3) | 0.37628 (8) | 0.60659 (10) | 0.0307 (3) | |
| C17 | 1.1579 (3) | 0.44476 (8) | 0.57658 (10) | 0.0305 (3) | |
| C18 | 0.8247 (2) | 0.47778 (8) | 0.64262 (9) | 0.0293 (3) | |
| C19 | 0.9624 (4) | 0.54073 (12) | 0.75294 (14) | 0.0536 (5) | |
| C20 | 1.1552 (3) | 0.50923 (9) | 0.71305 (11) | 0.0368 (4) | |
| H2 | 1.087 (3) | 0.2562 (10) | 0.8534 (10) | 0.035 (5)* | |
| H3 | 0.995 (4) | 0.1973 (11) | 0.9668 (13) | 0.051 (6)* | |
| H4 | 0.662 (3) | 0.1323 (10) | 0.9671 (12) | 0.044 (5)* | |
| H5 | 0.409 (3) | 0.1320 (10) | 0.8502 (12) | 0.047 (5)* | |
| H8 | 0.718 (3) | 0.2863 (9) | 0.5880 (11) | 0.031 (4)* | |
| H10A | 0.104 (3) | 0.1775 (9) | 0.5222 (11) | 0.033 (4)* | |
| H10B | 0.116 (3) | 0.1663 (9) | 0.6224 (11) | 0.034 (4)* | |
| H11A | 0.158 (3) | 0.0587 (9) | 0.5522 (11) | 0.037 (5)* | |
| H11B | 0.378 (3) | 0.0759 (9) | 0.6148 (11) | 0.034 (5)* | |
| H13A | 0.593 (5) | 0.0502 (15) | 0.3426 (16) | 0.084 (8)* | |
| H13B | 0.637 (5) | 0.1344 (15) | 0.3451 (17) | 0.087 (9)* | |
| H14A | 0.267 (5) | 0.0739 (14) | 0.3906 (16) | 0.075 (8)* | |
| H14B | 0.331 (5) | 0.1581 (17) | 0.4123 (17) | 0.099 (10)* | |
| H16A | 1.355 (3) | 0.3820 (9) | 0.6562 (11) | 0.031 (4)* | |
| H16B | 1.332 (3) | 0.3535 (9) | 0.5624 (11) | 0.035 (5)* | |
| H17A | 1.281 (3) | 0.4738 (10) | 0.5615 (12) | 0.044 (5)* | |
| H17B | 1.047 (3) | 0.4375 (9) | 0.5297 (11) | 0.029 (4)* | |
| H19A | 0.942 (5) | 0.5932 (16) | 0.7433 (17) | 0.092 (9)* | |
| H19B | 0.962 (4) | 0.5331 (13) | 0.8072 (17) | 0.073 (8)* | |
| H20A | 1.268 (4) | 0.5440 (13) | 0.6998 (15) | 0.068 (7)* | |
| H20B | 1.224 (3) | 0.4711 (11) | 0.7450 (12) | 0.048 (5)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0313 (6) | 0.0295 (5) | 0.0318 (6) | −0.0034 (4) | −0.0036 (4) | 0.0011 (4) |
| O2 | 0.0420 (7) | 0.0586 (8) | 0.0491 (7) | −0.0029 (6) | 0.0164 (6) | −0.0012 (6) |
| O3 | 0.0275 (6) | 0.0764 (10) | 0.0462 (7) | 0.0044 (6) | −0.0090 (5) | −0.0006 (7) |
| O4 | 0.0718 (9) | 0.0576 (8) | 0.0280 (6) | −0.0357 (7) | −0.0071 (6) | 0.0048 (6) |
| O5 | 0.0317 (6) | 0.0320 (5) | 0.0259 (5) | −0.0065 (4) | 0.0062 (4) | 0.0000 (4) |
| O6 | 0.0255 (6) | 0.0581 (8) | 0.0438 (7) | −0.0046 (5) | −0.0020 (5) | −0.0064 (6) |
| O7 | 0.0361 (7) | 0.0504 (7) | 0.0372 (6) | 0.0060 (5) | 0.0066 (5) | −0.0059 (5) |
| N1 | 0.0342 (7) | 0.0287 (6) | 0.0296 (7) | −0.0023 (5) | 0.0055 (5) | −0.0018 (5) |
| N2 | 0.0276 (7) | 0.0309 (7) | 0.0284 (6) | 0.0029 (5) | −0.0026 (5) | 0.0007 (5) |
| N3 | 0.0232 (6) | 0.0301 (6) | 0.0316 (7) | −0.0013 (5) | −0.0009 (5) | −0.0002 (5) |
| C1 | 0.0368 (8) | 0.0227 (7) | 0.0233 (7) | −0.0003 (6) | 0.0048 (6) | −0.0011 (5) |
| C2 | 0.0455 (10) | 0.0336 (8) | 0.0269 (8) | −0.0060 (7) | 0.0000 (7) | 0.0012 (6) |
| C3 | 0.0607 (12) | 0.0382 (9) | 0.0234 (8) | −0.0038 (8) | −0.0020 (7) | 0.0022 (7) |
| C4 | 0.0638 (12) | 0.0347 (8) | 0.0252 (8) | −0.0061 (8) | 0.0103 (8) | 0.0022 (7) |
| C5 | 0.0480 (10) | 0.0327 (8) | 0.0307 (8) | −0.0067 (7) | 0.0118 (7) | −0.0007 (6) |
| C6 | 0.0370 (9) | 0.0257 (7) | 0.0266 (7) | 0.0001 (6) | 0.0071 (6) | −0.0018 (6) |
| C7 | 0.0288 (8) | 0.0244 (7) | 0.0284 (7) | 0.0020 (6) | 0.0005 (6) | −0.0017 (6) |
| C8 | 0.0315 (8) | 0.0245 (7) | 0.0251 (7) | 0.0019 (6) | 0.0035 (6) | 0.0012 (6) |
| C9 | 0.0326 (8) | 0.0218 (7) | 0.0250 (7) | −0.0002 (6) | 0.0047 (6) | −0.0004 (5) |
| C10 | 0.0252 (8) | 0.0298 (8) | 0.0389 (9) | −0.0008 (6) | −0.0021 (7) | −0.0017 (7) |
| C11 | 0.0261 (8) | 0.0292 (8) | 0.0331 (8) | −0.0003 (6) | −0.0001 (6) | 0.0016 (6) |
| C12 | 0.0285 (8) | 0.0347 (8) | 0.0399 (9) | −0.0005 (6) | 0.0029 (7) | −0.0017 (7) |
| C13 | 0.0700 (14) | 0.0514 (12) | 0.0361 (10) | −0.0016 (10) | 0.0106 (9) | 0.0036 (9) |
| C14 | 0.0582 (13) | 0.0632 (13) | 0.0283 (9) | 0.0099 (10) | −0.0041 (8) | 0.0066 (8) |
| C15 | 0.0362 (9) | 0.0264 (7) | 0.0262 (7) | −0.0026 (6) | 0.0029 (6) | 0.0010 (6) |
| C16 | 0.0258 (8) | 0.0319 (8) | 0.0351 (8) | −0.0035 (6) | 0.0071 (6) | 0.0039 (6) |
| C17 | 0.0263 (8) | 0.0339 (8) | 0.0321 (8) | −0.0012 (6) | 0.0062 (6) | 0.0055 (6) |
| C18 | 0.0249 (8) | 0.0328 (8) | 0.0303 (8) | 0.0008 (6) | 0.0026 (6) | 0.0033 (6) |
| C19 | 0.0502 (12) | 0.0574 (13) | 0.0509 (12) | 0.0130 (10) | −0.0111 (9) | −0.0218 (10) |
| C20 | 0.0340 (9) | 0.0346 (9) | 0.0406 (9) | −0.0054 (7) | −0.0059 (7) | −0.0023 (7) |
Geometric parameters (Å, º)
| O1—C7 | 1.3499 (18) | C4—H4 | 0.97 (2) |
| O1—C10 | 1.4437 (19) | C5—C6 | 1.414 (2) |
| O2—C12 | 1.358 (2) | C5—H5 | 1.00 (2) |
| O2—C13 | 1.445 (3) | C7—C8 | 1.427 (2) |
| O3—C12 | 1.211 (2) | C8—C9 | 1.357 (2) |
| O4—C15 | 1.2006 (19) | C8—H8 | 0.982 (18) |
| O5—C15 | 1.3396 (18) | C9—C15 | 1.496 (2) |
| O5—C16 | 1.4526 (18) | C10—C11 | 1.519 (2) |
| O6—C18 | 1.2100 (19) | C10—H10A | 1.013 (18) |
| O7—C18 | 1.3596 (19) | C10—H10B | 1.001 (19) |
| O7—C19 | 1.449 (2) | C11—H11A | 1.026 (19) |
| N1—C7 | 1.2969 (19) | C11—H11B | 0.994 (19) |
| N1—C6 | 1.379 (2) | C13—C14 | 1.502 (3) |
| N2—C12 | 1.338 (2) | C13—H13A | 1.04 (3) |
| N2—C14 | 1.437 (2) | C13—H13B | 0.95 (3) |
| N2—C11 | 1.449 (2) | C14—H14A | 0.98 (3) |
| N3—C18 | 1.347 (2) | C14—H14B | 1.08 (3) |
| N3—C17 | 1.447 (2) | C16—C17 | 1.509 (2) |
| N3—C20 | 1.455 (2) | C16—H16A | 0.992 (18) |
| C1—C2 | 1.415 (2) | C16—H16B | 0.997 (18) |
| C1—C6 | 1.418 (2) | C17—H17A | 0.98 (2) |
| C1—C9 | 1.443 (2) | C17—H17B | 0.992 (18) |
| C2—C3 | 1.372 (2) | C19—C20 | 1.509 (3) |
| C2—H2 | 0.969 (19) | C19—H19A | 1.03 (3) |
| C3—C4 | 1.401 (3) | C19—H19B | 0.90 (3) |
| C3—H3 | 0.95 (2) | C20—H20A | 0.99 (3) |
| C4—C5 | 1.364 (3) | C20—H20B | 0.98 (2) |
| C7—O1—C10 | 117.84 (12) | C10—C11—H11B | 110.9 (11) |
| C12—O2—C13 | 108.82 (14) | H11A—C11—H11B | 109.8 (15) |
| C15—O5—C16 | 118.18 (12) | O3—C12—N2 | 128.04 (16) |
| C18—O7—C19 | 108.80 (13) | O3—C12—O2 | 122.28 (15) |
| C7—N1—C6 | 117.04 (13) | N2—C12—O2 | 109.68 (14) |
| C12—N2—C14 | 112.61 (15) | O2—C13—C14 | 105.94 (15) |
| C12—N2—C11 | 122.16 (13) | O2—C13—H13A | 107.6 (15) |
| C14—N2—C11 | 123.44 (14) | C14—C13—H13A | 109.5 (16) |
| C18—N3—C17 | 122.17 (13) | O2—C13—H13B | 107.9 (17) |
| C18—N3—C20 | 111.80 (13) | C14—C13—H13B | 114.0 (18) |
| C17—N3—C20 | 123.69 (13) | H13A—C13—H13B | 112 (2) |
| C2—C1—C6 | 118.71 (14) | N2—C14—C13 | 101.55 (16) |
| C2—C1—C9 | 124.65 (14) | N2—C14—H14A | 111.9 (15) |
| C6—C1—C9 | 116.63 (14) | C13—C14—H14A | 111.7 (16) |
| C3—C2—C1 | 120.43 (16) | N2—C14—H14B | 109.2 (15) |
| C3—C2—H2 | 118.6 (11) | C13—C14—H14B | 110.1 (16) |
| C1—C2—H2 | 120.8 (10) | H14A—C14—H14B | 112 (2) |
| C2—C3—C4 | 120.73 (17) | O4—C15—O5 | 123.69 (14) |
| C2—C3—H3 | 117.8 (13) | O4—C15—C9 | 125.14 (14) |
| C4—C3—H3 | 121.5 (13) | O5—C15—C9 | 111.15 (13) |
| C5—C4—C3 | 120.16 (15) | O5—C16—C17 | 110.03 (13) |
| C5—C4—H4 | 119.7 (12) | O5—C16—H16A | 110.2 (10) |
| C3—C4—H4 | 120.0 (12) | C17—C16—H16A | 111.8 (10) |
| C4—C5—C6 | 120.75 (16) | O5—C16—H16B | 104.6 (11) |
| C4—C5—H5 | 121.2 (11) | C17—C16—H16B | 110.0 (10) |
| C6—C5—H5 | 118.0 (11) | H16A—C16—H16B | 109.9 (15) |
| N1—C6—C5 | 117.43 (15) | N3—C17—C16 | 113.29 (13) |
| N1—C6—C1 | 123.35 (13) | N3—C17—H17A | 107.6 (12) |
| C5—C6—C1 | 119.20 (15) | C16—C17—H17A | 107.4 (12) |
| N1—C7—O1 | 121.12 (14) | N3—C17—H17B | 106.3 (10) |
| N1—C7—C8 | 124.86 (14) | C16—C17—H17B | 110.5 (10) |
| O1—C7—C8 | 114.01 (13) | H17A—C17—H17B | 111.9 (15) |
| C9—C8—C7 | 118.89 (14) | O6—C18—N3 | 128.17 (15) |
| C9—C8—H8 | 121.5 (10) | O6—C18—O7 | 122.10 (14) |
| C7—C8—H8 | 119.6 (10) | N3—C18—O7 | 109.72 (13) |
| C8—C9—C1 | 119.10 (14) | O7—C19—C20 | 105.53 (14) |
| C8—C9—C15 | 118.85 (13) | O7—C19—H19A | 104.5 (16) |
| C1—C9—C15 | 122.03 (13) | C20—C19—H19A | 114.5 (17) |
| O1—C10—C11 | 110.45 (12) | O7—C19—H19B | 109.2 (17) |
| O1—C10—H10A | 103.6 (10) | C20—C19—H19B | 114.8 (17) |
| C11—C10—H10A | 111.5 (10) | H19A—C19—H19B | 108 (2) |
| O1—C10—H10B | 111.0 (10) | N3—C20—C19 | 100.86 (14) |
| C11—C10—H10B | 110.0 (10) | N3—C20—H20A | 110.0 (14) |
| H10A—C10—H10B | 110.3 (14) | C19—C20—H20A | 113.2 (14) |
| N2—C11—C10 | 111.95 (13) | N3—C20—H20B | 109.4 (12) |
| N2—C11—H11A | 111.4 (10) | C19—C20—H20B | 112.7 (12) |
| C10—C11—H11A | 106.3 (10) | H20A—C20—H20B | 110.3 (18) |
| N2—C11—H11B | 106.5 (11) | ||
| C6—C1—C2—C3 | −0.7 (2) | C11—N2—C12—O3 | 8.8 (3) |
| C9—C1—C2—C3 | −179.17 (16) | C14—N2—C12—O2 | −6.6 (2) |
| C1—C2—C3—C4 | −0.6 (3) | C11—N2—C12—O2 | −171.89 (13) |
| C2—C3—C4—C5 | 0.5 (3) | C13—O2—C12—O3 | 177.93 (17) |
| C3—C4—C5—C6 | 0.8 (3) | C13—O2—C12—N2 | −1.40 (19) |
| C7—N1—C6—C5 | −177.44 (14) | C12—O2—C13—C14 | 8.3 (2) |
| C7—N1—C6—C1 | 0.5 (2) | C12—N2—C14—C13 | 11.2 (2) |
| C4—C5—C6—N1 | 175.98 (15) | C11—N2—C14—C13 | 176.20 (15) |
| C4—C5—C6—C1 | −2.1 (2) | O2—C13—C14—N2 | −11.2 (2) |
| C2—C1—C6—N1 | −175.98 (14) | C16—O5—C15—O4 | −1.1 (2) |
| C9—C1—C6—N1 | 2.7 (2) | C16—O5—C15—C9 | 177.08 (12) |
| C2—C1—C6—C5 | 2.0 (2) | C8—C9—C15—O4 | 158.27 (17) |
| C9—C1—C6—C5 | −179.41 (13) | C1—C9—C15—O4 | −20.1 (2) |
| C6—N1—C7—O1 | 177.84 (13) | C8—C9—C15—O5 | −19.91 (19) |
| C6—N1—C7—C8 | −3.2 (2) | C1—C9—C15—O5 | 161.75 (13) |
| C10—O1—C7—N1 | −10.2 (2) | C15—O5—C16—C17 | −103.49 (15) |
| C10—O1—C7—C8 | 170.70 (13) | C18—N3—C17—C16 | −95.85 (17) |
| N1—C7—C8—C9 | 2.4 (2) | C20—N3—C17—C16 | 65.35 (19) |
| O1—C7—C8—C9 | −178.56 (13) | O5—C16—C17—N3 | 66.50 (17) |
| C7—C8—C9—C1 | 1.1 (2) | C17—N3—C18—O6 | −9.0 (3) |
| C7—C8—C9—C15 | −177.26 (13) | C20—N3—C18—O6 | −172.23 (16) |
| C2—C1—C9—C8 | 175.18 (15) | C17—N3—C18—O7 | 171.83 (13) |
| C6—C1—C9—C8 | −3.4 (2) | C20—N3—C18—O7 | 8.61 (18) |
| C2—C1—C9—C15 | −6.5 (2) | C19—O7—C18—O6 | −175.41 (17) |
| C6—C1—C9—C15 | 174.97 (13) | C19—O7—C18—N3 | 3.81 (19) |
| C7—O1—C10—C11 | −75.87 (16) | C18—O7—C19—C20 | −13.9 (2) |
| C12—N2—C11—C10 | 105.84 (17) | C18—N3—C20—C19 | −16.32 (19) |
| C14—N2—C11—C10 | −57.8 (2) | C17—N3—C20—C19 | −179.25 (16) |
| O1—C10—C11—N2 | −48.92 (18) | O7—C19—C20—N3 | 17.5 (2) |
| C14—N2—C12—O3 | 174.08 (19) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C2—H2···O4 | 0.969 (19) | 2.335 (18) | 2.919 (2) | 118.1 (13) |
| C20—H20B···O4 | 0.98 (2) | 2.52 (2) | 3.275 (2) | 133.7 (15) |
| C11—H11A···O3i | 1.026 (19) | 2.486 (19) | 3.262 (2) | 131.8 (13) |
| C17—H17A···O6ii | 0.98 (2) | 2.53 (2) | 3.219 (2) | 127.0 (15) |
| C19—H19B···O3iii | 0.90 (3) | 2.51 (3) | 3.157 (2) | 129 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+3/2.
Funding Statement
This work was funded by National Science Foundation grant 1228232. Tulane University grant .
References
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Biovia (2017). Discovery studio visualizer. Vol. 936. Biovia, San Diego, CA, USA.
- Bouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980–983. [DOI] [PMC free article] [PubMed]
- Bouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912–916. [DOI] [PMC free article] [PubMed]
- Bouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. & Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940.
- Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Chu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101–117. [DOI] [PubMed]
- Douche, D., Elmsellem, H., Anouar, E. H., Guo, L., Hafez, B., Tüzün, B., El Louzi, A., Bougrin, K., Karrouchi, K. & Himmi, B. (2020). J. Mol. Liq. 308, 113042.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. A.02. Gaussian Inc., Wallingford, CT, USA.
- Gao, J., Tian, Z. & Yang, X. (2020). Biosci. Trends, 14, 72-73. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22–47. [DOI] [PubMed]
- Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. (2020). Nature, 582, 289–293. [DOI] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- Palit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845–853. [DOI] [PubMed]
- Pinz, M., Reis, A. S., Duarte, V., da Rocha, M. J., Goldani, B. S., Alves, D., Savegnago, L., Luchese, C. & Wilhelm, E. A. (2016). Eur. J. Pharmacol. 780, 122–128. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o514–o515. [DOI] [PMC free article] [PubMed]
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342. [DOI] [PMC free article] [PubMed]
- Tang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201–213. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Xu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429–440. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020015960/wm5588sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020015960/wm5588Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020015960/wm5588Isup3.cml
CCDC reference: 2048734
Additional supporting information: crystallographic information; 3D view; checkCIF report







