Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Nov 13;76(Pt 12):1827–1831. doi: 10.1107/S2056989020014966

Crystal structure and Hirshfeld analysis of di-tert-butyl 2,2′-[(ethyl­aza­nedi­yl)bis­(methyl­ene)]bis­(1H-pyrrole-1-carboxyl­ate)

Elizaveta A Kvyatkovskaya a, Zeliha Atioğlu b, Mehmet Akkurt c, Polina P Epifanova a, Karina S Valchuk a, Victor N Khrustalev a,d, Ajaya Bhattarai e,*
PMCID: PMC7784644  PMID: 33520262

In the title compound, inter­molecular C—H⋯π inter­actions and π–π stacking inter­actions help to stabilize the crystal structure, forming a three-dimensional network.

Keywords: crystal structure, pyrrole ring, C—H⋯π inter­actions, π–π stacking inter­actions, Hirshfeld surface analysis

Abstract

The title compound, C22H33N3O4, crystallizes in the triclinic space group P Inline graphic with two mol­ecules in a unit cell. The two pyrrole rings are essentially planar (r.m.s. deviation = 0.002 Å) and they form a dihedral angle of 81.24 (10)° with each other. The crystal packing is stabilized by C—H⋯π inter­actions and π–π stacking inter­actions, forming a three-dimensional network. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H⋯H (74.3%), C⋯H/H⋯C (11.5%) and O⋯H/H⋯O (9.1%) contacts.

Chemical context  

This work is a continuation of the study of Diels–Alder reactions on bis-diene systems, which was previously carried out on the example of the tandem [4 + 2]/[4 + 2] cyclo­addition between bis-furyl dienes similar to 1 and activated alkynes, leading to adducts such as 2, as shown in Fig. 1 (Borisova et al., 2018a ,b ; Kvyatkovskaya et al., 2020; Lautens & Fillion, 1997; Domingo et al., 2000). Here we aimed to investigate substrates containing two pyrrole moieties under the same reaction conditions. For this reason, N,N-bis(1H-pyrrol-2-ylmeth­yl) ethanamine (3) was synthesized using a Mannich reaction according to the described procedure (Raines & Kovacs, 1970). It is known that pyrrole fragments are capable of reacting with the most active dienophiles in the [4 + 2] cyclo­addition reaction, which requires the presence of electron-deficient groups at the nitro­gen atom (Winkler, 1996; Visnick & Battiste, 1985; Butler et al., 2000; Warrener et al., 2003). Thus, the pyrrole rings of amine 3 were activated by Boc-protecting groups to give the title substance 4. Considering that a single example of a successful domino [4 + 2] cyclo­addition between hexa­fluoro­but-2-yne and N,N′-dipyrrolyl­methane is reported in the literature (Visnick & Battiste, 1985), we tested amine 4 in the reaction with such an active dienophile as dimethyl acetyl­enedi­carboxyl­ate (DMAD). The experiments were performed in a wide temperature range (from room temperature to 413 K) and led to multicomponent mixtures of products at elevated temperatures, from which we were unable to isolate the target adduct 5.graphic file with name e-76-01827-scheme1.jpg

Figure 1.

Figure 1

Reaction scheme including the title compound 4 as inter­mediate.

However, taking into account the importance of the non-covalent bond-donor/acceptor properties of the nitro­gen atom in N-heterocycles for synthesis, catalysis and the design of new materials (Asadov et al., 2016; Gurbanov et al., 2017, 2018a ,b ; Karmakar et al., 2017; Maharramov et al., 2018; Mahmoudi et al., 2017, 2019; Mahmudov et al., 2010, 2013, 2017a ,b , 2019, 2020; Shixaliyev et al., 2014), we describe in this work the structural features of compound 4.

Structural commentary  

As shown in Fig. 2, the two pyrrole rings (N1/C2–C5 and N3/C8–C11) in the title compound 4 form a dihedral angle of 81.24 (10)°. The C6—N2—C17—C18 and C7—N2—C17—C18, C5—C6—N2—C17, C8—C7—N2—C17 and C6—N2—C7—C8 torsion angles are −163.52 (15), 71.9 (2), −87.35 (17), −155.20 (14) and 80.67 (16)°, respectively. All of the bond lengths and angles in the title compound 4 are of usual values.

Figure 2.

Figure 2

The mol­ecular structure of the title compound 4 with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Supra­molecular features  

The supra­molecular structure of the title compound 4 is defined by π–π stacking [Cg1⋯Cg1i = 3.6892 (13) Å, symmetry code (i): 2 − x, 2 − y, 1 − z, slippage = 1.794 Å, where Cg1 is the centroid of the N1/C2–C5 pyrrole ring] and C—H⋯π [C16—H16BCg2ii, symmetry code (ii): x, y, −1 + z, where Cg2 is the centroid of the N3/C8–C11 pyrrole ring] inter­actions, forming a three-dimensional network (Fig. 3; Table 1). There are no conventional hydrogen bonds in the structure.

Figure 3.

Figure 3

A view of the inter­molecular C—H⋯π inter­actions and π–π- stacking inter­actions of the title compound 4. Symmetry codes: (i) 2 − x, 2 − y, 1 − z; (ii) x, y, −1 + z.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the N3/C8–C11 pyrrole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16BCg2i 0.98 2.85 3.779 (2) 158

Symmetry code: (i) Inline graphic.

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed and the associated two-dimensional fingerprint plots (McKinnon, et al., 2007) were obtained with Crystal Explorer17 (Turner et al., 2017) to investigate the inter­molecular inter­actions and surface morphology. The Hirshfeld surface mapped over d norm using a standard surface resolution with a fixed colour scale of −0.0919 (red) to 1.6027 (blue) a.u. is shown in Fig. 4.

Figure 4.

Figure 4

A view of the three-dimensional Hirshfeld surface for the title compound 4, plotted over d norm in the range −0.0919 to 1.6027 a.u.

The percentage contributions of various contacts (Table 2) to the total Hirshfeld surface are listed in Table 3 and shown in the two-dimensional fingerprint plots in Fig. 5, revealing that the crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (74.3% contribution to the overall surface), followed by C⋯H/H⋯C and O⋯H/H⋯O inter­actions, which contribute 11.5% and 9.1%, respectively.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound 4 .

Contact Distance Symmetry operation
H17A⋯O1 2.73 1 − x, 2 − y, 1 − z
H22B⋯O1 2.72 x, 1 − y, 1 − z
H22A⋯H2 2.59 1 − x, 1 − y, 1 − z
H20B⋯H10 2.48 −1 + x, y, z
C8⋯H16B 2.75 x, y, 1 + z
H16A⋯C18 3.06 2 − x, 2 − y, 1 − z
H18C⋯C21 2.96 1 − x, 2 − y, 2 − z
H18A⋯H18A 2.58 2 − x, 2 − y, 2 − z

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound 4 .

Contact Percentage contribution
H⋯H 74.3
C⋯H/H⋯C 11.5
O⋯H/H⋯O 9.1
N⋯H/H⋯N 3.4
N⋯C/C⋯N 0.7
O⋯C/C⋯O 0.5
C⋯C 0.5

Figure 5.

Figure 5

A view of the two-dimensional fingerprint plots for the title compound 4, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016) using Conquest (Bruno et al., 2002) for the di-tert-butyl 2,2′-[(ethyl­aza­nedi­yl)bis­(methyl­ene)[bis­(1H-pyrrole-1-carboxyl­ate)] skeleton revealed 37 structures similar to the title compound 4. Only three of them are closely related to the title compound, viz. di-tert-butyl 2,2′-(anthracene-9,10-di­yl)bis(1H-pyrrole-1-carboxyl­ate) in the space group P21/n (CSD refcode PUKKEO; Wang et al., 2020), tert-butyl 2-{4-[1-(tert-but­oxy­carbon­yl)-1H-pyrrol-2-yl]-2,5-bis (2,2-di­cyano­vin­yl)phen­yl}-1H-pyrrole-1-carboxyl­ate in the space group C2/c (IVIJAA; Zhang et al., 2017) and bis­(3-bromo-1- (tert-butyl­oxycarbon­yl)-5-(meth­oxy­carbon­yl)-pyrrol-2-yl)methane in the space group P Inline graphic (NANLAP; Kitamura & Yamashita, 1997).

In the crystal of PUKKEO, the distance between two parallel mol­ecules within one column was measured to be 9.333 Å, indicating that π–π inter­actions cannot be formed in the mol­ecule. In the crystal structure of IVIJAA, multiple inter­molecular C—H⋯N (or C—H⋯O) and C—H⋯π inter­actions were found, which could help to rigidify the mol­ecular conformation. In NANLAP, the dihedral angle between the two pyrrole ring is 82.77°.

In the three structures closely related to the title compound, the different linkers between the two pyrrole units (aromatic vs aliphatic, large vs small) may account for the distinct inter­molecular inter­actions in the crystals.

Synthesis and crystallization  

Di-tert-butyl dicarbonate [(Boc)2O, 27.8 mL, 0.13 mol] was added to a solution of N,N-bis(1H-pyrrol-2-ylmeth­yl)ethanamine (12.0 g, 0.06 mol) and DMAP (1.1 g, 0.009 mol) in CH3CN (50 mL) at room temperature under an argon atmosphere. The mixture was stirred for 6 h at room temperature. The reaction mixture was poured into a 5% solution of NH3 in H2O (300 mL) and extracted with CH2Cl2 (3 × 50 mL). The combined organic layers were dried over MgSO4, filtered and concentrated. Flash chromatography purification on alumin­ium oxide (hexa­ne) of the residue yielded the title compound as colourless crystals. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an EtOAc/hexane solution at room temperature. Colourless prisms. Yield 14.25 g (60%). M.p. = 349.8–351.5 K (hexane, Al2O3). IR (KBr), ν (cm−1): 3112, 3172. 1H NMR (CDCl3, 600.1 MHz): δ = 1.08 (t, 3H, NCH2CH3, J = 6.6), 1.57 (s, 18H, 2 × tBu), 2.67 (q, 2H, N–CH2–CH3, J = 6.6), 3.90 (s, 4H, 2 × N–CH2), 6.09 (t, 2H, H-4, pyrrole, J = 3.3), 6.31 (m, 2H, H-3, pyrrole), 7.16 (dd, 2H, H-5, pyrrole, J = 1.7, J = 3.3). 13C NMR (100.6 MHz, CDCl3): δ = 12.6 (NCH2CH3), 28.1 [2C, 2 × C(CH3)3], 48.9 (N–CH2–CH3), 52.8 (2C, CH2–N–CH2), 83.3 [2C, 2 × O–C(CH3)3], 110.2 (2C, 2 × C-3, pyrrole), 111.7 (2C, 2 × C-4, pyrrole), 120.9 (2C, 2 × C-5, pyrrole), 134.9 (2C, 2 × C-2, pyrrole), 149.5 (2C, 2 × CO). Elemental analysis calculated for C22H33N3O4 (%): C 65.12, H 7.88, N 10.73; found (%): C 65.48, H 8.24, N 10.41.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å with U iso(H) = 1.2 or 1.5U eq(C).

Table 4. Experimental details.

Crystal data
Chemical formula C22H33N3O4
M r 403.51
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 9.6579 (19), 11.798 (2), 12.216 (2)
α, β, γ (°) 100.95 (3), 109.41 (3), 111.12 (3)
V3) 1146.3 (7)
Z 2
Radiation type Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.17
Crystal size (mm) 0.25 × 0.15 × 0.12
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006)
T min, T max 0.950, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 14236, 4609, 3323
R int 0.081
(sin θ/λ)max−1) 0.642
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.067, 0.180, 1.04
No. of reflections 4609
No. of parameters 270
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.32

Computer programs: Marccd (Doyle, 2011), iMosflm (Battye et al., 2011), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020014966/yz2002sup1.cif

e-76-01827-sup1.cif (436.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020014966/yz2002Isup2.hkl

e-76-01827-Isup2.hkl (252.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020014966/yz2002Isup3.cml

CCDC reference: 2043609

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C22H33N3O4 Z = 2
Mr = 403.51 F(000) = 436
Triclinic, P1 Dx = 1.169 Mg m3
a = 9.6579 (19) Å Synchrotron radiation, λ = 0.96990 Å
b = 11.798 (2) Å Cell parameters from 600 reflections
c = 12.216 (2) Å θ = 3.4–34.0°
α = 100.95 (3)° µ = 0.17 mm1
β = 109.41 (3)° T = 100 K
γ = 111.12 (3)° Prism, colourless
V = 1146.3 (7) Å3 0.25 × 0.15 × 0.12 mm

Data collection

Rayonix SX165 CCD diffractometer 3323 reflections with I > 2σ(I)
/f scan Rint = 0.081
Absorption correction: multi-scan (Scala; Evans, 2006) θmax = 38.5°, θmin = 3.4°
Tmin = 0.950, Tmax = 0.970 h = −11→11
14236 measured reflections k = −15→15
4609 independent reflections l = −15→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.0405P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4609 reflections Δρmax = 0.36 e Å3
270 parameters Δρmin = −0.32 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier map Extinction coefficient: 0.039 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.54208 (15) 0.82396 (12) 0.31750 (10) 0.0262 (4)
O2 0.71965 (15) 0.80484 (11) 0.23867 (10) 0.0227 (3)
O3 0.22197 (15) 0.72623 (11) 0.74478 (11) 0.0245 (3)
O4 0.11894 (14) 0.51479 (10) 0.73408 (11) 0.0222 (3)
N1 0.79450 (17) 0.84298 (12) 0.44180 (12) 0.0172 (4)
N2 0.67247 (17) 0.89738 (12) 0.70376 (12) 0.0194 (4)
N3 0.35254 (17) 0.60263 (12) 0.71412 (12) 0.0179 (4)
C1 0.6716 (2) 0.82405 (15) 0.32830 (15) 0.0196 (4)
C2 0.9456 (2) 0.84337 (15) 0.45916 (15) 0.0194 (4)
H2 0.9835 0.8329 0.3972 0.023*
C3 1.0283 (2) 0.86130 (15) 0.58039 (16) 0.0221 (4)
H3 1.1340 0.8651 0.6182 0.027*
C4 0.9274 (2) 0.87346 (15) 0.64092 (15) 0.0212 (4)
H4 0.9553 0.8871 0.7262 0.025*
C5 0.7845 (2) 0.86223 (14) 0.55571 (15) 0.0187 (4)
C6 0.6378 (2) 0.86467 (16) 0.57186 (15) 0.0218 (4)
H6A 0.6124 0.9298 0.5408 0.026*
H6B 0.5404 0.7786 0.5230 0.026*
C7 0.5214 (2) 0.83163 (15) 0.71812 (15) 0.0198 (4)
H7A 0.4270 0.8326 0.6541 0.024*
H7B 0.5353 0.8777 0.8007 0.024*
C8 0.4879 (2) 0.69338 (15) 0.70485 (14) 0.0177 (4)
C9 0.5758 (2) 0.63131 (16) 0.68252 (15) 0.0218 (4)
H9 0.6736 0.6684 0.6721 0.026*
C10 0.4954 (2) 0.50002 (16) 0.67744 (16) 0.0253 (5)
H10 0.5308 0.4355 0.6633 0.030*
C11 0.3603 (2) 0.48460 (15) 0.69642 (16) 0.0230 (5)
H11 0.2841 0.4072 0.6975 0.028*
C12 0.2268 (2) 0.62378 (15) 0.73226 (14) 0.0177 (4)
C13 0.6074 (2) 0.77552 (16) 0.10726 (15) 0.0235 (5)
C14 0.5794 (3) 0.89213 (19) 0.09584 (17) 0.0336 (5)
H14A 0.5206 0.9074 0.1442 0.050*
H14B 0.5135 0.8755 0.0085 0.050*
H14C 0.6861 0.9688 0.1274 0.050*
C15 0.4477 (2) 0.65187 (18) 0.06423 (17) 0.0341 (5)
H15A 0.4740 0.5843 0.0870 0.051*
H15B 0.3852 0.6221 −0.0260 0.051*
H15C 0.3812 0.6699 0.1041 0.051*
C16 0.7089 (3) 0.7536 (2) 0.04130 (17) 0.0363 (6)
H16A 0.8146 0.8318 0.0752 0.055*
H16B 0.6486 0.7344 −0.0475 0.055*
H16C 0.7292 0.6803 0.0536 0.055*
C17 0.7538 (2) 1.03940 (15) 0.76618 (16) 0.0247 (5)
H17A 0.6706 1.0716 0.7420 0.030*
H17B 0.8378 1.0801 0.7377 0.030*
C18 0.8364 (2) 1.08057 (17) 0.90690 (16) 0.0323 (5)
H18A 0.9061 1.0379 0.9308 0.048*
H18B 0.7517 1.0554 0.9371 0.048*
H18C 0.9047 1.1750 0.9433 0.048*
C19 −0.0459 (2) 0.49847 (16) 0.72438 (15) 0.0208 (4)
C20 −0.1389 (2) 0.50783 (18) 0.60138 (16) 0.0284 (5)
H20A −0.0858 0.5970 0.6037 0.043*
H20B −0.2534 0.4839 0.5870 0.043*
H20C −0.1373 0.4486 0.5342 0.043*
C21 −0.0258 (2) 0.59732 (18) 0.83598 (17) 0.0304 (5)
H21A 0.0432 0.5918 0.9123 0.046*
H21B −0.1345 0.5791 0.8332 0.046*
H21C 0.0267 0.6848 0.8343 0.046*
C22 −0.1245 (2) 0.36136 (17) 0.72450 (19) 0.0353 (5)
H22A −0.1313 0.3003 0.6539 0.053*
H22B −0.2357 0.3392 0.7179 0.053*
H22C −0.0572 0.3562 0.8018 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0223 (8) 0.0387 (8) 0.0215 (7) 0.0145 (6) 0.0118 (6) 0.0133 (6)
O2 0.0238 (7) 0.0281 (7) 0.0129 (6) 0.0086 (5) 0.0090 (5) 0.0056 (5)
O3 0.0240 (7) 0.0220 (6) 0.0296 (7) 0.0103 (5) 0.0139 (6) 0.0099 (5)
O4 0.0179 (7) 0.0214 (6) 0.0287 (7) 0.0063 (5) 0.0134 (6) 0.0110 (5)
N1 0.0181 (8) 0.0174 (7) 0.0145 (8) 0.0058 (6) 0.0084 (6) 0.0053 (6)
N2 0.0220 (8) 0.0167 (7) 0.0179 (8) 0.0044 (6) 0.0127 (6) 0.0049 (6)
N3 0.0179 (8) 0.0159 (7) 0.0203 (8) 0.0055 (6) 0.0113 (6) 0.0063 (6)
C1 0.0212 (10) 0.0187 (8) 0.0155 (9) 0.0048 (7) 0.0093 (8) 0.0049 (7)
C2 0.0197 (10) 0.0190 (8) 0.0192 (9) 0.0066 (7) 0.0111 (8) 0.0056 (7)
C3 0.0197 (10) 0.0198 (8) 0.0243 (10) 0.0075 (7) 0.0084 (8) 0.0080 (7)
C4 0.0221 (10) 0.0230 (9) 0.0146 (9) 0.0064 (7) 0.0080 (8) 0.0070 (7)
C5 0.0234 (10) 0.0152 (8) 0.0172 (9) 0.0052 (7) 0.0126 (8) 0.0058 (7)
C6 0.0251 (10) 0.0213 (9) 0.0183 (9) 0.0075 (8) 0.0115 (8) 0.0080 (7)
C7 0.0210 (10) 0.0212 (9) 0.0183 (9) 0.0076 (7) 0.0115 (8) 0.0081 (7)
C8 0.0181 (9) 0.0172 (8) 0.0142 (8) 0.0036 (7) 0.0083 (7) 0.0048 (7)
C9 0.0204 (10) 0.0219 (9) 0.0240 (10) 0.0075 (7) 0.0132 (8) 0.0083 (7)
C10 0.0256 (11) 0.0209 (9) 0.0336 (11) 0.0119 (8) 0.0167 (9) 0.0085 (8)
C11 0.0227 (10) 0.0167 (8) 0.0283 (10) 0.0064 (7) 0.0124 (8) 0.0084 (7)
C12 0.0169 (10) 0.0192 (8) 0.0130 (9) 0.0045 (7) 0.0063 (7) 0.0056 (7)
C13 0.0251 (11) 0.0303 (10) 0.0111 (9) 0.0103 (8) 0.0070 (8) 0.0054 (7)
C14 0.0429 (13) 0.0428 (11) 0.0246 (10) 0.0239 (10) 0.0172 (9) 0.0183 (9)
C15 0.0314 (12) 0.0355 (11) 0.0197 (10) 0.0059 (9) 0.0059 (9) 0.0058 (8)
C16 0.0389 (13) 0.0514 (13) 0.0177 (10) 0.0198 (10) 0.0150 (9) 0.0072 (9)
C17 0.0285 (11) 0.0173 (8) 0.0279 (10) 0.0060 (8) 0.0174 (9) 0.0070 (8)
C18 0.0308 (12) 0.0261 (10) 0.0265 (11) 0.0027 (8) 0.0141 (9) −0.0002 (8)
C19 0.0157 (10) 0.0258 (9) 0.0222 (9) 0.0084 (7) 0.0115 (8) 0.0072 (7)
C20 0.0225 (11) 0.0332 (10) 0.0230 (10) 0.0087 (8) 0.0094 (8) 0.0057 (8)
C21 0.0290 (11) 0.0392 (11) 0.0231 (10) 0.0138 (9) 0.0153 (9) 0.0076 (9)
C22 0.0283 (12) 0.0315 (10) 0.0507 (13) 0.0098 (9) 0.0239 (10) 0.0193 (10)

Geometric parameters (Å, º)

O1—C1 1.213 (2) C11—H11 0.9500
O2—C1 1.336 (2) C13—C14 1.517 (3)
O2—C13 1.495 (2) C13—C16 1.519 (3)
O3—C12 1.209 (2) C13—C15 1.527 (3)
O4—C12 1.3415 (19) C14—H14A 0.9800
O4—C19 1.494 (2) C14—H14B 0.9800
N1—C2 1.401 (2) C14—H14C 0.9800
N1—C1 1.407 (2) C15—H15A 0.9800
N1—C5 1.408 (2) C15—H15B 0.9800
N2—C7 1.472 (2) C15—H15C 0.9800
N2—C6 1.473 (2) C16—H16A 0.9800
N2—C17 1.475 (2) C16—H16B 0.9800
N3—C12 1.401 (2) C16—H16C 0.9800
N3—C11 1.401 (2) C17—C18 1.523 (3)
N3—C8 1.415 (2) C17—H17A 0.9900
C2—C3 1.360 (2) C17—H17B 0.9900
C2—H2 0.9500 C18—H18A 0.9800
C3—C4 1.434 (3) C18—H18B 0.9800
C3—H3 0.9500 C18—H18C 0.9800
C4—C5 1.366 (2) C19—C22 1.520 (2)
C4—H4 0.9500 C19—C21 1.521 (3)
C5—C6 1.503 (2) C19—C20 1.521 (2)
C6—H6A 0.9900 C20—H20A 0.9800
C6—H6B 0.9900 C20—H20B 0.9800
C7—C8 1.508 (2) C20—H20C 0.9800
C7—H7A 0.9900 C21—H21A 0.9800
C7—H7B 0.9900 C21—H21B 0.9800
C8—C9 1.364 (3) C21—H21C 0.9800
C9—C10 1.439 (2) C22—H22A 0.9800
C9—H9 0.9500 C22—H22B 0.9800
C10—C11 1.354 (3) C22—H22C 0.9800
C10—H10 0.9500
C1—O2—C13 120.54 (15) C14—C13—C15 113.23 (17)
C12—O4—C19 121.12 (14) C16—C13—C15 111.00 (16)
C2—N1—C1 125.39 (14) C13—C14—H14A 109.5
C2—N1—C5 109.01 (14) C13—C14—H14B 109.5
C1—N1—C5 125.59 (15) H14A—C14—H14B 109.5
C7—N2—C6 111.01 (13) C13—C14—H14C 109.5
C7—N2—C17 112.51 (14) H14A—C14—H14C 109.5
C6—N2—C17 110.28 (13) H14B—C14—H14C 109.5
C12—N3—C11 125.04 (14) C13—C15—H15A 109.5
C12—N3—C8 126.37 (14) C13—C15—H15B 109.5
C11—N3—C8 108.54 (14) H15A—C15—H15B 109.5
O1—C1—O2 127.13 (16) C13—C15—H15C 109.5
O1—C1—N1 123.13 (15) H15A—C15—H15C 109.5
O2—C1—N1 109.73 (16) H15B—C15—H15C 109.5
C3—C2—N1 107.86 (15) C13—C16—H16A 109.5
C3—C2—H2 126.1 C13—C16—H16B 109.5
N1—C2—H2 126.1 H16A—C16—H16B 109.5
C2—C3—C4 107.70 (17) C13—C16—H16C 109.5
C2—C3—H3 126.2 H16A—C16—H16C 109.5
C4—C3—H3 126.2 H16B—C16—H16C 109.5
C5—C4—C3 108.77 (15) N2—C17—C18 112.62 (15)
C5—C4—H4 125.6 N2—C17—H17A 109.1
C3—C4—H4 125.6 C18—C17—H17A 109.1
C4—C5—N1 106.67 (16) N2—C17—H17B 109.1
C4—C5—C6 129.41 (15) C18—C17—H17B 109.1
N1—C5—C6 123.90 (15) H17A—C17—H17B 107.8
N2—C6—C5 110.12 (14) C17—C18—H18A 109.5
N2—C6—H6A 109.6 C17—C18—H18B 109.5
C5—C6—H6A 109.6 H18A—C18—H18B 109.5
N2—C6—H6B 109.6 C17—C18—H18C 109.5
C5—C6—H6B 109.6 H18A—C18—H18C 109.5
H6A—C6—H6B 108.2 H18B—C18—H18C 109.5
N2—C7—C8 109.26 (14) O4—C19—C22 102.03 (14)
N2—C7—H7A 109.8 O4—C19—C21 110.41 (14)
C8—C7—H7A 109.8 C22—C19—C21 111.25 (15)
N2—C7—H7B 109.8 O4—C19—C20 108.05 (14)
C8—C7—H7B 109.8 C22—C19—C20 111.12 (15)
H7A—C7—H7B 108.3 C21—C19—C20 113.35 (16)
C9—C8—N3 107.00 (14) C19—C20—H20A 109.5
C9—C8—C7 128.71 (15) C19—C20—H20B 109.5
N3—C8—C7 124.28 (16) H20A—C20—H20B 109.5
C8—C9—C10 108.38 (16) C19—C20—H20C 109.5
C8—C9—H9 125.8 H20A—C20—H20C 109.5
C10—C9—H9 125.8 H20B—C20—H20C 109.5
C11—C10—C9 107.95 (16) C19—C21—H21A 109.5
C11—C10—H10 126.0 C19—C21—H21B 109.5
C9—C10—H10 126.0 H21A—C21—H21B 109.5
C10—C11—N3 108.12 (15) C19—C21—H21C 109.5
C10—C11—H11 125.9 H21A—C21—H21C 109.5
N3—C11—H11 125.9 H21B—C21—H21C 109.5
O3—C12—O4 127.40 (17) C19—C22—H22A 109.5
O3—C12—N3 123.38 (15) C19—C22—H22B 109.5
O4—C12—N3 109.21 (14) H22A—C22—H22B 109.5
O2—C13—C14 109.60 (13) C19—C22—H22C 109.5
O2—C13—C16 101.24 (15) H22A—C22—H22C 109.5
C14—C13—C16 111.47 (16) H22B—C22—H22C 109.5
O2—C13—C15 109.64 (13)
C13—O2—C1—O1 −2.0 (2) C12—N3—C8—C7 2.4 (2)
C13—O2—C1—N1 176.90 (12) C11—N3—C8—C7 179.74 (15)
C2—N1—C1—O1 179.68 (15) N2—C7—C8—C9 −0.3 (2)
C5—N1—C1—O1 0.9 (2) N2—C7—C8—N3 179.67 (14)
C2—N1—C1—O2 0.7 (2) N3—C8—C9—C10 0.08 (18)
C5—N1—C1—O2 −178.04 (13) C7—C8—C9—C10 −179.92 (16)
C1—N1—C2—C3 −178.48 (14) C8—C9—C10—C11 0.1 (2)
C5—N1—C2—C3 0.47 (17) C9—C10—C11—N3 −0.29 (19)
N1—C2—C3—C4 −0.43 (17) C12—N3—C11—C10 177.71 (15)
C2—C3—C4—C5 0.25 (18) C8—N3—C11—C10 0.34 (19)
C3—C4—C5—N1 0.04 (17) C19—O4—C12—O3 13.9 (2)
C3—C4—C5—C6 178.28 (15) C19—O4—C12—N3 −166.59 (12)
C2—N1—C5—C4 −0.31 (16) C11—N3—C12—O3 −178.45 (15)
C1—N1—C5—C4 178.64 (14) C8—N3—C12—O3 −1.5 (2)
C2—N1—C5—C6 −178.67 (14) C11—N3—C12—O4 2.0 (2)
C1—N1—C5—C6 0.3 (2) C8—N3—C12—O4 178.95 (13)
C7—N2—C6—C5 −147.26 (14) C1—O2—C13—C14 65.63 (19)
C17—N2—C6—C5 87.35 (17) C1—O2—C13—C16 −176.54 (14)
C4—C5—C6—N2 6.7 (2) C1—O2—C13—C15 −59.2 (2)
N1—C5—C6—N2 −175.38 (13) C7—N2—C17—C18 71.9 (2)
C6—N2—C7—C8 80.67 (16) C6—N2—C17—C18 −163.52 (15)
C17—N2—C7—C8 −155.20 (14) C12—O4—C19—C22 177.50 (13)
C12—N3—C8—C9 −177.58 (15) C12—O4—C19—C21 −64.16 (18)
C11—N3—C8—C9 −0.26 (18) C12—O4—C19—C20 60.31 (18)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the N3/C8–C11 pyrrole ring.

D—H···A D—H H···A D···A D—H···A
C14—H14A···O1 0.98 2.48 3.062 (3) 118
C15—H15C···O1 0.98 2.45 2.989 (2) 114
C20—H20A···O3 0.98 2.54 3.100 (3) 116
C21—H21C···O3 0.98 2.43 3.012 (3) 118
C16—H16B···Cg2i 0.98 2.85 3.779 (2) 158

Symmetry code: (i) x, y, z−1.

Funding Statement

This work was funded by Ministry of Education and Science of the Russian Federation grant 075–03-2020–223 (FSSF-2020–0017).

References

  1. Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.
  2. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
  3. Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850. [DOI] [PubMed]
  4. Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853. [DOI] [PubMed]
  5. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  6. Butler, D. N., Hammond, M. L. A., Johnston, M. R., Sun, G., Malpass, J. R., Fawcett, J. & Warrener, R. N. (2000). Org. Lett. 2, 721–724. [DOI] [PubMed]
  7. Domingo, L. R., Picher, M. T. & Andrés, J. (2000). J. Org. Chem. 65, 3473–3477. [DOI] [PubMed]
  8. Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.
  9. Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
  13. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
  14. Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
  15. Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. [DOI] [PubMed]
  16. Kitamura, C. & Yamashita, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1443–1448.
  17. Kvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmes, B., Zubkov, F. I. & Frontera, A. (2020). Eur. J. Org. Chem. pp. 156–161.
  18. Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418–4427. [DOI] [PubMed]
  19. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  20. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.
  21. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  22. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
  23. Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
  24. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. [DOI] [PubMed]
  25. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.
  26. Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
  27. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.
  28. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  29. Raines, S. & Kovacs, C. A. (1970). J. Heterocycl. Chem. 7, 223–225.
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  33. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  34. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  35. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  36. Visnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621–1622.
  37. Wang, R., Liang, Y., Liu, G. & Pu, S. (2020). RSC Adv. 10, 2170–2179. [DOI] [PMC free article] [PubMed]
  38. Warrener, R. N., Margetic, D., Sun, G. & Russell, R. A. (2003). Aust. J. Chem. 56, 263–267.
  39. Winkler, J. D. (1996). Chem. Rev. 96, 167–176. [DOI] [PubMed]
  40. Zhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577–582. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020014966/yz2002sup1.cif

e-76-01827-sup1.cif (436.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020014966/yz2002Isup2.hkl

e-76-01827-Isup2.hkl (252.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020014966/yz2002Isup3.cml

CCDC reference: 2043609

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES