Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Nov 3;76(Pt 12):1805–1809. doi: 10.1107/S2056989020014371

Crystal structures of 2-amino-2-oxoethyl 4-bromo­benzoate, 2-amino-2-oxoethyl 4-nitro­benzoate and 2-amino-2-oxoethyl 4-amino­benzoate monohydrate

F A Sapayev a, R Ya Okmanov b,*, T S Kholikov a, Kh S Tadjimukhamedov a, B Tashkhodjaev b
PMCID: PMC7784646  PMID: 33520257

The title mol­ecules were synthesized by the reaction of the corresponding sodium benzoate with chloro­acetic acid amide. Single crystals were obtained from the reaction products under the same conditions.

Keywords: 2-amino-2-oxoethyl 4-bromo­benzoate, 2-amino-2-oxoethyl 4-nitro­benzoate and 2-amino-2-oxoethyl 4-amino­benzoate monohydrate, crystal structure, mol­ecular structure, hydrogen bonding

Abstract

The title mol­ecules were synthesized by the reaction of 4-substituted sodium benzoates with chloro­acetic acid amide in the presence of di­methyl­formamide. The yields of 2-amino-2-oxoethyl 4-bromo­benzoate, C9H8BrNO3, I, 2-amino-2-oxoethyl 4-nitro­benzoate, C9H8N2O5, II, and 2-amino-2-oxoethyl 4-amino­benzoate monohydrate, C9H10N2O3·H2O, III, are 86, 78 and 88%, respectively. The low yield of II is explained by the reduced reactivity of the mol­ecule in a nucleophilic exchange reaction because of the negative induction and negative mesomeric effects of the nitro group on the benzene ring. Single crystals were obtained from the products under the same (temperature and solvent) conditions. In the case of III, the crystals formed as a monohydrate. In all three crystal structures, the same type of inter­molecular N—H⋯O hydrogen bonds are observed, but the mol­ecules differ in some torsion angles as well as in the dihedral angles between the mean planes of the benzene rings and the amide groups.

Chemical context  

Mol­ecules containing an aromatic ring, a carboxyl and an amino group represent an important class of organic compounds and, with several reaction centers, they are important inter­mediates in industry. They are often used as synthons in organic synthesis and are also widely used as ligands in the coordination chemistry of various transition metals. These ligands can form a variety of complex compounds as they possess several Lewis base sites.graphic file with name e-76-01805-scheme1.jpg

The new crystalline compounds 2-amino-2-oxoethyl 4-bromo­benzoate (I), 2-amino-2-oxoethyl 4-nitro­benzoate (II) and 2-amino-2-oxoeth­yl)-4-amino­benzoate monohydrate (III) (Fig. 1) were synthesized from the reaction of 4-substituted sodium benzoates with chloro­acetic acid amide in the presence of di­methyl­formamide. Their structures were determined by X-ray crystallographic analysis.

Figure 1.

Figure 1

Reaction scheme for the synthesis of (2-amino-2-oxoeth­yl)benzoate derivatives.

Structural commentary  

All of the title structures have planar benzoate (C1–C7/O1/O2) and amide (O3/C9/N1) units but the dihedral angle between these planes is different in each case because of the torsion angle about the bridging methyl­ene group (C8; Tables 1–3 ). The asymmetric unit of each crystal structure is illus­trated in Fig. 2. That of I consists of two independent mol­ecules (A and B), which differ in the position of the amide groups relative to the benzoate (r.m.s. deviations of 0.021 Å for A and 0.031 Å for B) fragments, as indicated by the dihedral angles of 82.5 (4) and 75.9 (3)° in A and B, respectively. The asymmetric unit of II contains only one mol­ecule of 2-amino-2-oxoethyl 4-nitro­benzoate. The dihedral angle between the mean planes of the amide and the benzoate (r.m.s. deviation = 0.070 Å) groups is 89.4 (2)°. The asymmetric unit of III contains one water mol­ecule and one 2-amino-2-oxoethyl 4-amino­benzoate mol­ecule (Fig. 2). The dihedral angle between the mean planes of the amide and benzoate (r.m.s. deviation = 0.027 Å) groups is 4.4 (5)°. Analysis of the bond lengths and bond angles of IIII shows slight differences, but these data are in the expected ranges (Allen et al., 1987).

Table 1. Selected torsion angles (°) for (I) .

C8A—O2A—C7A—C1A 179.4 (3) C8B—O2B—C7B—C1B 177.1 (3)
C6A—C1A—C7A—O2A 178.3 (3) C6B—C1B—C7B—O2B −176.7 (3)
C7A—O2A—C8A—C9A −72.9 (5) C7B—O2B—C8B—C9B −69.1 (5)
O2A—C8A—C9A—O3A −16.9 (6) O2B—C8B—C9B—O3B −17.6 (6)

Table 2. Selected torsion angles (°) for (II) .

C8—O2—C7—C1 −176.52 (14) C7—O2—C8—C9 −95.53 (19)
C6—C1—C7—O2 −170.76 (15) O2—C8—C9—O3 175.79 (17)

Table 3. Selected torsion angles (°) for (III) .

C8—O2—C7—C1 −178.9 (2) C7—O2—C8—C9 −179.2 (2)
C6—C1—C7—O2 −177.0 (2) O2—C8—C9—O3 177.4 (2)

Figure 2.

Figure 2

The asymmetric units of IIII with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal structures, several types of inter­molecular inter­actions are observed but all contain inter­molecular N—H⋯O hydrogen bonds.

In I, inter­molecular AA (N1A—H1A⋯O3A i), BB (N1B—H2B⋯O3B ii) and BA (N1B—H2B⋯O3B iii) inter­actions cross-link the mol­ecules, generating rings with an Inline graphic(12) graph-set motif (Fig. 3, Table 4) (Grell et al., 1999). Although both the A and B mol­ecules contain a bromine atom, a short inter­molecular Br⋯Br inter­action only occurs between B mol­ecules [Br1B⋯Br1B(−x + Inline graphic, y + Inline graphic, −z + Inline graphic) = 3.519 (1) Å, 0.18 Å less than the sum of the van der Waals radii]. This inter­action connects the mol­ecules into chains extending along the b-axis direction (Fig. 3). A similar short Br ⋯ Br inter­action was observed in the crystal structures of 4-chloro­phenyl-4-bromo­benzoate (TAYNEP; Saha & Desiraju, 2017) and 4-bromo­phenyl-4-bromo­benzoate (VEWSIC; Saha & Desiraju, 2018).

Figure 3.

Figure 3

Hydrogen bonds (formation of rings) and inter­molecular Br⋯Br contacts in I.

Table 4. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O3A i 0.85 (6) 2.18 (7) 2.969 (5) 153
N1B—H1B⋯O3A ii 0.93 (6) 2.24 (6) 3.163 (5) 170
N1B—H2B⋯O3B iii 0.86 (9) 1.97 (9) 2.825 (5) 178

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

In II, the angle between the mean planes of the nitro group and the aromatic ring is 4.1 (1)°. A characteristic inter­molecular inter­action for II is the formation of centrosymmetric dimers as a result of the N1—H1⋯O3i hydrogen bonds formed between amide fragments (Table 5). Short inter­molecular O5⋯O5(−x + 1, −y + 2, −z + 1) inter­actions [at 2.874 (4) Å these are 0.14 Å less than the sum of the van der Waals radii] are observed between the nitro groups of the dimers (Fig. 4). A similar inter­molecular O⋯O contact was observed in the crystal structure of meta-di­nitro­benzene (DNBENZ11, DNBENZ12; Wójcik et al., 2002).

Table 5. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.93 (2) 1.97 (2) 2.898 (2) 174 (2)

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

Hydrogen bonds and inter­molecular O⋯O contacts in II.

In III, as in II, inversion dimers are formed by N1—H1⋯O3i hydrogen bonds (Fig. 5, Table 6). An inter­molecular hydrogen bond is also observed between the oxygen of the amide fragment and the water mol­ecule (Fig. 6), although the angle is only 101°, and the water mol­ecules are further connected by hydrogen bonds to form an infinite chain along the b-axis direction.

Figure 5.

Figure 5

Dimer formation in III.

Table 6. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.87 (4) 2.06 (4) 2.915 (3) 168
N2—H3⋯O1ii 0.96 (3) 1.98 (3) 2.919 (4) 163
O1W—H1W⋯O3 0.78 (4) 2.14 (4) 2.916 (4) 169 (4)
O1W—H2W⋯O1W iii 0.91 (9) 2.46 (9) 2.782 (7) 101

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 6.

Figure 6

Inter­molecular hydrogen bonds between water and 2-amino-2-oxoethyl 4-amino­benzoate mol­ecules in III.

Database survey  

A search for the 2-amino-2-oxoethyl benzoate (carbamoyl­methyl­benzoate) scaffold in the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016) gave 34 hits. Of these, the structures most closely related to the title compounds are MAMJOC [2-(di­methyl­amino)-2-oxo­ethyl 5-bromo-2-hy­droxy­benzoate; Santra et al., 2016], CEPWID (1-benzo­yloxy-1-meth­oxy-N-methyl­acetamide; Nishio et al., 1984) and HUMJII (carbamoylmethyl 3,4,5-tri­hydroxy­benzoate hydrate; Parkin et al., 2002).

Synthesis and crystallization  

Synthesis 2-amino-2-oxoethyl 4-bromo­benzoate: General method. To a 25 mL round-bottom flask containing 0.27 g (1.2 mmol) of the sodium salt of p-bromo­benzoic acid were added 6 mL of DMF. The resulting mixture was heated for 10 min (for partial dissolution of the salt) and 0.1 g (1 mmol) of chloro­acetamide was added. The flask was equipped with a reflux condenser and mechanical stirrer and was heated in a sand bath with stirring at 426 K for 6 h. The DMF was removed in vacuo (15 mm Hg) at 328 K. After cooling, cold water was poured into the reaction mixture to completely eliminate the residual reactants and DMF. The resulting precipitate was filtered off to give 0.22 g (86% yield) of product. R F = 0.65 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 475–477 K. 1H NMR [400 MHz, CD3OD, δ (ppm.), J (Hz)]: 7.95 (2H, d, J = 8.64, H3 and H5), 7.61 (2H, d, J = 8.63, H2 and H6), 4.72 (2H, s, CH2).

(2-Amino-2-oxoeth­yl)-4-nitro­benzoate. The reaction yield is 78%. R F = 0.62 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 439–441 K. 1H NMR [400 MHz, CD3OD+CDCl3+C2D5OD δ (ppm), J (Hz)]: 8.23 (2H, d, J = 9.28, H3 and H5), 8.19 (2H, d, J = 9.31, H2 and H6), 4.73 (2H, s, CH2).

(2-Amino-2-oxoeth­yl)-4-amino­benzoate. The reaction yield is 88%. R F = 0.53 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 435–438 K. 1H NMR [400 MHz, CD3OD, δ (ppm), J (Hz)]: 7.75 (2H, d, J = 8.75, H3 and H5), 6.58 (2H, d, J = 8.75, H2 and H6), 4.62 (2H, s, CH2).

Each compound was dissolved in ethanol and the solvent allowed to evaporate at room temperature. Colourless crystals suitable for X-ray diffraction analysis were obtained.

The crystal of the 2-amino-2-oxoethyl 4-amino­benzoate monohydrate loses its transparency without chemical change (without becoming amorphous) in the range 344–346 K when the crystals are heated and melts in the range 435–438 K.

The yields of 2-amino-2-oxoethyl 4-bromo­benzoate, C9H8BrNO3, I, 2-amino-2-oxoethyl 4-nitro­benzoate, C9H8N2O5, II, and 2-amino-2-oxoethyl 4-amino­benzoate monohydrate, C9H10N2O3·H2O, III, are 86, 78 and 88%, respectively. The low yield of II is explained by the reduced reactivity of the mol­ecule in a nucleophilic exchange reaction because of the negative induction and negative mesomeric effects of the nitro group on the benzene ring.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. C-bound H atoms were placed geometrically (with C—H distances of 0.97 Å for CH2 and 0.93 Å for Car) and included in the refinement as riding contributions with U iso(H) = 1.2U eq(C) [U iso = 1.5 U eq(C) for methyl H atoms]. The hydrogen atoms attached to N and O (water) were located in difference-Fourier maps and refined freely.

Table 7. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C9H8BrNO3 C9H8N2O5 C9H10N2O3·H2O
M r 258.07 224.17 212.21
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic Monoclinic, P21/n
Temperature (K) 291 291 291
a, b, c (Å) 18.623 (4), 4.8255 (10), 23.195 (5) 7.1238 (14), 7.3683 (15), 10.063 (2) 8.2431 (16), 4.8088 (10), 26.754 (5)
α, β, γ (°) 90, 112.96 (3), 90 107.82 (3), 94.95 (3), 96.32 (3) 90, 90.10 (3), 90
V3) 1919.3 (8) 495.76 (19) 1060.5 (4)
Z 8 2 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 5.71 1.08 0.90
Crystal size (mm) 0.60 × 0.20 × 0.15 0.40 × 0.34 × 0.21 0.28 × 0.24 × 0.17
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Ruby Oxford Diffraction Xcalibur, Ruby Oxford Diffraction Xcalibur, Ruby
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.292, 0.425 0.681, 0.797 0.778, 0.859
No. of measured, independent and observed [I > 2σ(I)] reflections 6390, 3832, 3165 2971, 1859, 1560 6444, 2165, 1129
R int 0.033 0.018 0.055
(sin θ/λ)max−1) 0.629 0.609 0.630
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.138, 1.06 0.050, 0.148, 1.06 0.053, 0.150, 0.99
No. of reflections 3832 1859 2165
No. of parameters 269 153 160
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.85 0.24, −0.29 0.16, −0.24

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS7 (Sheldrick, 2008), SHELXL2014/8 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010)’.

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, Global. DOI: 10.1107/S2056989020014371/mw2171sup1.cif

e-76-01805-sup1.cif (579.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020014371/mw2171Isup2.hkl

e-76-01805-Isup2.hkl (305.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020014371/mw2171IIsup3.hkl

e-76-01805-IIsup3.hkl (149.4KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989020014371/mw2171IIIsup4.hkl

e-76-01805-IIIsup4.hkl (173.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020014371/mw2171Isup5.cml

Supporting information file. DOI: 10.1107/S2056989020014371/mw2171IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989020014371/mw2171IIIsup7.cml

CCDC references: 2041177, 2041176, 2041175

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are especially grateful to Dr Kambarali Turgunov for help in discussing the results.

supplementary crystallographic information

2-Amino-2-oxoethyl 4-bromobenzoate (I). Crystal data

C9H8BrNO3 Dx = 1.786 Mg m3
Mr = 258.07 Melting point: 475(2) K
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 18.623 (4) Å Cell parameters from 2381 reflections
b = 4.8255 (10) Å θ = 3.9–75.4°
c = 23.195 (5) Å µ = 5.71 mm1
β = 112.96 (3)° T = 291 K
V = 1919.3 (8) Å3 Prismatic, colorless
Z = 8 0.60 × 0.20 × 0.15 mm
F(000) = 1024

2-Amino-2-oxoethyl 4-bromobenzoate (I). Data collection

Oxford Diffraction Xcalibur, Ruby diffractometer 3832 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3165 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Detector resolution: 10.2576 pixels mm-1 θmax = 75.9°, θmin = 3.9°
ω scans h = −20→22
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −3→5
Tmin = 0.292, Tmax = 0.425 l = −28→28
6390 measured reflections

2-Amino-2-oxoethyl 4-bromobenzoate (I). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: mixed
wR(F2) = 0.138 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.3454P] where P = (Fo2 + 2Fc2)/3
3832 reflections (Δ/σ)max = 0.001
269 parameters Δρmax = 0.62 e Å3
0 restraints Δρmin = −0.85 e Å3

2-Amino-2-oxoethyl 4-bromobenzoate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Amino-2-oxoethyl 4-bromobenzoate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1A 0.59795 (3) 0.16726 (12) 0.02621 (3) 0.06387 (18)
O1A 0.8638 (2) 1.0616 (8) −0.01058 (15) 0.0605 (8)
O2A 0.89019 (17) 1.1199 (6) 0.09136 (15) 0.0503 (7)
O3A 1.03189 (18) 0.9293 (6) 0.09906 (17) 0.0565 (8)
N1A 1.0666 (2) 1.3499 (8) 0.0755 (2) 0.0562 (10)
C1A 0.7921 (2) 0.7970 (9) 0.03619 (17) 0.0415 (8)
C2A 0.7811 (2) 0.7232 (10) 0.09046 (18) 0.0480 (9)
H2AA 0.8124 0.8027 0.1285 0.058*
C3A 0.7248 (2) 0.5349 (10) 0.08845 (19) 0.0490 (9)
H3AA 0.7173 0.4880 0.1246 0.059*
C4A 0.6792 (2) 0.4160 (9) 0.03104 (19) 0.0448 (8)
C5A 0.6903 (3) 0.4759 (9) −0.0231 (2) 0.0502 (10)
H5AA 0.6607 0.3889 −0.0606 0.060*
C6A 0.7466 (2) 0.6684 (10) −0.02010 (18) 0.0490 (9)
H6AA 0.7544 0.7128 −0.0563 0.059*
C7A 0.8509 (2) 1.0019 (9) 0.03547 (19) 0.0446 (9)
C8A 0.9478 (2) 1.3163 (9) 0.0930 (2) 0.0513 (10)
H8AA 0.9637 1.4220 0.1316 0.062*
H8AB 0.9257 1.4444 0.0583 0.062*
C9A 1.0189 (2) 1.1759 (8) 0.08903 (19) 0.0423 (8)
Br1B 0.67568 (2) 0.97787 (9) 0.22125 (2) 0.05283 (17)
O1B 0.38919 (19) −0.0158 (7) 0.13654 (16) 0.0566 (8)
O2B 0.40704 (17) 0.0563 (7) 0.23657 (14) 0.0499 (7)
O3B 0.2552 (2) 0.2216 (6) 0.17521 (19) 0.0599 (8)
N1B 0.2115 (2) −0.2140 (8) 0.1638 (2) 0.0590 (10)
C1B 0.4827 (2) 0.3192 (8) 0.19559 (18) 0.0403 (8)
C2B 0.5228 (2) 0.4425 (8) 0.25363 (18) 0.0438 (8)
H2BA 0.5112 0.3927 0.2877 0.053*
C3B 0.5798 (2) 0.6380 (8) 0.26086 (18) 0.0431 (8)
H3BA 0.6070 0.7184 0.2998 0.052*
C4B 0.5961 (2) 0.7133 (8) 0.20969 (19) 0.0413 (8)
C5B 0.5564 (2) 0.5973 (9) 0.15118 (19) 0.0463 (9)
H5BA 0.5673 0.6527 0.1170 0.056*
C6B 0.5005 (2) 0.3988 (9) 0.14437 (18) 0.0451 (8)
H6BA 0.4743 0.3166 0.1055 0.054*
C7B 0.4222 (2) 0.1058 (9) 0.18490 (19) 0.0433 (8)
C8B 0.3457 (2) −0.1403 (9) 0.2275 (2) 0.0499 (9)
H8BA 0.3449 −0.1889 0.2679 0.060*
H8BB 0.3562 −0.3078 0.2090 0.060*
C9B 0.2666 (2) −0.0281 (8) 0.1857 (2) 0.0430 (8)
H1A 1.064 (4) 1.527 (14) 0.074 (3) 0.070 (18)*
H2A 1.107 (3) 1.286 (12) 0.067 (2) 0.058 (14)*
H1B 0.160 (4) −0.159 (12) 0.142 (3) 0.064 (16)*
H2B 0.225 (5) −0.385 (19) 0.167 (4) 0.11 (3)*

2-Amino-2-oxoethyl 4-bromobenzoate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.0482 (3) 0.0654 (3) 0.0756 (3) −0.0109 (2) 0.0215 (2) −0.0061 (2)
O1A 0.0569 (19) 0.074 (2) 0.0558 (17) 0.0015 (16) 0.0275 (14) 0.0065 (16)
O2A 0.0425 (15) 0.0511 (16) 0.0623 (16) −0.0055 (12) 0.0258 (13) −0.0114 (14)
O3A 0.0476 (16) 0.0373 (15) 0.087 (2) 0.0071 (13) 0.0286 (16) 0.0083 (15)
N1A 0.0413 (19) 0.039 (2) 0.096 (3) 0.0026 (15) 0.0345 (19) 0.0011 (19)
C1A 0.0327 (17) 0.048 (2) 0.0439 (17) 0.0086 (15) 0.0146 (14) −0.0008 (16)
C2A 0.042 (2) 0.057 (2) 0.0425 (18) 0.0013 (18) 0.0139 (15) −0.0077 (17)
C3A 0.043 (2) 0.059 (3) 0.0448 (19) 0.0018 (18) 0.0166 (16) −0.0040 (18)
C4A 0.0346 (18) 0.041 (2) 0.054 (2) −0.0005 (15) 0.0117 (15) −0.0046 (17)
C5A 0.045 (2) 0.053 (2) 0.048 (2) 0.0029 (18) 0.0125 (17) −0.0100 (18)
C6A 0.041 (2) 0.061 (3) 0.0414 (18) 0.0027 (18) 0.0131 (15) −0.0046 (18)
C7A 0.0373 (19) 0.045 (2) 0.053 (2) 0.0099 (16) 0.0200 (16) 0.0010 (17)
C8A 0.039 (2) 0.043 (2) 0.077 (3) −0.0009 (16) 0.0283 (19) −0.010 (2)
C9A 0.0335 (17) 0.038 (2) 0.0526 (19) 0.0053 (14) 0.0141 (15) −0.0037 (16)
Br1B 0.0354 (2) 0.0468 (3) 0.0738 (3) −0.00022 (16) 0.01852 (19) 0.0072 (2)
O1B 0.0513 (17) 0.0560 (18) 0.0640 (18) −0.0109 (14) 0.0240 (14) −0.0166 (15)
O2B 0.0429 (15) 0.0532 (16) 0.0554 (15) −0.0074 (13) 0.0211 (12) −0.0041 (13)
O3B 0.0531 (17) 0.0311 (15) 0.097 (2) 0.0056 (13) 0.0305 (17) 0.0047 (15)
N1B 0.048 (2) 0.0341 (19) 0.080 (3) 0.0025 (15) 0.0084 (18) 0.0062 (18)
C1B 0.0310 (16) 0.0385 (19) 0.0511 (19) 0.0056 (14) 0.0155 (14) −0.0013 (15)
C2B 0.0410 (19) 0.044 (2) 0.0453 (18) 0.0022 (16) 0.0157 (15) 0.0024 (16)
C3B 0.0401 (19) 0.040 (2) 0.0459 (18) −0.0042 (15) 0.0136 (15) −0.0016 (15)
C4B 0.0254 (15) 0.0373 (18) 0.056 (2) 0.0002 (13) 0.0106 (14) 0.0024 (16)
C5B 0.0371 (18) 0.054 (2) 0.0483 (19) 0.0046 (17) 0.0166 (15) 0.0018 (17)
C6B 0.0350 (17) 0.052 (2) 0.0453 (18) 0.0046 (16) 0.0124 (14) −0.0055 (17)
C7B 0.0327 (17) 0.042 (2) 0.054 (2) 0.0067 (15) 0.0152 (15) −0.0038 (17)
C8B 0.039 (2) 0.044 (2) 0.067 (2) −0.0004 (16) 0.0206 (18) 0.0046 (19)
C9B 0.043 (2) 0.0319 (19) 0.061 (2) 0.0028 (15) 0.0282 (17) 0.0023 (16)

2-Amino-2-oxoethyl 4-bromobenzoate (I). Geometric parameters (Å, º)

Br1A—C4A 1.900 (4) Br1B—C4B 1.894 (4)
O1A—C7A 1.217 (6) O1B—C7B 1.201 (5)
O2A—C7A 1.342 (5) O2B—C7B 1.355 (5)
O2A—C8A 1.421 (5) O2B—C8B 1.437 (5)
O3A—C9A 1.219 (5) O3B—C9B 1.231 (5)
N1A—C9A 1.345 (6) N1B—C9B 1.307 (6)
N1A—H1A 0.85 (7) N1B—H1B 0.93 (6)
N1A—H2A 0.91 (6) N1B—H2B 0.86 (9)
C1A—C6A 1.394 (5) C1B—C2B 1.393 (6)
C1A—C2A 1.398 (6) C1B—C6B 1.406 (6)
C1A—C7A 1.480 (6) C1B—C7B 1.474 (6)
C2A—C3A 1.374 (6) C2B—C3B 1.381 (6)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.394 (6) C3B—C4B 1.383 (6)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.380 (6) C4B—C5B 1.385 (6)
C5A—C6A 1.382 (7) C5B—C6B 1.378 (6)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—H6AA 0.9300 C6B—H6BA 0.9300
C8A—C9A 1.522 (5) C8B—C9B 1.512 (6)
C8A—H8AA 0.9700 C8B—H8BA 0.9700
C8A—H8AB 0.9700 C8B—H8BB 0.9700
C7A—O2A—C8A 115.5 (3) C7B—O2B—C8B 114.5 (3)
C9A—N1A—H1A 127 (4) C9B—N1B—H1B 120 (4)
C9A—N1A—H2A 121 (4) C9B—N1B—H2B 117 (5)
H1A—N1A—H2A 111 (6) H1B—N1B—H2B 122 (6)
C6A—C1A—C2A 118.7 (4) C2B—C1B—C6B 119.1 (4)
C6A—C1A—C7A 117.9 (4) C2B—C1B—C7B 123.2 (4)
C2A—C1A—C7A 123.3 (4) C6B—C1B—C7B 117.7 (4)
C3A—C2A—C1A 121.1 (4) C3B—C2B—C1B 120.4 (4)
C3A—C2A—H2AA 119.5 C3B—C2B—H2BA 119.8
C1A—C2A—H2AA 119.5 C1B—C2B—H2BA 119.8
C2A—C3A—C4A 118.5 (4) C2B—C3B—C4B 119.4 (4)
C2A—C3A—H3AA 120.7 C2B—C3B—H3BA 120.3
C4A—C3A—H3AA 120.7 C4B—C3B—H3BA 120.3
C5A—C4A—C3A 122.1 (4) C3B—C4B—C5B 121.5 (4)
C5A—C4A—Br1A 118.5 (3) C3B—C4B—Br1B 118.5 (3)
C3A—C4A—Br1A 119.4 (3) C5B—C4B—Br1B 120.0 (3)
C4A—C5A—C6A 118.4 (4) C6B—C5B—C4B 119.0 (4)
C4A—C5A—H5AA 120.8 C6B—C5B—H5BA 120.5
C6A—C5A—H5AA 120.8 C4B—C5B—H5BA 120.5
C5A—C6A—C1A 121.2 (4) C5B—C6B—C1B 120.7 (4)
C5A—C6A—H6AA 119.4 C5B—C6B—H6BA 119.7
C1A—C6A—H6AA 119.4 C1B—C6B—H6BA 119.7
O1A—C7A—O2A 121.8 (4) O1B—C7B—O2B 122.2 (4)
O1A—C7A—C1A 124.6 (4) O1B—C7B—C1B 125.3 (4)
O2A—C7A—C1A 113.6 (4) O2B—C7B—C1B 112.6 (3)
O2A—C8A—C9A 111.5 (3) O2B—C8B—C9B 112.1 (3)
O2A—C8A—H8AA 109.3 O2B—C8B—H8BA 109.2
C9A—C8A—H8AA 109.3 C9B—C8B—H8BA 109.2
O2A—C8A—H8AB 109.3 O2B—C8B—H8BB 109.2
C9A—C8A—H8AB 109.3 C9B—C8B—H8BB 109.2
H8AA—C8A—H8AB 108.0 H8BA—C8B—H8BB 107.9
O3A—C9A—N1A 123.7 (4) O3B—C9B—N1B 123.1 (4)
O3A—C9A—C8A 122.4 (4) O3B—C9B—C8B 121.8 (4)
N1A—C9A—C8A 113.9 (4) N1B—C9B—C8B 115.1 (4)
C6A—C1A—C2A—C3A −2.3 (6) C6B—C1B—C2B—C3B −0.6 (6)
C7A—C1A—C2A—C3A 178.9 (4) C7B—C1B—C2B—C3B 178.9 (4)
C1A—C2A—C3A—C4A 0.7 (7) C1B—C2B—C3B—C4B 0.8 (6)
C2A—C3A—C4A—C5A 1.8 (7) C2B—C3B—C4B—C5B 0.1 (6)
C2A—C3A—C4A—Br1A −177.3 (3) C2B—C3B—C4B—Br1B −179.1 (3)
C3A—C4A—C5A—C6A −2.6 (6) C3B—C4B—C5B—C6B −1.3 (6)
Br1A—C4A—C5A—C6A 176.5 (3) Br1B—C4B—C5B—C6B 177.9 (3)
C4A—C5A—C6A—C1A 0.9 (6) C4B—C5B—C6B—C1B 1.4 (6)
C2A—C1A—C6A—C5A 1.5 (6) C2B—C1B—C6B—C5B −0.5 (6)
C7A—C1A—C6A—C5A −179.7 (4) C7B—C1B—C6B—C5B 179.9 (4)
C8A—O2A—C7A—O1A −0.4 (6) C8B—O2B—C7B—O1B −3.3 (6)
C8A—O2A—C7A—C1A 179.4 (3) C8B—O2B—C7B—C1B 177.1 (3)
C6A—C1A—C7A—O1A −1.9 (6) C2B—C1B—C7B—O1B −175.9 (4)
C2A—C1A—C7A—O1A 176.9 (4) C6B—C1B—C7B—O1B 3.7 (6)
C6A—C1A—C7A—O2A 178.3 (3) C2B—C1B—C7B—O2B 3.7 (5)
C2A—C1A—C7A—O2A −3.0 (5) C6B—C1B—C7B—O2B −176.7 (3)
C7A—O2A—C8A—C9A −72.9 (5) C7B—O2B—C8B—C9B −69.1 (5)
O2A—C8A—C9A—O3A −16.9 (6) O2B—C8B—C9B—O3B −17.6 (6)
O2A—C8A—C9A—N1A 165.0 (4) O2B—C8B—C9B—N1B 164.7 (4)

2-Amino-2-oxoethyl 4-bromobenzoate (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O3Ai 0.85 (6) 2.18 (7) 2.969 (5) 153
N1B—H1B···O3Aii 0.93 (6) 2.24 (6) 3.163 (5) 170
N1B—H2B···O3Biii 0.86 (9) 1.97 (9) 2.825 (5) 178

Symmetry codes: (i) x, y+1, z; (ii) x−1, y−1, z; (iii) x, y−1, z.

2-Amino-2-oxoethyl 4-nitrobenzoate (II). Crystal data

C9H8N2O5 F(000) = 232
Mr = 224.17 Dx = 1.502 Mg m3
Triclinic, P1 Melting point: 439(2) K
a = 7.1238 (14) Å Cu Kα radiation, λ = 1.54184 Å
b = 7.3683 (15) Å Cell parameters from 1249 reflections
c = 10.063 (2) Å θ = 4.6–75.6°
α = 107.82 (3)° µ = 1.08 mm1
β = 94.95 (3)° T = 291 K
γ = 96.32 (3)° Prismatic, colorless
V = 495.76 (19) Å3 0.40 × 0.34 × 0.21 mm
Z = 2

2-Amino-2-oxoethyl 4-nitrobenzoate (II). Data collection

Oxford Diffraction Xcalibur, Ruby diffractometer 1859 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1560 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
Detector resolution: 10.2576 pixels mm-1 θmax = 70.0°, θmin = 4.7°
ω scans h = −5→8
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −8→8
Tmin = 0.681, Tmax = 0.797 l = −12→12
2971 measured reflections

2-Amino-2-oxoethyl 4-nitrobenzoate (II). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: mixed
wR(F2) = 0.148 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.080P)2 + 0.1088P] where P = (Fo2 + 2Fc2)/3
1859 reflections (Δ/σ)max < 0.001
153 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.29 e Å3

2-Amino-2-oxoethyl 4-nitrobenzoate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Amino-2-oxoethyl 4-nitrobenzoate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0727 (3) −0.1039 (2) 0.29955 (18) 0.0820 (6)
O2 0.19162 (19) −0.00610 (18) 0.13179 (13) 0.0492 (4)
O3 0.2532 (2) −0.49315 (19) −0.04910 (17) 0.0635 (5)
O4 0.3147 (3) 0.8233 (2) 0.75383 (18) 0.0866 (6)
O5 0.3833 (3) 0.9205 (2) 0.58393 (19) 0.0852 (6)
N1 0.4638 (3) −0.2474 (3) 0.0945 (2) 0.0608 (5)
N2 0.3258 (2) 0.7948 (2) 0.62962 (19) 0.0526 (4)
C1 0.1925 (2) 0.2274 (2) 0.35306 (18) 0.0409 (4)
C2 0.2520 (3) 0.3754 (3) 0.30129 (19) 0.0443 (4)
H2A 0.2634 0.3488 0.2061 0.053*
C3 0.2945 (3) 0.5635 (3) 0.3920 (2) 0.0466 (4)
H3A 0.3342 0.6645 0.3590 0.056*
C4 0.2762 (2) 0.5962 (2) 0.53229 (19) 0.0425 (4)
C5 0.2171 (3) 0.4526 (3) 0.58712 (19) 0.0465 (4)
H5A 0.2065 0.4799 0.6825 0.056*
C6 0.1739 (3) 0.2665 (3) 0.4952 (2) 0.0466 (4)
H6A 0.1321 0.1666 0.5287 0.056*
C7 0.1433 (3) 0.0225 (3) 0.2615 (2) 0.0465 (4)
C8 0.1380 (3) −0.1993 (3) 0.0349 (2) 0.0509 (5)
H8A 0.0999 −0.1916 −0.0579 0.061*
H8B 0.0285 −0.2604 0.0640 0.061*
C9 0.2934 (3) −0.3240 (2) 0.02512 (19) 0.0455 (4)
H1 0.561 (3) −0.323 (3) 0.082 (2) 0.057 (6)*
H2 0.488 (3) −0.127 (4) 0.138 (3) 0.062 (6)*

2-Amino-2-oxoethyl 4-nitrobenzoate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1300 (16) 0.0426 (9) 0.0620 (10) −0.0163 (9) 0.0267 (10) 0.0061 (7)
O2 0.0603 (8) 0.0354 (7) 0.0467 (7) 0.0097 (5) 0.0122 (6) 0.0032 (5)
O3 0.0579 (8) 0.0369 (7) 0.0759 (10) 0.0070 (6) −0.0010 (7) −0.0085 (7)
O4 0.1315 (16) 0.0536 (10) 0.0537 (10) −0.0086 (10) 0.0189 (10) −0.0075 (7)
O5 0.1262 (16) 0.0381 (8) 0.0797 (12) −0.0066 (9) 0.0143 (11) 0.0079 (8)
N1 0.0543 (10) 0.0380 (9) 0.0710 (12) 0.0099 (8) −0.0013 (8) −0.0091 (8)
N2 0.0515 (9) 0.0380 (9) 0.0591 (10) 0.0061 (7) 0.0043 (7) 0.0030 (7)
C1 0.0403 (8) 0.0353 (9) 0.0443 (9) 0.0092 (7) 0.0064 (7) 0.0073 (7)
C2 0.0510 (10) 0.0394 (9) 0.0414 (9) 0.0097 (7) 0.0086 (7) 0.0094 (7)
C3 0.0522 (10) 0.0352 (9) 0.0528 (10) 0.0077 (7) 0.0077 (8) 0.0139 (8)
C4 0.0386 (8) 0.0343 (9) 0.0481 (10) 0.0078 (7) 0.0035 (7) 0.0032 (7)
C5 0.0504 (10) 0.0439 (10) 0.0406 (9) 0.0062 (7) 0.0086 (7) 0.0060 (7)
C6 0.0530 (10) 0.0385 (9) 0.0471 (10) 0.0045 (7) 0.0106 (8) 0.0116 (8)
C7 0.0527 (10) 0.0369 (10) 0.0464 (10) 0.0060 (7) 0.0078 (8) 0.0080 (8)
C8 0.0552 (11) 0.0402 (10) 0.0467 (10) 0.0088 (8) 0.0023 (8) −0.0011 (8)
C9 0.0526 (10) 0.0347 (9) 0.0426 (9) 0.0053 (7) 0.0066 (7) 0.0027 (7)

2-Amino-2-oxoethyl 4-nitrobenzoate (II). Geometric parameters (Å, º)

O1—C7 1.190 (2) C1—C7 1.492 (3)
O2—C7 1.339 (2) C2—C3 1.390 (3)
O2—C8 1.445 (2) C2—H2A 0.9300
O3—C9 1.228 (2) C3—C4 1.378 (3)
O4—N2 1.213 (2) C3—H3A 0.9300
O5—N2 1.203 (2) C4—C5 1.379 (3)
N1—C9 1.320 (3) C5—C6 1.383 (3)
N1—H1 0.93 (2) C5—H5A 0.9300
N1—H2 0.85 (3) C6—H6A 0.9300
N2—C4 1.474 (2) C8—C9 1.506 (3)
C1—C2 1.387 (3) C8—H8A 0.9700
C1—C6 1.391 (3) C8—H8B 0.9700
C7—O2—C8 115.74 (15) C4—C5—C6 117.62 (17)
C9—N1—H1 118.2 (14) C4—C5—H5A 121.2
C9—N1—H2 120.2 (16) C6—C5—H5A 121.2
H1—N1—H2 121 (2) C5—C6—C1 120.57 (17)
O5—N2—O4 122.58 (18) C5—C6—H6A 119.7
O5—N2—C4 118.83 (17) C1—C6—H6A 119.7
O4—N2—C4 118.52 (17) O1—C7—O2 123.05 (17)
C2—C1—C6 120.33 (17) O1—C7—C1 124.14 (17)
C2—C1—C7 122.69 (16) O2—C7—C1 112.80 (16)
C6—C1—C7 116.98 (16) O2—C8—C9 114.12 (15)
C1—C2—C3 119.85 (17) O2—C8—H8A 108.7
C1—C2—H2A 120.1 C9—C8—H8A 108.7
C3—C2—H2A 120.1 O2—C8—H8B 108.7
C4—C3—C2 118.12 (17) C9—C8—H8B 108.7
C4—C3—H3A 120.9 H8A—C8—H8B 107.6
C2—C3—H3A 120.9 O3—C9—N1 123.64 (18)
C3—C4—C5 123.50 (16) O3—C9—C8 117.23 (17)
C3—C4—N2 118.35 (17) N1—C9—C8 119.14 (16)
C5—C4—N2 118.14 (17)
C6—C1—C2—C3 0.4 (3) C2—C1—C6—C5 −0.9 (3)
C7—C1—C2—C3 179.61 (16) C7—C1—C6—C5 179.83 (16)
C1—C2—C3—C4 0.2 (3) C8—O2—C7—O1 5.0 (3)
C2—C3—C4—C5 −0.4 (3) C8—O2—C7—C1 −176.52 (14)
C2—C3—C4—N2 178.47 (15) C2—C1—C7—O1 −171.5 (2)
O5—N2—C4—C3 −1.2 (3) C6—C1—C7—O1 7.7 (3)
O4—N2—C4—C3 −178.06 (18) C2—C1—C7—O2 10.0 (3)
O5—N2—C4—C5 177.72 (18) C6—C1—C7—O2 −170.76 (15)
O4—N2—C4—C5 0.8 (3) C7—O2—C8—C9 −95.53 (19)
C3—C4—C5—C6 −0.1 (3) O2—C8—C9—O3 175.79 (17)
N2—C4—C5—C6 −178.96 (15) O2—C8—C9—N1 −4.7 (3)
C4—C5—C6—C1 0.8 (3)

2-Amino-2-oxoethyl 4-nitrobenzoate (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.93 (2) 1.97 (2) 2.898 (2) 174 (2)

Symmetry code: (i) −x+1, −y−1, −z.

2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III). Crystal data

C9H10N2O3·H2O F(000) = 448
Mr = 212.21 Dx = 1.329 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 8.2431 (16) Å Cell parameters from 927 reflections
b = 4.8088 (10) Å θ = 5.6–71.4°
c = 26.754 (5) Å µ = 0.90 mm1
β = 90.10 (3)° T = 291 K
V = 1060.5 (4) Å3 Prismatic, colorless
Z = 4 0.28 × 0.24 × 0.17 mm

2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III). Data collection

Oxford Diffraction Xcalibur, Ruby diffractometer 2165 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1129 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
Detector resolution: 10.2576 pixels mm-1 θmax = 76.1°, θmin = 3.3°
ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −4→5
Tmin = 0.778, Tmax = 0.859 l = −32→33
6444 measured reflections

2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: mixed
wR(F2) = 0.150 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.055P)2] where P = (Fo2 + 2Fc2)/3
2165 reflections (Δ/σ)max < 0.001
160 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.24 e Å3

2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4903 (2) 0.0764 (5) 0.65718 (8) 0.0717 (6)
O2 0.3607 (2) 0.3784 (4) 0.60830 (7) 0.0589 (5)
O3 0.6302 (2) 0.8021 (4) 0.53839 (9) 0.0729 (6)
N1 0.3578 (3) 0.7857 (6) 0.54142 (11) 0.0633 (7)
N2 −0.2461 (3) −0.2041 (6) 0.70993 (11) 0.0691 (8)
C1 0.2029 (3) 0.0794 (5) 0.65846 (10) 0.0496 (6)
C2 0.0592 (3) 0.1846 (6) 0.63861 (11) 0.0626 (8)
H2A 0.0631 0.3213 0.6141 0.075*
C3 −0.0884 (3) 0.0879 (6) 0.65503 (11) 0.0641 (8)
H3A −0.1833 0.1587 0.6411 0.077*
C4 −0.0982 (3) −0.1143 (6) 0.69216 (10) 0.0540 (7)
C5 0.0452 (3) −0.2176 (6) 0.71203 (11) 0.0592 (7)
H5A 0.0413 −0.3527 0.7369 0.071*
C6 0.1923 (3) −0.1237 (6) 0.69558 (11) 0.0583 (7)
H6A 0.2869 −0.1963 0.7094 0.070*
C7 0.3628 (3) 0.1724 (6) 0.64262 (10) 0.0531 (7)
C8 0.5179 (3) 0.4682 (6) 0.59167 (11) 0.0598 (7)
H8A 0.5748 0.3129 0.5766 0.072*
H8B 0.5809 0.5319 0.6201 0.072*
C9 0.5026 (3) 0.6994 (6) 0.55425 (10) 0.0549 (7)
O1W 0.9804 (4) 0.7452 (7) 0.52690 (16) 0.1083 (11)
H1 0.348 (4) 0.917 (8) 0.5195 (15) 0.107 (14)*
H2 0.264 (4) 0.697 (7) 0.5524 (12) 0.088 (11)*
H3 −0.337 (4) −0.147 (6) 0.6897 (12) 0.078 (10)*
H4 −0.253 (4) −0.365 (8) 0.7275 (15) 0.108 (14)*
H1W 0.887 (5) 0.743 (8) 0.5326 (16) 0.100 (16)*
H2W 0.939 (13) 0.731 (19) 0.495 (3) 0.35 (6)*

2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0530 (12) 0.0881 (16) 0.0740 (14) 0.0039 (11) 0.0000 (10) 0.0249 (12)
O2 0.0543 (11) 0.0566 (11) 0.0659 (12) 0.0019 (9) 0.0084 (9) 0.0131 (9)
O3 0.0613 (13) 0.0704 (14) 0.0872 (15) −0.0025 (11) 0.0146 (11) 0.0193 (12)
N1 0.0587 (16) 0.0643 (17) 0.0669 (17) −0.0031 (13) 0.0020 (13) 0.0124 (13)
N2 0.0517 (15) 0.0773 (19) 0.0784 (19) −0.0002 (14) 0.0039 (13) 0.0163 (15)
C1 0.0502 (15) 0.0501 (15) 0.0487 (14) 0.0018 (12) 0.0004 (11) 0.0015 (12)
C2 0.0592 (17) 0.0656 (19) 0.0632 (18) 0.0069 (14) 0.0038 (14) 0.0195 (15)
C3 0.0530 (17) 0.069 (2) 0.0699 (19) 0.0072 (14) −0.0018 (14) 0.0149 (15)
C4 0.0531 (16) 0.0515 (15) 0.0572 (16) 0.0022 (13) 0.0046 (13) 0.0000 (13)
C5 0.0612 (18) 0.0587 (17) 0.0577 (17) 0.0028 (14) 0.0018 (14) 0.0136 (13)
C6 0.0532 (16) 0.0612 (17) 0.0603 (17) 0.0052 (14) −0.0049 (13) 0.0077 (14)
C7 0.0569 (16) 0.0541 (16) 0.0483 (14) 0.0035 (13) 0.0044 (12) −0.0002 (12)
C8 0.0555 (17) 0.0547 (17) 0.0694 (19) 0.0013 (13) 0.0076 (14) 0.0014 (14)
C9 0.0591 (17) 0.0485 (15) 0.0571 (16) −0.0005 (13) 0.0087 (13) −0.0012 (13)
O1W 0.0720 (19) 0.112 (2) 0.141 (3) −0.0013 (17) 0.0223 (19) −0.017 (2)

2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III). Geometric parameters (Å, º)

O1—C7 1.212 (3) C2—C3 1.376 (4)
O2—C7 1.351 (3) C2—H2A 0.9300
O2—C8 1.437 (3) C3—C4 1.393 (4)
O3—O3 0.000 (7) C3—H3A 0.9300
O3—C9 1.238 (3) C4—C5 1.388 (4)
N1—C9 1.309 (4) C5—C6 1.368 (4)
N1—H1 0.87 (4) C5—H5A 0.9300
N1—H2 0.93 (4) C6—H6A 0.9300
N2—C4 1.378 (4) C8—C9 1.501 (4)
N2—H3 0.96 (3) C8—H8A 0.9700
N2—H4 0.91 (4) C8—H8B 0.9700
C1—C2 1.393 (4) C9—O3 1.238 (3)
C1—C6 1.396 (4) O1W—H1W 0.78 (4)
C1—C7 1.455 (4) O1W—H2W 0.91 (9)
C7—O2—C8 114.9 (2) C6—C5—H5A 119.5
C9—N1—H1 120 (2) C4—C5—H5A 119.5
C9—N1—H2 122 (2) C5—C6—C1 121.1 (3)
H1—N1—H2 118 (3) C5—C6—H6A 119.4
C4—N2—H3 113.9 (19) C1—C6—H6A 119.4
C4—N2—H4 120 (2) O1—C7—O2 120.5 (3)
H3—N2—H4 119 (3) O1—C7—C1 125.1 (3)
C2—C1—C6 118.1 (2) O2—C7—C1 114.4 (2)
C2—C1—C7 123.2 (2) O2—C8—C9 110.8 (2)
C6—C1—C7 118.7 (2) O2—C8—H8A 109.5
C3—C2—C1 120.5 (3) C9—C8—H8A 109.5
C3—C2—H2A 119.7 O2—C8—H8B 109.5
C1—C2—H2A 119.7 C9—C8—H8B 109.5
C2—C3—C4 121.1 (3) H8A—C8—H8B 108.1
C2—C3—H3A 119.5 O3—C9—N1 124.0 (3)
C4—C3—H3A 119.5 O3—C9—N1 124.0 (3)
N2—C4—C5 120.6 (3) O3—C9—C8 117.0 (3)
N2—C4—C3 121.1 (3) O3—C9—C8 117.0 (3)
C5—C4—C3 118.2 (3) N1—C9—C8 119.0 (3)
C6—C5—C4 120.9 (3) H1W—O1W—H2W 79 (7)
C6—C1—C2—C3 −0.6 (5) C8—O2—C7—O1 −0.1 (4)
C7—C1—C2—C3 179.9 (3) C8—O2—C7—C1 −178.9 (2)
C1—C2—C3—C4 0.8 (5) C2—C1—C7—O1 −176.2 (3)
C2—C3—C4—N2 177.6 (3) C6—C1—C7—O1 4.3 (4)
C2—C3—C4—C5 −0.4 (5) C2—C1—C7—O2 2.5 (4)
N2—C4—C5—C6 −178.1 (3) C6—C1—C7—O2 −177.0 (2)
C3—C4—C5—C6 0.0 (4) C7—O2—C8—C9 −179.2 (2)
C4—C5—C6—C1 0.2 (5) O2—C8—C9—O3 177.4 (2)
C2—C1—C6—C5 0.1 (4) O2—C8—C9—N1 −0.6 (4)
C7—C1—C6—C5 179.7 (3)

2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.87 (4) 2.06 (4) 2.915 (3) 168
N2—H3···O1ii 0.96 (3) 1.98 (3) 2.919 (4) 163
O1W—H1W···O3 0.78 (4) 2.14 (4) 2.916 (4) 169 (4)
O1W—H2W···O1Wiii 0.91 (9) 2.46 (9) 2.782 (7) 101

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z; (iii) −x+2, −y+1, −z+1.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Nishio, T., Nakajima, N., Kondo, M., Omote, Y. & Kaftory, M. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 391–396.
  6. Parkin, A., Parsons, S., Robertson, J. H. & Tasker, P. A. (2002). Acta Cryst. E58, o1348–o1350.
  7. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  8. Saha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975–1983. [DOI] [PubMed]
  9. Saha, S. & Desiraju, G. R. (2018). Chem. Commun. 54, 6348–6351. [DOI] [PubMed]
  10. Santra, S. K., Banerjee, A., Rajamanickam, S., Khatun, N. & Patel, B. K. (2016). Chem. Commun. 52, 4501–4504. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Wójcik, G., Mossakowska, I., Holband, J. & Bartkowiak, W. (2002). Acta Cryst. B58, 998–1004. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, Global. DOI: 10.1107/S2056989020014371/mw2171sup1.cif

e-76-01805-sup1.cif (579.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020014371/mw2171Isup2.hkl

e-76-01805-Isup2.hkl (305.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020014371/mw2171IIsup3.hkl

e-76-01805-IIsup3.hkl (149.4KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989020014371/mw2171IIIsup4.hkl

e-76-01805-IIIsup4.hkl (173.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020014371/mw2171Isup5.cml

Supporting information file. DOI: 10.1107/S2056989020014371/mw2171IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989020014371/mw2171IIIsup7.cml

CCDC references: 2041177, 2041176, 2041175

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES