Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Nov 3;76(Pt 12):1800–1804. doi: 10.1107/S2056989020014413

Two acyclic imides: 3-bromo-N-(3-bromo­benzo­yl)-N-(pyridin-2-yl)benzamide and 3-bromo-N-(3-bromo­benzo­yl)-N-(pyrimidin-2-yl)benzamide

Féilim Desmond a, John F Gallagher a,*, Niall Hehir a
PMCID: PMC7784653  PMID: 33520256

The title acyclic meta-bromo substituted imide derivatives were synthesized in good yields from condensation reactions of 3-bromo­benzoyl chloride with 2-amino­pyridine or 2-amino­pyrimidine using standard condensation reaction conditions and subsequent column chromatography.

Keywords: bromine, crystal structure, imide, halogen bonding, hydrogen bonding

Abstract

The title compounds, C19H12Br2N2O2 and C18H11Br2N3O2, were synthesized in good yields from condensation reactions of 3-bromo­benzoyl chloride with 2-amino­pyridine or 2-amino­pyrimidine using standard condensation reaction conditions and subsequent column chromatography.

Chemical context  

Acyclic imide chemistry, as RCON(R′)COR, (where R,R′ are aryl or alkyl groups) has developed over the past 130 years from condensation reactions of benzoyl chlorides with amino-aromatics such as 2-amino­pyridines or 2-amino­pyrimidines (Marckwald, 1894; Tschitschibabin & Bylinkin, 1922; Huntress & Walter, 1948). From these reactions, a mixture of the benzamide and acyclic imide is usually obtained, with the relative yields of each component dependent on the starting materials and reaction conditions. The imides can also be synthesized directly from a benzamide starting material. The presence of an ortho-N in the benzamide heteroaromatic ring is an important feature needed to obtain the imide derivative in good yields (Mocilac et al., 2010, 2012; Khavasi & Tehrani, 2013).graphic file with name e-76-01800-scheme1.jpg

Several RCON(R′)COR structures have been reported (Groom et al., 2016) and derive mostly from either R′ = benzene (Baell et al., 2001) or R′ = pyridine or pyrimidine groups (Gallagher et al., 2009a ,b ; Mocilac et al., 2018). Related imide structures include the halo­imide N-(2,4-di­chloro­phen­yl)-2-methyl-N-(2-nitro­benzo­yl)benzamide (Saeed et al., 2010) or CSD (Groom et al., 2016) refcode LAKXIG. LAKXIG adopts an open imide or anti conformation with respect to the benzoyl rings and is notable for having three different ortho-benzene substituents. QADPER or N-(3-meth­oxy­phen­yl)-N-(3-meth­oxy­benzo­yl)benzamide, a meth­oxy­imide derivative has been studied in the design and synthesis of type-III mimetics of the ω-conotoxin GVIA polypeptide (Baell et al., 2001) and is similar in structure to several haloaromatic imides (Gallagher et al., 2009a ,b ; Mocilac et al., 2018; Shukla et al., 2018). Kohmoto et al., (2001) have described a series of 9-anthryl-N-(naphthyl­carbon­yl)carboxamides having the syn-type structure and has been used in photo­cyclo­addition reactions. Masu et al., (2005) expanded on this research into di­imides to develop foldamer chemistry with the central moiety in these imide structures usually being an alkyl aromatic group.

In recent research on macrocyclic imides, we and others have noted the role of the imide hinge in the development of macrocyclic imides (Evans & Gale, 2004; Mocilac & Gallagher, 2013). Both syn and anti types of acyclic imide conformation have been observed in the macrocycles. It has been noted how this affects the formation of both trezimide and tennimide macrocycles and with the syn conformation essential for trezimide formation (Mocilac & Gallagher, 2013). Further studies are needed to demonstrate the ease with which the two distinct conformations can inter­convert in acyclic imides.

Structural commentary  

From the condensation reaction of meta-BrC6H4COCl with 2-amino­pyridine and 2-amino­pyrimidine, the benzamide and imide products were obtained and separated by standard column chromatography for each reaction. Using 2-amino­pyridine, Brmo and Brmod, (I) were obtained and for 2-amino­pyrimidine, Brmopz and Brmopzd, (II) were isolated. Brmo and Brmopz are the (1:1) benzamide products, whereas Brmod, (I) and Brmopzd, (II) are the (2:1) acyclic imides. Both (I) and (II) (Figs. 1–2) adopt similar mol­ecular structures to the majority of published structures (Groom et al., 2016; Gallagher et al., 2009a ,b ) but they differ in their supra­molecular features (Figs. 3–7 ). Both mol­ecules lack strong donor groups (no amide group as in the benzamides; Donnelly et al., 2008) but have strong acceptors such as O=C and N-heteroaromatic rings that are able to participate in many weaker inter­molecular inter­actions in their crystal structures, not to mention potential π-ring aromatic stacking and C—H⋯π inter­actions (Martinez & Iverson, 2012; Nishio, 2004).

Figure 1.

Figure 1

An ORTEP view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

An ORTEP view of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

A schematic diagram of the hydrogen- and halogen-bonding inter­actions in the crystal structure of (I).

Figure 4.

Figure 4

A schematic diagram of the main inter­molecular inter­actions in the crystal structure of (II).

Figure 5.

Figure 5

The inter­molecular inter­actions in (I) (C19 H12 Br2 N2 O2′a) with displacement ellipsoids at the 30% level.

Figure 6.

Figure 6

Inter­molecular inter­actions in (I) with atoms depicted as their van der Waals spheres.

Figure 7.

Figure 7

Inter­molecular inter­actions in (II) (shown with arrows) and with atoms depicted as their van der Waals spheres.

A comparison of acyclic imides and their key torsion angles demonstrates the range of angles observed and the key differences between the syn (carbonyl O⋯O separations of ∼4.5 Å) and anti conformations (O⋯O separations of ∼3.7 Å) in crystal structures (Groom et al., 2016). In (I) the O1⋯O2 distance is 3.871 (3) Å and the O1=C1⋯C2=O2 torsion angle is −109.3 (5)° compared to an O1⋯O2 = 3.646 (5) Å distance and an O1—C1⋯C2=O2 torsion angle of −96.6 (5)° in (II). We have also previously used the cisoid and transoid terminology for the disposition of the two C=O groups; this is used to describe the orientation and direction of the C=O groups/aromatic rings with respect to one another (Mocilac et al., 2018).

Supra­molecular features  

The prevalent anti-conformation imide structural type is demonstrated in the structures of both (I) and (II) and is similar to the mol­ecular structures of the ortho-F (SOLSUI) and meta-F (DOKXOR) imide structures (Gallagher et al., 2009a ,b ), the chloro- and methyl-imides (Mocilac et al., 2018) and two benzene relatives (Shukla et al., 2018). This contrasts with the syn type as observed in the crystal structure of Mood, a 2-methyl­benzoyl imide (Mocilac et al., 2018) and the four recently described SEYSUN/SEYTIC/SEYTOI/SEYTUO structures (Shukla et al., 2018). A key difference between these structures is the central N-pyridine ring in Mood (Gallagher et al., 2009a ,b ) and N-benzene rings in the SEYSUN-type structures (Shukla et al., 2018).

In (I), the Brmod mol­ecules aggregate as dimers in a cyclical arrangement using the C32—H32⋯Br33ii and C2=O2⋯Br33ii inter­actions with the Inline graphic(6) motif. Two of these combine to form the centrosymmetric Inline graphic(12) motif as formed by the flanking C=O⋯Br—C halogen-bonding inter­actions (Figs. 3, 5 and 6). The hydrogen bonding as H32⋯Br33ii has N C = 0.986 (Table 1) where N C is the ratio of contact distance/sum of contact radii using data from Bondi (Bondi, 1965; Spek, 2020). The halogen-bonding geometric details are Br33⋯O2ii = 3.287 Å (symmetry code ii; Table 1) or N C = 0.975 with C33—Br33⋯O2ii = 156.85 (9)° and Br33⋯(O2=C2)ii = 134.11 (19)° angles. Centrosymmetric C—H⋯O hydrogen-bonding inter­actions as Inline graphic(10) link dimers into zigzag chains along the b-axis direction, whereas weak C—H⋯N inter­actions link chains into ruffled sheets parallel with the (100) plane (Table 2).

Table 1. Hydrogen-bond geometry (Å, °) for Brmod .

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.41 3.330 (4) 170
C32—H32⋯Br33ii 0.93 3.01 3.896 (3) 162
C36—H36⋯N22iii 0.93 2.68 3.363 (4) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for Brmopzd .

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O1i 0.93 2.65 3.369 (5) 134
C36—H36⋯O2ii 0.93 2.61 3.375 (5) 140
C12—H12⋯C25iii 0.93 2.76 3.677 (5) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

In (II), the Brmopzd mol­ecules aggregate by weak inter­molecular inter­actions, as two C—H⋯O, two C—H⋯π(arene) and a C—Br⋯π(arene) contact per mol­ecule, to generate a 3D structure (Figs. 4 and 7). The C36—H36⋯O2ii and C25⋯(H12—C25)ii inter­actions combine together in the aggregation of a pair of tightly bound mol­ecules with graph-set Inline graphic(15), while the remaining C23—H23⋯O1i hydrogen bond results in the formation of centrosymmetric dimers in tandem with π–π stacking between the pyrimidyl rings, with shortest contact distances for N22⋯C23i = 3.429 (6) Å and N22⋯C24i = 3.464 (7) Å. The C13—Br13⋯π(arene)iv contact [symmetry code: (iv) Inline graphic + x, Inline graphic − y, z] has a Br13⋯C15iv distance of 3.550 (6) Å and C13—Br13⋯C15iv = 149.44 (16)°, where C15iv represents the closest Br⋯C contact on the arene ring. The N atoms (two pyrimidyl or tertiary amine N) do not participate in inter­molecular inter­actions and the shortest contact is N26⋯H24v = 2.76 Å [symmetry code: (v) Inline graphic − x, Inline graphic + y, 2 − z) (Spek, 2020).

Database survey  

A literature search for acyclic imides provides several 2-amino­pyridine structures of which DOKXOR a meta-F benzene derivative (Gallagher et al., 2009a ) and CIJPET a meta-Cl derivative (Mocilac et al., 2018), are similar to (I) and (II). MEYYUK, an N-anthracene-9-carboxamide derivative (Kohmoto et al., 2001) and MOCTUT or N,N-dibenzoyl-4-chloro­aniline structures (Usman et al., 2002) are also similar in structure and conformation.

Shukla and co-workers have detailed six halogenated N-benzoyl-N-phenyl­benzamides (imides) that adopt both syn and anti conformations in the solid state (Shukla et al., 2018). The reason why they adopt either conformation is not obvious and suggests that a transformation between either conformation as having a low activation energy barrier. Such imide behaviour (in adopting either of the syn or anti structures) has been known for decades although there does not seem to have been much investigation into possible fluxional behaviour and various influences driving towards one particular conformation or other.

Synthesis and crystallization:  

Compound (I) is Brmod and (II) is Brmopzd. (I) and (II) were synthesized as mixtures together with the (1:1) benzamides and separated from the benzamides by standard column chromatography in good yields.

(I): Yield = 30–40% 1H NMR (CDCl3) for (I) with J values in Hz: δ 7.10 (1H, dd, 3 J = 7.5, 4 J = 5, 5 J = 1), 7.29 (1H, t, 3 J = 7.8), 7.33 (1H, t, 3 J = 7.9), 7.65 (2H, dq, 3 J = 8.4, 4 J = 1.8, 5 J = 1), 7.78 (1H, ddd, 3 J = 8, 4 J = 2, 5 J = 1), 7.90 (1H, dt, 3 J = 8, 4 J = 1), 7.98 (1H, dt, 3 J = 7.8, 4 J = 1), 8.17 (1H, dd, 3 J = 1.7), 8.21 (2H, dd, 3 J = 5.2, 4 J = 1), 8.40 (1H, d, 3 J = 8.5). IR (ATR): 2921 (m), 1683 (s), 1580 (m). Melting point 418–420 K.

(II): Yield = 45–55%. 1H NMR (CDCl3) for (I) with J values in Hz: δ 7.12 (1H, t, 3 J = 4.9), 7.18 (2H, t, 3 J = 12), 7.56 (2H, ddd, 3 J = 8.0, 4 J = 2.0, 5 J = 1.0), 7.60 (2H, ddd, 3 J = 7.8, 4 J = 1.7, 5 J = 1.0), 7.88 (2H, t, 4 J = 1.6), 8.59 (2H, d, 3 J = 4.8). IR (ATR): 3072 (s), 2963 (s), 1719 (s), 1682 (m). Melting point 406–411 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to C atoms were treated as riding using the SHELXL14/7 (Sheldrick, 2015b ) defaults at 294 (1) K with C—H = 0.93 Å (aromatic) and U iso(H) = 1.2U eq(C) (aromatic).

Table 3. Experimental details.

  Brmod Brmopzd
Crystal data
Chemical formula C19H12Br2N2O2 C18H11Br2N3O2
M r 460.13 461.12
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/a
Temperature (K) 294 294
a, b, c (Å) 5.5439 (1), 16.3366 (4), 19.3701 (4) 11.1712 (4), 11.0590 (3), 14.4181 (5)
β (°) 91.459 (2) 102.756 (4)
V3) 1753.75 (6) 1737.28 (10)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.64 4.68
Crystal size (mm) 0.43 × 0.35 × 0.18 0.22 × 0.20 × 0.05
 
Data collection
Diffractometer Rigaku Xcalibur, Sapphire3, Gemini Ultra Rigaku Xcalibur, Sapphire3, Gemini Ultra
Absorption correction Analytical (ABSFAC; Clark & Reid, 1998) Analytical (ABSFAC; Clark & Reid, 1998)
T min, T max 0.228, 0.493 0.425, 0.801
No. of measured, independent and observed [I > 2σ(I)] reflections 16613, 4665, 3025 13616, 3865, 2219
R int 0.037 0.047
(sin θ/λ)max−1) 0.694 0.657
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.085, 1.01 0.052, 0.109, 1.02
No. of reflections 4665 3865
No. of parameters 226 226
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.42 0.89, −0.67

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT14/7 (Sheldrick, 2015a ), SHELXL14/7 (Sheldrick, 2015b ) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, Brmod, Brmopzd. DOI: 10.1107/S2056989020014413/ex2039sup1.cif

e-76-01800-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) Brmod. DOI: 10.1107/S2056989020014413/ex2039Brmodsup2.hkl

e-76-01800-Brmodsup2.hkl (371.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020014413/ex2039Brmodsup4.cdx

Structure factors: contains datablock(s) Brmopzd. DOI: 10.1107/S2056989020014413/ex2039Brmopzdsup3.hkl

Supporting information file. DOI: 10.1107/S2056989020014413/ex2039Brmopzdsup5.cdx

Supporting information file. DOI: 10.1107/S2056989020014413/ex2039Brmodsup6.cml

Supporting information file. DOI: 10.1107/S2056989020014413/ex2039Brmopzdsup7.cml

CCDC references: 2041345, 2041344

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) . Crystal data

C19H12Br2N2O2 Dx = 1.743 Mg m3
Mr = 460.13 Melting point: 419 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.5439 (1) Å Cell parameters from 4432 reflections
b = 16.3366 (4) Å θ = 2.1–29.5°
c = 19.3701 (4) Å µ = 4.64 mm1
β = 91.459 (2)° T = 294 K
V = 1753.75 (6) Å3 Block, colourless
Z = 4 0.43 × 0.35 × 0.18 mm
F(000) = 904

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) . Data collection

Rigaku Xcalibur, Sapphire3, Gemini Ultra diffractometer 4665 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3025 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 16.0560 pixels mm-1 θmax = 29.6°, θmin = 2.1°
ω scans h = −7→7
Absorption correction: analytical (ABSFAC; Clark & Reid, 1998) k = −22→17
Tmin = 0.228, Tmax = 0.493 l = −26→26
16613 measured reflections

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.9875P] where P = (Fo2 + 2Fc2)/3
4665 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.42 e Å3

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br13 0.12586 (8) 0.01924 (3) −0.22896 (2) 0.07723 (16)
Br33 0.25059 (6) 0.58666 (2) 0.07841 (2) 0.04753 (11)
O1 0.2102 (5) 0.05436 (15) 0.05540 (13) 0.0741 (8)
C1 0.2745 (6) 0.11718 (19) 0.02838 (16) 0.0432 (7)
N1 0.2894 (4) 0.19022 (14) 0.06634 (12) 0.0362 (5)
O2 0.1237 (4) 0.27325 (13) −0.01771 (11) 0.0513 (6)
C2 0.2485 (5) 0.26745 (17) 0.03375 (15) 0.0350 (6)
C11 0.3581 (5) 0.11967 (17) −0.04341 (15) 0.0393 (7)
C12 0.2308 (6) 0.07512 (18) −0.09348 (15) 0.0432 (7)
H12 0.0952 0.0451 −0.0820 0.052*
C13 0.3084 (6) 0.0762 (2) −0.15995 (16) 0.0499 (8)
C14 0.5141 (7) 0.1177 (3) −0.17788 (19) 0.0648 (10)
H14 0.5647 0.1176 −0.2233 0.078*
C15 0.6432 (7) 0.1592 (3) −0.1273 (2) 0.0673 (11)
H15 0.7851 0.1859 −0.1384 0.081*
C16 0.5651 (6) 0.1615 (2) −0.06085 (18) 0.0510 (8)
H16 0.6509 0.1912 −0.0274 0.061*
C21 0.2667 (5) 0.18650 (17) 0.13984 (14) 0.0366 (6)
N22 0.0859 (4) 0.22893 (17) 0.16417 (13) 0.0488 (7)
C23 0.0675 (7) 0.2294 (2) 0.23268 (19) 0.0626 (10)
H23 −0.0594 0.2586 0.2513 0.075*
C24 0.2231 (7) 0.1898 (2) 0.27726 (18) 0.0601 (9)
H24 0.2045 0.1929 0.3248 0.072*
C25 0.4070 (7) 0.1455 (2) 0.24981 (18) 0.0601 (9)
H25 0.5145 0.1170 0.2785 0.072*
C26 0.4310 (6) 0.1437 (2) 0.17975 (16) 0.0494 (8)
H26 0.5550 0.1144 0.1598 0.059*
C31 0.3759 (5) 0.33794 (17) 0.06655 (13) 0.0321 (6)
C32 0.2767 (5) 0.41557 (17) 0.05842 (14) 0.0330 (6)
H32 0.1309 0.4226 0.0344 0.040*
C33 0.3957 (5) 0.48156 (17) 0.08614 (14) 0.0338 (6)
C34 0.6181 (5) 0.47370 (19) 0.11981 (15) 0.0405 (7)
H34 0.6988 0.5193 0.1375 0.049*
C35 0.7172 (5) 0.39622 (19) 0.12645 (15) 0.0399 (7)
H35 0.8668 0.3898 0.1486 0.048*
C36 0.5982 (5) 0.32877 (17) 0.10082 (14) 0.0352 (6)
H36 0.6657 0.2770 0.1063 0.042*

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br13 0.0878 (3) 0.0939 (3) 0.0490 (2) 0.0319 (2) −0.0185 (2) −0.0193 (2)
Br33 0.0583 (2) 0.03904 (17) 0.04500 (18) 0.00725 (15) −0.00459 (14) −0.00051 (14)
O1 0.120 (2) 0.0505 (14) 0.0518 (15) −0.0332 (15) 0.0154 (15) 0.0002 (12)
C1 0.0492 (19) 0.0393 (17) 0.0412 (17) −0.0064 (14) 0.0016 (14) 0.0031 (14)
N1 0.0388 (14) 0.0361 (13) 0.0336 (13) 0.0011 (10) 0.0005 (10) 0.0022 (10)
O2 0.0563 (13) 0.0443 (12) 0.0518 (13) 0.0085 (10) −0.0264 (11) −0.0012 (10)
C2 0.0307 (15) 0.0375 (16) 0.0365 (16) 0.0056 (12) −0.0020 (12) 0.0006 (13)
C11 0.0455 (17) 0.0330 (15) 0.0396 (17) 0.0059 (13) 0.0039 (13) 0.0023 (13)
C12 0.0483 (18) 0.0386 (17) 0.0428 (18) 0.0066 (14) 0.0017 (14) −0.0007 (14)
C13 0.058 (2) 0.053 (2) 0.0384 (17) 0.0204 (16) −0.0013 (15) −0.0026 (15)
C14 0.064 (2) 0.087 (3) 0.044 (2) 0.019 (2) 0.0157 (18) 0.005 (2)
C15 0.052 (2) 0.087 (3) 0.063 (3) 0.002 (2) 0.0215 (19) 0.010 (2)
C16 0.0432 (19) 0.053 (2) 0.057 (2) 0.0008 (15) 0.0044 (16) 0.0014 (17)
C21 0.0359 (16) 0.0377 (16) 0.0362 (16) −0.0010 (12) −0.0007 (12) 0.0025 (13)
N22 0.0435 (15) 0.0615 (18) 0.0418 (15) 0.0131 (13) 0.0082 (12) 0.0034 (13)
C23 0.064 (2) 0.071 (3) 0.054 (2) 0.0150 (19) 0.0177 (19) −0.0005 (19)
C24 0.079 (3) 0.066 (2) 0.0359 (18) −0.006 (2) 0.0035 (18) 0.0029 (17)
C25 0.064 (2) 0.072 (2) 0.0439 (19) 0.0064 (19) −0.0087 (17) 0.0174 (18)
C26 0.0498 (19) 0.054 (2) 0.0446 (18) 0.0146 (16) 0.0012 (15) 0.0084 (16)
C31 0.0269 (14) 0.0395 (15) 0.0299 (14) 0.0024 (12) 0.0010 (11) 0.0031 (12)
C32 0.0270 (13) 0.0423 (16) 0.0295 (13) 0.0029 (12) −0.0021 (11) 0.0027 (12)
C33 0.0362 (16) 0.0372 (15) 0.0282 (14) 0.0031 (12) 0.0043 (12) 0.0022 (12)
C34 0.0346 (16) 0.0499 (18) 0.0368 (16) −0.0065 (14) −0.0015 (12) −0.0045 (14)
C35 0.0251 (14) 0.057 (2) 0.0373 (16) 0.0006 (13) −0.0039 (12) 0.0020 (14)
C36 0.0287 (14) 0.0418 (16) 0.0352 (15) 0.0047 (12) 0.0019 (12) 0.0038 (13)

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) . Geometric parameters (Å, º)

Br13—C13 1.900 (3) C21—C26 1.371 (4)
Br33—C33 1.900 (3) N22—C23 1.334 (4)
O1—C1 1.210 (4) C23—C24 1.368 (5)
C1—N1 1.403 (4) C23—H23 0.9300
C1—C11 1.478 (4) C24—C25 1.368 (5)
N1—C2 1.426 (3) C24—H24 0.9300
N1—C21 1.434 (3) C25—C26 1.367 (4)
O2—C2 1.203 (3) C25—H25 0.9300
C2—C31 1.485 (4) C26—H26 0.9300
C11—C16 1.385 (4) C31—C32 1.390 (4)
C11—C12 1.390 (4) C31—C36 1.393 (4)
C12—C13 1.368 (4) C32—C33 1.367 (4)
C12—H12 0.9300 C32—H32 0.9300
C13—C14 1.378 (5) C33—C34 1.386 (4)
C14—C15 1.377 (5) C34—C35 1.384 (4)
C14—H14 0.9300 C34—H34 0.9300
C15—C16 1.369 (5) C35—C36 1.371 (4)
C15—H15 0.9300 C35—H35 0.9300
C16—H16 0.9300 C36—H36 0.9300
C21—N22 1.316 (4)
O1—C1—N1 120.6 (3) N22—C23—C24 124.2 (3)
O1—C1—C11 122.2 (3) N22—C23—H23 117.9
N1—C1—C11 117.0 (3) C24—C23—H23 117.9
C1—N1—C2 120.9 (2) C23—C24—C25 118.0 (3)
C1—N1—C21 118.6 (2) C23—C24—H24 121.0
C2—N1—C21 117.4 (2) C25—C24—H24 121.0
O2—C2—N1 121.2 (3) C26—C25—C24 119.3 (3)
O2—C2—C31 123.4 (3) C26—C25—H25 120.3
N1—C2—C31 115.3 (2) C24—C25—H25 120.3
C16—C11—C12 119.8 (3) C25—C26—C21 117.9 (3)
C16—C11—C1 121.7 (3) C25—C26—H26 121.0
C12—C11—C1 118.4 (3) C21—C26—H26 121.0
C13—C12—C11 118.9 (3) C32—C31—C36 119.7 (3)
C13—C12—H12 120.6 C32—C31—C2 118.5 (2)
C11—C12—H12 120.6 C36—C31—C2 121.7 (2)
C12—C13—C14 121.7 (3) C33—C32—C31 119.3 (2)
C12—C13—Br13 118.8 (3) C33—C32—H32 120.3
C14—C13—Br13 119.5 (3) C31—C32—H32 120.3
C15—C14—C13 118.8 (3) C32—C33—C34 121.8 (3)
C15—C14—H14 120.6 C32—C33—Br33 118.8 (2)
C13—C14—H14 120.6 C34—C33—Br33 119.4 (2)
C16—C15—C14 120.7 (3) C35—C34—C33 118.3 (3)
C16—C15—H15 119.6 C35—C34—H34 120.8
C14—C15—H15 119.6 C33—C34—H34 120.8
C15—C16—C11 120.0 (3) C36—C35—C34 121.0 (3)
C15—C16—H16 120.0 C36—C35—H35 119.5
C11—C16—H16 120.0 C34—C35—H35 119.5
N22—C21—C26 124.6 (3) C35—C36—C31 119.9 (3)
N22—C21—N1 114.9 (2) C35—C36—H36 120.1
C26—C21—N1 120.5 (3) C31—C36—H36 120.1
C21—N22—C23 116.0 (3)
O1—C1—N1—C2 −149.3 (3) C1—N1—C21—C26 62.3 (4)
C11—C1—N1—C2 35.3 (4) C2—N1—C21—C26 −137.4 (3)
O1—C1—N1—C21 10.3 (4) C26—C21—N22—C23 0.4 (5)
C11—C1—N1—C21 −165.1 (2) N1—C21—N22—C23 −177.1 (3)
C1—N1—C2—O2 26.1 (4) C21—N22—C23—C24 0.5 (5)
C21—N1—C2—O2 −133.7 (3) N22—C23—C24—C25 −1.3 (6)
C1—N1—C2—C31 −152.0 (3) C23—C24—C25—C26 1.2 (6)
C21—N1—C2—C31 48.1 (3) C24—C25—C26—C21 −0.4 (5)
O1—C1—C11—C16 −133.9 (3) N22—C21—C26—C25 −0.4 (5)
N1—C1—C11—C16 41.4 (4) N1—C21—C26—C25 176.9 (3)
O1—C1—C11—C12 42.8 (4) O2—C2—C31—C32 28.3 (4)
N1—C1—C11—C12 −141.9 (3) N1—C2—C31—C32 −153.6 (2)
C16—C11—C12—C13 −2.5 (4) O2—C2—C31—C36 −147.3 (3)
C1—C11—C12—C13 −179.2 (3) N1—C2—C31—C36 30.8 (4)
C11—C12—C13—C14 2.5 (5) C36—C31—C32—C33 −2.0 (4)
C11—C12—C13—Br13 −177.3 (2) C2—C31—C32—C33 −177.7 (2)
C12—C13—C14—C15 −0.3 (5) C31—C32—C33—C34 2.7 (4)
Br13—C13—C14—C15 179.5 (3) C31—C32—C33—Br33 −177.05 (19)
C13—C14—C15—C16 −2.1 (6) C32—C33—C34—C35 −1.5 (4)
C14—C15—C16—C11 2.1 (6) Br33—C33—C34—C35 178.3 (2)
C12—C11—C16—C15 0.2 (5) C33—C34—C35—C36 −0.4 (4)
C1—C11—C16—C15 176.9 (3) C34—C35—C36—C31 1.0 (4)
C1—N1—C21—N22 −120.1 (3) C32—C31—C36—C35 0.2 (4)
C2—N1—C21—N22 40.3 (3) C2—C31—C36—C35 175.7 (3)

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O1i 0.93 2.41 3.330 (4) 170
C32—H32···Br33ii 0.93 3.01 3.896 (3) 162
C36—H36···N22iii 0.93 2.68 3.363 (4) 131

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z; (iii) x+1, y, z.

3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) . Crystal data

C18H11Br2N3O2 Dx = 1.763 Mg m3
Mr = 461.12 Melting point: 408 K
Monoclinic, P21/a Mo Kα radiation, λ = 0.71073 Å
a = 11.1712 (4) Å Cell parameters from 3165 reflections
b = 11.0590 (3) Å θ = 3.2–27.8°
c = 14.4181 (5) Å µ = 4.68 mm1
β = 102.756 (4)° T = 294 K
V = 1737.28 (10) Å3 Plate, colourless
Z = 4 0.22 × 0.20 × 0.05 mm
F(000) = 904

3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) . Data collection

Rigaku Xcalibur, Sapphire3, Gemini Ultra diffractometer 3865 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2219 reflections with I > 2σ(I)
Detector resolution: 16.056 pixels mm-1 Rint = 0.047
ω scans θmax = 27.9°, θmin = 3.2°
Absorption correction: analytical (ABSFAC; Clark & Reid, 1998) h = −14→14
Tmin = 0.425, Tmax = 0.801 k = −14→13
13616 measured reflections l = −18→15

3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0345P)2 + 1.6333P] where P = (Fo2 + 2Fc2)/3
3865 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.89 e Å3
0 restraints Δρmin = −0.67 e Å3

3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br13 0.56862 (6) 1.25414 (5) 0.79435 (5) 0.0721 (2)
Br33 0.38119 (6) 0.32158 (5) 0.48956 (4) 0.0757 (2)
O1 0.4800 (3) 0.8188 (3) 0.9503 (2) 0.0537 (9)
C1 0.4245 (4) 0.8174 (4) 0.8691 (3) 0.0381 (10)
N1 0.3759 (3) 0.7061 (3) 0.8250 (2) 0.0371 (9)
O2 0.4771 (3) 0.7308 (3) 0.7062 (2) 0.0625 (10)
C2 0.3990 (4) 0.6770 (4) 0.7352 (3) 0.0408 (11)
C11 0.3956 (4) 0.9282 (4) 0.8105 (3) 0.0355 (10)
C12 0.4786 (4) 1.0231 (4) 0.8278 (3) 0.0392 (11)
H12 0.5518 1.0153 0.8730 0.047*
C13 0.4518 (4) 1.1282 (4) 0.7777 (3) 0.0428 (11)
C14 0.3428 (5) 1.1429 (4) 0.7130 (4) 0.0546 (13)
H14 0.3251 1.2156 0.6804 0.066*
C15 0.2597 (5) 1.0492 (5) 0.6966 (4) 0.0601 (14)
H15 0.1853 1.0587 0.6531 0.072*
C16 0.2864 (4) 0.9413 (4) 0.7445 (3) 0.0449 (12)
H16 0.2309 0.8775 0.7324 0.054*
C21 0.3492 (4) 0.6130 (3) 0.8853 (3) 0.0330 (10)
N22 0.3981 (3) 0.5060 (3) 0.8759 (3) 0.0434 (9)
C23 0.3708 (5) 0.4203 (4) 0.9333 (3) 0.0519 (13)
H23 0.3987 0.3420 0.9278 0.062*
C24 0.3035 (5) 0.4434 (4) 0.9998 (4) 0.0539 (13)
H24 0.2883 0.3837 1.0412 0.065*
C25 0.2596 (4) 0.5580 (4) 1.0027 (3) 0.0507 (12)
H25 0.2134 0.5762 1.0473 0.061*
N26 0.2803 (3) 0.6456 (3) 0.9440 (3) 0.0427 (9)
C31 0.3208 (4) 0.5834 (3) 0.6777 (3) 0.0332 (10)
C32 0.3740 (4) 0.5108 (4) 0.6202 (3) 0.0382 (10)
H32 0.4567 0.5194 0.6199 0.046*
C33 0.3045 (5) 0.4261 (4) 0.5636 (3) 0.0447 (12)
C34 0.1809 (5) 0.4155 (5) 0.5591 (3) 0.0563 (14)
H34 0.1339 0.3595 0.5186 0.068*
C35 0.1276 (5) 0.4898 (5) 0.6159 (4) 0.0546 (13)
H35 0.0439 0.4837 0.6132 0.066*
C36 0.1967 (4) 0.5727 (4) 0.6763 (3) 0.0426 (11)
H36 0.1606 0.6207 0.7156 0.051*

3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br13 0.0839 (4) 0.0390 (3) 0.0959 (5) −0.0179 (3) 0.0255 (4) 0.0052 (3)
Br33 0.1132 (5) 0.0612 (4) 0.0532 (3) 0.0186 (3) 0.0194 (3) −0.0170 (3)
O1 0.065 (2) 0.0410 (18) 0.049 (2) −0.0105 (17) −0.0011 (18) 0.0076 (16)
C1 0.037 (3) 0.034 (2) 0.044 (3) −0.003 (2) 0.010 (2) 0.001 (2)
N1 0.049 (2) 0.0248 (17) 0.041 (2) −0.0025 (16) 0.0176 (18) −0.0013 (16)
O2 0.070 (2) 0.054 (2) 0.078 (3) −0.0242 (18) 0.048 (2) −0.0217 (18)
C2 0.043 (3) 0.032 (2) 0.054 (3) −0.001 (2) 0.025 (2) −0.002 (2)
C11 0.045 (3) 0.030 (2) 0.035 (2) 0.004 (2) 0.015 (2) 0.0014 (18)
C12 0.042 (3) 0.030 (2) 0.047 (3) −0.001 (2) 0.011 (2) −0.004 (2)
C13 0.053 (3) 0.029 (2) 0.051 (3) 0.000 (2) 0.021 (3) 0.004 (2)
C14 0.069 (4) 0.038 (3) 0.058 (3) 0.010 (3) 0.016 (3) 0.014 (2)
C15 0.053 (3) 0.052 (3) 0.068 (4) 0.007 (3) −0.002 (3) 0.010 (3)
C16 0.049 (3) 0.033 (2) 0.052 (3) 0.000 (2) 0.010 (3) 0.004 (2)
C21 0.037 (3) 0.026 (2) 0.036 (2) −0.0034 (18) 0.007 (2) 0.0040 (18)
N22 0.055 (3) 0.0293 (19) 0.046 (2) 0.0070 (17) 0.0122 (19) 0.0050 (17)
C23 0.064 (4) 0.030 (2) 0.055 (3) 0.002 (2) 0.000 (3) 0.008 (2)
C24 0.061 (3) 0.050 (3) 0.050 (3) −0.009 (3) 0.012 (3) 0.015 (2)
C25 0.052 (3) 0.054 (3) 0.049 (3) −0.005 (2) 0.017 (3) 0.005 (2)
N26 0.047 (2) 0.035 (2) 0.050 (2) −0.0034 (17) 0.021 (2) −0.0009 (18)
C31 0.036 (3) 0.031 (2) 0.035 (2) 0.0033 (19) 0.013 (2) 0.0061 (18)
C32 0.042 (3) 0.035 (2) 0.040 (3) 0.003 (2) 0.017 (2) 0.004 (2)
C33 0.063 (3) 0.040 (3) 0.029 (3) 0.006 (2) 0.006 (2) 0.003 (2)
C34 0.068 (4) 0.054 (3) 0.041 (3) −0.010 (3) −0.002 (3) 0.002 (2)
C35 0.041 (3) 0.070 (4) 0.049 (3) −0.007 (3) 0.002 (3) 0.016 (3)
C36 0.046 (3) 0.045 (3) 0.040 (3) 0.005 (2) 0.017 (2) 0.006 (2)

3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) . Geometric parameters (Å, º)

Br13—C13 1.887 (4) C21—N26 1.314 (5)
Br33—C33 1.901 (4) C21—N22 1.323 (5)
O1—C1 1.199 (5) N22—C23 1.337 (5)
C1—N1 1.435 (5) C23—C24 1.367 (6)
C1—C11 1.483 (6) C23—H23 0.9300
N1—C2 1.413 (5) C24—C25 1.363 (6)
N1—C21 1.421 (5) C24—H24 0.9300
O2—C2 1.204 (5) C25—N26 1.340 (5)
C2—C31 1.483 (6) C25—H25 0.9300
C11—C16 1.379 (6) C31—C32 1.381 (5)
C11—C12 1.386 (6) C31—C36 1.388 (6)
C12—C13 1.366 (6) C32—C33 1.365 (6)
C12—H12 0.9300 C32—H32 0.9300
C13—C14 1.370 (7) C33—C34 1.373 (7)
C14—C15 1.376 (7) C34—C35 1.384 (7)
C14—H14 0.9300 C34—H34 0.9300
C15—C16 1.377 (6) C35—C36 1.378 (6)
C15—H15 0.9300 C35—H35 0.9300
C16—H16 0.9300 C36—H36 0.9300
O1—C1—N1 120.5 (4) C21—N22—C23 114.5 (4)
O1—C1—C11 123.1 (4) N22—C23—C24 122.5 (4)
N1—C1—C11 116.3 (4) N22—C23—H23 118.7
C2—N1—C21 120.1 (3) C24—C23—H23 118.7
C2—N1—C1 118.2 (3) C25—C24—C23 116.9 (4)
C21—N1—C1 117.4 (3) C25—C24—H24 121.5
O2—C2—N1 119.9 (4) C23—C24—H24 121.5
O2—C2—C31 122.2 (4) N26—C25—C24 122.7 (5)
N1—C2—C31 117.8 (4) N26—C25—H25 118.7
C16—C11—C12 119.9 (4) C24—C25—H25 118.7
C16—C11—C1 121.9 (4) C21—N26—C25 114.6 (4)
C12—C11—C1 118.1 (4) C32—C31—C36 120.2 (4)
C13—C12—C11 119.3 (4) C32—C31—C2 117.6 (4)
C13—C12—H12 120.4 C36—C31—C2 122.1 (4)
C11—C12—H12 120.4 C33—C32—C31 119.7 (4)
C12—C13—C14 121.3 (4) C33—C32—H32 120.2
C12—C13—Br13 119.7 (4) C31—C32—H32 120.2
C14—C13—Br13 119.0 (3) C32—C33—C34 121.3 (4)
C13—C14—C15 119.5 (4) C32—C33—Br33 119.0 (4)
C13—C14—H14 120.3 C34—C33—Br33 119.6 (4)
C15—C14—H14 120.3 C33—C34—C35 118.7 (5)
C14—C15—C16 120.2 (5) C33—C34—H34 120.6
C14—C15—H15 119.9 C35—C34—H34 120.6
C16—C15—H15 119.9 C36—C35—C34 121.0 (5)
C15—C16—C11 119.8 (4) C36—C35—H35 119.5
C15—C16—H16 120.1 C34—C35—H35 119.5
C11—C16—H16 120.1 C35—C36—C31 119.0 (4)
N26—C21—N22 128.7 (4) C35—C36—H36 120.5
N26—C21—N1 115.3 (4) C31—C36—H36 120.5
N22—C21—N1 116.0 (4)
O1—C1—N1—C2 −131.1 (4) C2—N1—C21—N22 28.9 (6)
C11—C1—N1—C2 52.3 (5) C1—N1—C21—N22 −127.6 (4)
O1—C1—N1—C21 25.8 (6) N26—C21—N22—C23 1.3 (7)
C11—C1—N1—C21 −150.8 (4) N1—C21—N22—C23 −179.7 (4)
C21—N1—C2—O2 −141.4 (4) C21—N22—C23—C24 −3.4 (7)
C1—N1—C2—O2 14.9 (6) N22—C23—C24—C25 2.9 (7)
C21—N1—C2—C31 41.3 (6) C23—C24—C25—N26 −0.1 (8)
C1—N1—C2—C31 −162.5 (4) N22—C21—N26—C25 1.3 (7)
O1—C1—C11—C16 −143.6 (5) N1—C21—N26—C25 −177.7 (4)
N1—C1—C11—C16 32.9 (6) C24—C25—N26—C21 −1.9 (7)
O1—C1—C11—C12 32.4 (6) O2—C2—C31—C32 35.6 (6)
N1—C1—C11—C12 −151.1 (4) N1—C2—C31—C32 −147.1 (4)
C16—C11—C12—C13 −1.1 (6) O2—C2—C31—C36 −140.4 (5)
C1—C11—C12—C13 −177.2 (4) N1—C2—C31—C36 36.9 (6)
C11—C12—C13—C14 2.1 (7) C36—C31—C32—C33 −1.7 (6)
C11—C12—C13—Br13 −175.8 (3) C2—C31—C32—C33 −177.8 (4)
C12—C13—C14—C15 −1.4 (7) C31—C32—C33—C34 3.4 (7)
Br13—C13—C14—C15 176.6 (4) C31—C32—C33—Br33 −176.9 (3)
C13—C14—C15—C16 −0.4 (8) C32—C33—C34—C35 −2.3 (7)
C14—C15—C16—C11 1.4 (7) Br33—C33—C34—C35 177.9 (3)
C12—C11—C16—C15 −0.6 (6) C33—C34—C35—C36 −0.3 (7)
C1—C11—C16—C15 175.3 (4) C34—C35—C36—C31 1.8 (7)
C2—N1—C21—N26 −152.0 (4) C32—C31—C36—C35 −0.8 (6)
C1—N1—C21—N26 51.6 (5) C2—C31—C36—C35 175.1 (4)

3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C23—H23···O1i 0.93 2.65 3.369 (5) 134
C36—H36···O2ii 0.93 2.61 3.375 (5) 140
C12—H12···C25iii 0.93 2.76 3.677 (5) 168

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1/2, −y+3/2, z; (iii) x+1/2, −y+3/2, z.

Funding Statement

This work was funded by Dublin City University grant . Meath County Council grant . VEC grant .

References

  1. Baell, J. B., Forsyth, S. A., Gable, R. W., Norton, R. S. & Mulder, R. J. (2001). J. Comput. Aided Mol. Des. 15, 1119–1136. [DOI] [PubMed]
  2. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  3. Clark, R. C. & Reid, J. S. (1998). Comput. Phys. Commun. 111, 243–257.
  4. Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. [DOI] [PubMed]
  5. Evans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286–1287. [DOI] [PubMed]
  6. Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102–o103. [DOI] [PMC free article] [PubMed]
  7. Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009b). Acta Cryst. E65, o486–o487. [DOI] [PMC free article] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Huntress, E. W. & Walter, H. C. (1948). J. Org. Chem. 13, 735–737. [DOI] [PubMed]
  10. Khavasi, H. R. & Tehrani, A. A. (2013). CrystEngComm, 15, 3222–3235.
  11. Kohmoto, S., Ono, Y., Masu, H., Yamaguchi, K., Kishikawa, K. & Yamamoto, M. (2001). Org. Lett. 3, 4153–4155. [DOI] [PubMed]
  12. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  13. Marckwald, W. (1894). Ber. Dtsch. Chem. Ges. 27, 1317–1339.
  14. Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.
  15. Masu, H., Sakai, M., Kishikawa, K., Yamamoto, M., Yamaguchi, K. & Kohmoto, S. (2005). J. Org. Chem. 70, 1423–1431. [DOI] [PubMed]
  16. Mocilac, P., Donnelly, K. & Gallagher, J. F. (2012). Acta Cryst. B68, 189–203. [DOI] [PubMed]
  17. Mocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153–1164.
  18. Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355–2361. [DOI] [PubMed]
  19. Mocilac, P., Tallon, M., Lough, A. J. & Gallagher, J. F. (2010). CrystEngComm, 12, 3080–3090.
  20. Nishio, M. (2004). CrystEngComm, 6, 130–158.
  21. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  22. Saeed, A., Hussain, S., Abbas, N. & Bolte, M. (2010). J. Chem. Crystallogr. 40, 919–923.
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Shukla, R., Nayak, S. K., Chopra, D., Reddy, M. K. & Guru Row, T. N. (2018). J. Mol. Struct. 1164, 280–288.
  26. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  27. Tschitschibabin, A. E. & Bylinkin, J. G. (1922). Ber. Dtsch. Chem. Ges. A/B, 55, 998–1002.
  28. Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o357–o358.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, Brmod, Brmopzd. DOI: 10.1107/S2056989020014413/ex2039sup1.cif

e-76-01800-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) Brmod. DOI: 10.1107/S2056989020014413/ex2039Brmodsup2.hkl

e-76-01800-Brmodsup2.hkl (371.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020014413/ex2039Brmodsup4.cdx

Structure factors: contains datablock(s) Brmopzd. DOI: 10.1107/S2056989020014413/ex2039Brmopzdsup3.hkl

Supporting information file. DOI: 10.1107/S2056989020014413/ex2039Brmopzdsup5.cdx

Supporting information file. DOI: 10.1107/S2056989020014413/ex2039Brmodsup6.cml

Supporting information file. DOI: 10.1107/S2056989020014413/ex2039Brmopzdsup7.cml

CCDC references: 2041345, 2041344

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES