Skip to main content

PMC Search Update

PMC Beta search will replace the current PMC search the week of September 7, 2025. Try out PMC Beta search now and give us your feedback. Learn more

Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jan 1;77(Pt 1):23–27. doi: 10.1107/S205698902001573X

Crystal structure and Hirshfeld surface analysis of 4-(2,6-di­chloro­benz­yl)-6-[(E)-2-phenyl­ethen­yl]pyridazin-3(2H)-one

Said Daoui a, Emine Berrin Cinar b,*, Necmi Dege b, Tarik Chelfi a, Fouad El Kalai a, Abdulmalik Abudunia c,*, Khalid Karrouchi d, Noureddine Benchat a
PMCID: PMC7784059  PMID: 33520277

In the title pyridazinone derivative, the chloro­phenyl and pyridazinone rings being almost perpendicular, while the phenyl ring of the styryl group is coplanar with the pyridazinone ring. In the crystal, N—H⋯O hydrogen bonds form inversion dimers with an Inline graphic(8) ring motif and C—H⋯Cl hydrogen bonds also occur.

Keywords: crystal structure, Hirshfeld surface analysis, pyridazine derivative, pyridazinone

Abstract

The title pyridazinone derivative, C19H14Cl2N2O, an important pharmacophore with a wide variety of biological applications is not planar, the chloro­phenyl and pyridazinone rings being almost perpendicular, subtending a dihedral angle of 85.73 (11)°. The phenyl ring of the styryl group is coplanar with the pyridazinone ring [1.47 (12)°]. In the crystal, N—H⋯O hydrogen bonds form inversion dimers with an R 2 2(8) ring motif and C—H⋯Cl hydrogen bonds also occur. The roles of the inter­molecular inter­actions in the crystal packing were clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (37.9%), C⋯H/H⋯C (18.7%), Cl⋯H/ H⋯Cl (16.4%) and Cl⋯C/C⋯Cl (6.7%) contacts.

Chemical context  

Pyridazines are an important family of six-membered aromatic heterocycles containing two nitro­gen atoms. Pyridazinone is an important pharmacophore possessing a wide range of biological activities including anti­tumor (Bouchmaa et al., 2018, 2019), anti-inflammatory (Boukharsa et al., 2018), anti­hypertensive (Siddiqui et al., 2011), anti­depressant (Boukharsa et al., 2016), anti-HIV (Livermore et al., 1993), anti­histaminic (Tao et al. 2012), analgesic (Gökçe et al., 2009) and anti­convulsant (Partap et al., 2018) and is used in glucan synthase inhibitors (Zhou et al., 2011) and herbicidal agents (Asif et al., 2013). The chemistry of pyridazinones has been an inter­esting field of study for decades and this nitro­gen heterocycle has become a scaffold of choice for the development of potential drug candidates (Dubey et al., 2015; Thakur et al., 2010).graphic file with name e-77-00023-scheme1.jpgIn a continuation of our studies towards the synthesis, mol­ecular structures, Hirshfeld surfaces analysis and DFT studies of new pyridazin-3(2H)-one derivatives (Daoui et al., 2020, 2021; El Kalai et al., 2021), we report herein the crystal structure and Hirshfeld surface analysis of 4-(2,6-di­chloro­benz­yl)-6-[(E)-2-phenyl­ethen­yl]pyridazin-3(2H)-one.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The C1–C6 phenyl ring and the pyridazinone ring (N1/N2/C8–C11) are almost perpendicular, subtending a dihedral angle of 85.73 (11)°. The C14–C19 phenyl ring of the styryl group is coplanar with the pyridazinone ring [1.47 (12)°]. The carbonyl group has a C8=O1 bond length of 1.236 (2) Å, and the C8—N1 and C11—N2 bond lengths in the pyridazine ring are 1.357 (3) and 1.305 (2) Å, respectively. The N1—N2 bond length is 1.344 (2) Å.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, pairs of N—H⋯O hydrogen bonds form inversion dimers with an Inline graphic(8) ring motif (Table 1, Fig. 2). C3—H3⋯Cl1 hydrogen bonds are also observed. C—H⋯π inter­actions between the Inline graphic(8) dimer rings and H16 atoms [centroid-to-centroid distance of 3.501 (9) Å; length between dimer ring and C14–C19 ring = 3.569 (12) Å] also occur (Fig. 3). π–π inter­actions also occur with a centroid–centroid distance Cg1⋯Cg3(−x + 1, −y + 2, −z + 1) of 3.9107 (15) Å where Cg1 and Cg3 are the centroids of the N1/N2/C8–C11 and C14–C19 rings, respectively (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.92 2.772 (2) 171
C3—H3⋯Cl1ii 0.93 2.97 3.824 (3) 153
C7—H7A⋯O1 0.97 2.42 2.803 (2) 103
C13—H13⋯N2 0.93 2.51 2.845 (3) 101

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

View of the crystal structure of the title compound. N—H⋯O hydrogen bonds are represented by red dashed lines and C—H⋯N and C—H⋯O inter­actions are shown as blue dashed lines.

Figure 3.

Figure 3

Packing diagram showing the inter­molecular inter­actions in the title compound (C—H⋯π inter­actions shown as black dashed lines and π–π inter­actions as purple dashed lines).

Database survey  

A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) reveals six comparable pyridazine derivatives, 1-(6-benzoyl-2-phenyl-2,3-di­hydro­pyridazin-4-yl)ethanone 1-(4-benzoyl-2-phenyl-2,3-di­hydro­pyridazin-6-yl)ethanone (AQIKOB; Al-Awadi et al., 2011), 4-(2′-chloro-6′-fluoro­phen­yl)-2,5-dioxo-8-phenyl-1,2,3,4,5,6-hexa­hydro­pyrido(2,3-d)pyridazine (BARQOA; Pita et al., 2000), 4-[(2,6-di­chloro­phen­yl)meth­yl]-6-phenyl­pyridazin-3(2H)-one (BOBXEY; El Kali, Kansiz et al., 2019), ethyl {5-[(3-chloro­phen­yl)meth­yl]-6-oxo-3-phenyl­pyridazin-1(6H)-yl}acetate (FODQUN; El Kalai, Baydere et al., 2019), 4-benzyl-2-[2-(4-fluoro­phen­yl)-2-oxoeth­yl]-6-phenyl­pyrid­az­in-3(2H)-one (NOLDUQ; Daoui et al., 2019) and 4-benzyl-6-p-tolyl­pyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009). Of these, BOBXEY, (II), is very similar to the title compound. The phenyl ring and the pyridazine ring are twisted with respect to each other, making a dihedral angle of 21.76 (18)° and the phenyl ring (C1–C6) of the benzyl group is inclined to the pyridazine ring by 79.61 (19)°. Relevant bond lengths in (II) are C17=O1 = 1.229 (5), C17—N2 = 1.388 (5) Å and C10—N1 =1.299 (4) Å. The N1—N2 bond lengths in (I) and (II) are virtually the same, with values of 1.348 (2) and 1.353 (4) Å, respectively. In the structure of YOTVIN, N—H⋯O bonds are also observed.

Hirshfeld surface analysis  

A Hirshfeld surface (HS) study of the title compound was undertaken using CrystalExplorer17.5 (Turner et al., 2017) to visualize and study the inter­molecular contacts. The d norm surface of the title compound is illustrated in Fig. 4 a. The shape-index, a tool for visualizing π–π stacking inter­actions by the presence of adjacent red and blue triangles is given in Fig. 4 b while Fig. 4 c shows the curvedness map of the title compound. The absence of prominent red and blue triangles in the shape-index map, as well as the absence of large green regions in the curvedness map, confirms that π–π and C—H⋯π interactions are weak. Fig. 5 shows fingerprint plots that qu­anti­tatively summarize the nature and type of inter­molecular contacts. The highest contribution to the Hirshfeld surface is from H⋯H contacts (Fig. 5 b). Other inter­actions and their respective contributions are C⋯H/H⋯C (18.7%), Cl⋯H/H⋯Cl (16.4%), Cl⋯C/C⋯Cl (6.7%), O⋯H/H⋯O (6.5%), N⋯H/H⋯N (4.8%), C⋯O/O⋯C (3.3%) and C⋯N/N⋯C (2.5%). The acceptor and donor atoms participating in the hydrogen bond appear as blue (donors) and red regions (acceptors) corresponding to positive and negative potential, respectively, in the HS mapped over the electrostatic potential, in the range −0.099–0.165 a.u., as shown in Fig. 6.

Figure 4.

Figure 4

(a) Hirshfeld surface mapped over d norm for visualizing the inter­molecular inter­actions of the title compound, (b) shape-index map and (c) curvedness map of the title mol­ecule.

Figure 5.

Figure 5

Two-dimensional fingerprint plots for the title compound showing the relative contributions of the atom pairs to the Hirshfeld surface.

Figure 6.

Figure 6

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential.

Synthesis and crystallization  

To a solution of (E)-6-styryl-4,5-di­hydro­pyridazin-3(2H)-one (0.2 g, 1 mmol) and 2,6-di­chloro­benzaldehyde (0.175 g, 1 mmol) in 30 ml of ethanol, sodium ethano­ate (0.23 g, 2.8 mmol) was added. The mixture was refluxed for 3 h. The reaction mixture was cooled, diluted with cold water and acidified with concentrated hydro­chloric acid. The precipitate was filtered, washed with water, dried and recrystallized from ethanol. Colourless single-crystals were obtained by slow evaporation at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å and refined as riding, with U iso(H) = 1.2U eq(C). The N-bound H atom was located in a difference-Fourier map and refined with N—H = 0.86 Å.

Table 2. Experimental details.

Crystal data
Chemical formula C19H14Cl2N2O
M r 357.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.1306 (5), 10.7019 (6), 15.7749 (7)
β (°) 97.715 (4)
V3) 1694.78 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.72 × 0.47 × 0.13
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.796, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 20123, 5828, 2944
R int 0.047
(sin θ/λ)max−1) 0.746
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.064, 0.170, 1.01
No. of reflections 5828
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.21

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2018/3 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902001573X/dx2034sup1.cif

e-77-00023-sup1.cif (673.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902001573X/dx2034Isup2.hkl

e-77-00023-Isup2.hkl (463.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698902001573X/dx2034Isup3.cml

CCDC reference: 2047452

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C19H14Cl2N2O F(000) = 736
Mr = 357.22 Dx = 1.400 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.1306 (5) Å Cell parameters from 16480 reflections
b = 10.7019 (6) Å θ = 1.9–32.4°
c = 15.7749 (7) Å µ = 0.39 mm1
β = 97.715 (4)° T = 296 K
V = 1694.78 (15) Å3 Plate, colorless
Z = 4 0.72 × 0.47 × 0.13 mm

Data collection

Stoe IPDS 2 diffractometer 5828 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2944 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.047
Detector resolution: 6.67 pixels mm-1 θmax = 32.0°, θmin = 2.3°
rotation method scans h = −12→15
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −15→15
Tmin = 0.796, Tmax = 0.937 l = −23→23
20123 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3156P] where P = (Fo2 + 2Fc2)/3
5828 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.32888 (9) 0.44720 (8) 0.41784 (5) 0.1022 (3)
Cl1 0.06171 (9) 0.57454 (9) 0.67843 (6) 0.1101 (3)
O1 −0.00667 (14) 0.83981 (14) 0.49196 (12) 0.0698 (4)
N2 0.30239 (16) 0.97613 (15) 0.57214 (12) 0.0561 (4)
N1 0.17344 (16) 0.95588 (15) 0.54273 (13) 0.0582 (4)
H1 0.1229 1.0208 0.5381 0.070*
C6 0.19680 (18) 0.50436 (17) 0.55109 (14) 0.0520 (5)
C11 0.37910 (19) 0.87772 (18) 0.58104 (13) 0.0508 (4)
C9 0.2000 (2) 0.73781 (17) 0.53008 (13) 0.0508 (4)
C8 0.11329 (19) 0.84552 (18) 0.51939 (14) 0.0536 (5)
C10 0.32911 (19) 0.75621 (18) 0.56121 (14) 0.0533 (5)
H10 0.3862 0.6880 0.5698 0.064*
C12 0.5217 (2) 0.8968 (2) 0.61209 (14) 0.0568 (5)
H12 0.5752 0.8261 0.6204 0.068*
C7 0.1371 (2) 0.61526 (18) 0.50303 (16) 0.0609 (6)
H7A 0.0433 0.6192 0.5095 0.073*
H7B 0.1431 0.6031 0.4427 0.073*
C14 0.7197 (2) 1.0298 (2) 0.66024 (15) 0.0615 (5)
C13 0.5792 (2) 1.0060 (2) 0.62890 (15) 0.0607 (5)
H13 0.5245 1.0759 0.6199 0.073*
C1 0.1675 (2) 0.4752 (2) 0.63198 (16) 0.0650 (6)
C5 0.2807 (2) 0.4200 (2) 0.51757 (16) 0.0631 (6)
C19 0.7618 (3) 1.1510 (3) 0.67726 (17) 0.0761 (7)
H19 0.7004 1.2159 0.6691 0.091*
C2 0.2149 (3) 0.3694 (3) 0.67623 (18) 0.0840 (8)
H2 0.1934 0.3533 0.7307 0.101*
C15 0.8136 (2) 0.9359 (3) 0.67285 (19) 0.0776 (7)
H15 0.7882 0.8536 0.6611 0.093*
C4 0.3270 (3) 0.3132 (2) 0.5602 (2) 0.0831 (8)
H4 0.3810 0.2579 0.5351 0.100*
C3 0.2937 (3) 0.2891 (3) 0.6385 (2) 0.0897 (9)
H3 0.3249 0.2168 0.6672 0.108*
C18 0.8940 (3) 1.1772 (3) 0.7063 (2) 0.0951 (9)
H18 0.9209 1.2595 0.7168 0.114*
C16 0.9453 (3) 0.9629 (4) 0.7027 (2) 0.0969 (9)
H16 1.0072 0.8984 0.7115 0.116*
C17 0.9850 (3) 1.0827 (4) 0.7194 (2) 0.1007 (10)
H17 1.0736 1.1002 0.7397 0.121*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.1168 (6) 0.1083 (6) 0.0881 (5) 0.0366 (5) 0.0379 (5) 0.0082 (4)
Cl1 0.1042 (6) 0.1263 (7) 0.1069 (6) −0.0057 (5) 0.0406 (5) −0.0446 (5)
O1 0.0467 (8) 0.0506 (8) 0.1070 (13) 0.0102 (6) −0.0080 (8) −0.0061 (8)
N2 0.0479 (9) 0.0427 (9) 0.0767 (12) 0.0047 (7) 0.0040 (8) −0.0020 (8)
N1 0.0459 (9) 0.0409 (8) 0.0860 (13) 0.0104 (7) 0.0017 (8) −0.0034 (8)
C6 0.0467 (9) 0.0412 (9) 0.0653 (12) −0.0024 (8) −0.0024 (9) −0.0062 (9)
C11 0.0469 (10) 0.0460 (10) 0.0587 (12) 0.0051 (8) 0.0047 (9) 0.0004 (9)
C9 0.0506 (10) 0.0406 (9) 0.0597 (12) 0.0066 (8) 0.0019 (9) −0.0011 (8)
C8 0.0486 (10) 0.0434 (10) 0.0671 (13) 0.0070 (8) 0.0014 (9) −0.0014 (9)
C10 0.0488 (11) 0.0415 (10) 0.0682 (13) 0.0114 (8) 0.0029 (9) −0.0003 (9)
C12 0.0488 (10) 0.0493 (11) 0.0708 (14) 0.0067 (8) 0.0027 (9) −0.0009 (9)
C7 0.0519 (11) 0.0451 (10) 0.0813 (15) 0.0073 (9) −0.0074 (10) −0.0068 (10)
C14 0.0553 (11) 0.0673 (14) 0.0618 (13) −0.0049 (10) 0.0073 (10) −0.0002 (11)
C13 0.0526 (11) 0.0545 (12) 0.0740 (14) 0.0054 (10) 0.0049 (10) 0.0029 (10)
C1 0.0605 (12) 0.0645 (13) 0.0692 (14) −0.0135 (10) 0.0054 (11) −0.0135 (11)
C5 0.0652 (13) 0.0512 (11) 0.0716 (14) 0.0087 (10) 0.0042 (11) −0.0006 (10)
C19 0.0754 (16) 0.0741 (16) 0.0785 (16) −0.0148 (13) 0.0092 (13) −0.0052 (13)
C2 0.095 (2) 0.0852 (19) 0.0684 (16) −0.0303 (16) −0.0025 (15) 0.0149 (14)
C15 0.0567 (13) 0.0771 (16) 0.0962 (19) −0.0020 (12) −0.0002 (12) 0.0039 (14)
C4 0.0901 (18) 0.0569 (14) 0.099 (2) 0.0237 (13) 0.0024 (16) 0.0022 (14)
C3 0.105 (2) 0.0610 (16) 0.097 (2) 0.0033 (15) −0.0089 (18) 0.0160 (15)
C18 0.098 (2) 0.103 (2) 0.0835 (19) −0.043 (2) 0.0090 (16) −0.0134 (17)
C16 0.0554 (14) 0.125 (3) 0.106 (2) 0.0002 (16) −0.0032 (14) 0.010 (2)
C17 0.0643 (17) 0.141 (3) 0.093 (2) −0.031 (2) −0.0051 (15) −0.002 (2)

Geometric parameters (Å, º)

Cl2—C5 1.733 (3) C14—C15 1.379 (3)
Cl1—C1 1.740 (3) C14—C19 1.380 (3)
O1—C8 1.236 (2) C14—C13 1.465 (3)
N2—C11 1.305 (2) C13—H13 0.9300
N2—N1 1.344 (2) C1—C2 1.382 (4)
N1—C8 1.357 (3) C5—C4 1.376 (3)
N1—H1 0.8600 C19—C18 1.385 (4)
C6—C1 1.384 (3) C19—H19 0.9300
C6—C5 1.392 (3) C2—C3 1.362 (4)
C6—C7 1.492 (3) C2—H2 0.9300
C11—C10 1.415 (3) C15—C16 1.384 (4)
C11—C12 1.476 (3) C15—H15 0.9300
C9—C10 1.349 (3) C4—C3 1.350 (4)
C9—C8 1.445 (3) C4—H4 0.9300
C9—C7 1.495 (3) C3—H3 0.9300
C10—H10 0.9300 C18—C17 1.366 (5)
C12—C13 1.317 (3) C18—H18 0.9300
C12—H12 0.9300 C16—C17 1.358 (5)
C7—H7A 0.9700 C16—H16 0.9300
C7—H7B 0.9700 C17—H17 0.9300
C11—N2—N1 116.38 (17) C12—C13—H13 116.4
N2—N1—C8 127.90 (16) C14—C13—H13 116.4
N2—N1—H1 116.1 C2—C1—C6 123.2 (2)
C8—N1—H1 116.1 C2—C1—Cl1 118.7 (2)
C1—C6—C5 114.9 (2) C6—C1—Cl1 118.08 (19)
C1—C6—C7 121.7 (2) C4—C5—C6 122.6 (2)
C5—C6—C7 123.3 (2) C4—C5—Cl2 117.6 (2)
N2—C11—C10 121.83 (18) C6—C5—Cl2 119.75 (17)
N2—C11—C12 117.79 (18) C14—C19—C18 121.0 (3)
C10—C11—C12 120.38 (17) C14—C19—H19 119.5
C10—C9—C8 118.07 (18) C18—C19—H19 119.5
C10—C9—C7 125.98 (17) C3—C2—C1 118.7 (3)
C8—C9—C7 115.93 (17) C3—C2—H2 120.6
O1—C8—N1 121.52 (17) C1—C2—H2 120.6
O1—C8—C9 123.72 (18) C14—C15—C16 120.8 (3)
N1—C8—C9 114.76 (17) C14—C15—H15 119.6
C9—C10—C11 121.03 (17) C16—C15—H15 119.6
C9—C10—H10 119.5 C3—C4—C5 119.7 (3)
C11—C10—H10 119.5 C3—C4—H4 120.2
C13—C12—C11 125.18 (19) C5—C4—H4 120.2
C13—C12—H12 117.4 C4—C3—C2 120.9 (3)
C11—C12—H12 117.4 C4—C3—H3 119.6
C6—C7—C9 115.12 (17) C2—C3—H3 119.6
C6—C7—H7A 108.5 C17—C18—C19 120.2 (3)
C9—C7—H7A 108.5 C17—C18—H18 119.9
C6—C7—H7B 108.5 C19—C18—H18 119.9
C9—C7—H7B 108.5 C17—C16—C15 120.6 (3)
H7A—C7—H7B 107.5 C17—C16—H16 119.7
C15—C14—C19 117.8 (2) C15—C16—H16 119.7
C15—C14—C13 122.9 (2) C16—C17—C18 119.5 (3)
C19—C14—C13 119.3 (2) C16—C17—H17 120.2
C12—C13—C14 127.2 (2) C18—C17—H17 120.2
C11—N2—N1—C8 −1.5 (3) C5—C6—C1—C2 −1.3 (3)
N1—N2—C11—C10 −0.3 (3) C7—C6—C1—C2 176.1 (2)
N1—N2—C11—C12 179.18 (19) C5—C6—C1—Cl1 −179.26 (16)
N2—N1—C8—O1 −178.9 (2) C7—C6—C1—Cl1 −1.8 (3)
N2—N1—C8—C9 1.7 (3) C1—C6—C5—C4 2.4 (3)
C10—C9—C8—O1 −179.6 (2) C7—C6—C5—C4 −175.0 (2)
C7—C9—C8—O1 1.9 (3) C1—C6—C5—Cl2 −178.40 (17)
C10—C9—C8—N1 −0.1 (3) C7—C6—C5—Cl2 4.2 (3)
C7—C9—C8—N1 −178.7 (2) C15—C14—C19—C18 −0.2 (4)
C8—C9—C10—C11 −1.4 (3) C13—C14—C19—C18 −179.5 (2)
C7—C9—C10—C11 177.0 (2) C6—C1—C2—C3 −0.4 (4)
N2—C11—C10—C9 1.7 (3) Cl1—C1—C2—C3 177.5 (2)
C12—C11—C10—C9 −177.8 (2) C19—C14—C15—C16 0.9 (4)
N2—C11—C12—C13 −2.5 (3) C13—C14—C15—C16 −179.9 (3)
C10—C11—C12—C13 177.0 (2) C6—C5—C4—C3 −1.7 (4)
C1—C6—C7—C9 78.6 (3) Cl2—C5—C4—C3 179.0 (2)
C5—C6—C7—C9 −104.2 (2) C5—C4—C3—C2 −0.2 (5)
C10—C9—C7—C6 31.4 (3) C1—C2—C3—C4 1.2 (4)
C8—C9—C7—C6 −150.2 (2) C14—C19—C18—C17 −0.7 (4)
C11—C12—C13—C14 179.6 (2) C14—C15—C16—C17 −0.7 (5)
C15—C14—C13—C12 3.0 (4) C15—C16—C17—C18 −0.2 (5)
C19—C14—C13—C12 −177.8 (2) C19—C18—C17—C16 0.9 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 1.92 2.772 (2) 171
C3—H3···Cl1ii 0.93 2.97 3.824 (3) 153

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1/2, y−1/2, −z+3/2.

Funding Statement

This work was funded by Ondokuz Mayis Üniversitesi grant PYOFEN.1906.19.001.

References

  1. Al-Awadi, N. A., Ibrahim, M. R., Al-Etaibi, A. M. & Elnagdia, M. H. (2011). Arkivoc (ii) pp. 310–321, https://doi.org/10.3998/ark.5550190.0012.225
  2. Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.
  3. Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res (Stuttg), 69, 528–536. [DOI] [PubMed]
  4. Bouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893–901.
  5. Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127.
  6. Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.
  7. Daoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2021). J. Mol. Struct. 1225, 129–180.
  8. Daoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020). Acta Cryst. E76, 432–437. [DOI] [PMC free article] [PubMed]
  9. Daoui, S., Faizi, M. S. H., Kalai, F. E., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1030–1034. [DOI] [PMC free article] [PubMed]
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.
  12. El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 892–895. [DOI] [PMC free article] [PubMed]
  13. El Kali, F., Kansiz, S., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 650–654. [DOI] [PMC free article] [PubMed]
  14. El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021). J. Mol. Struct. 1223, 129–213.
  15. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  16. Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. [DOI] [PubMed]
  17. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  18. Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M. & Green, D. (1993). J. Med. Chem. 36, 3784–3794. [DOI] [PubMed]
  19. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  20. Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351. [DOI] [PMC free article] [PubMed]
  21. Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. [DOI] [PubMed]
  22. Pita, B., Sotelo, E., Suárez, M., Raviña, E., Ochoa, E., Verdecia, Y., Novoa, H., Blaton, N., de Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473–2479.
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. [DOI] [PubMed]
  26. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  27. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  28. Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. [DOI] [PubMed]
  29. Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian. J. Res. Chem. 3, 265–271.
  30. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.
  31. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  32. Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902001573X/dx2034sup1.cif

e-77-00023-sup1.cif (673.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902001573X/dx2034Isup2.hkl

e-77-00023-Isup2.hkl (463.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698902001573X/dx2034Isup3.cml

CCDC reference: 2047452

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES