Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Nov 24;76(Pt 12):1863–1867. doi: 10.1107/S2056989020015388

Crystal structures of the penta- and hexa­hydrate of thulium nitrate

Wilhelm Klein a,*
PMCID: PMC7784656  PMID: 33520270

The title compounds represent the most hydrated thulium nitrates known so far. Both structures consists of mol­ecular [Tm(NO3)3(H2O)4] complexes and additional water mol­ecules, which are inter­connected by medium-strong to weak hydrogen bonds.

Keywords: crystal structure, thulium, nitrate, hydrate, hydrogen bonding

Abstract

Tm(NO3)3·5H2O and Tm(NO3)3·6H2O, or more precisely [Tm(NO3)3(H2O)4]·H2O and [Tm(NO3)3(H2O)4]·2H2O, respectively, have been obtained from a concentrated solution of Tm2O3 in HNO3. The crystal structures of the two hydrates show strong similarities as both crystallize in space group P Inline graphic with all atoms at general positions and contain neutral, mol­ecular [Tm(NO3)3(H2O)4] complexes, i.e. ten-coordinated TmIII cations with three nitrate anions as bidentate ligands and four coordinating water mol­ecules, and one or two additional crystal water mol­ecules, respectively. All building units are connected by medium–strong to weak O—H⋯O hydrogen bonds. Tm(NO3)3·6H2O represents the maximally hydrated thulium nitrate as well as the heaviest rare earth nitrate hexa­hydrate known to date.

Chemical context  

The nitrates of the rare earth metals have long been used to separate and purify these elements. For example, when thulium was discovered (Cleve, 1897), fusion of nitrates was already used to separate the element from the erbium-containing earth, and a hydrate of thulium nitrate in substance was already described more than 100 years ago with four equivalents of water of crystallization and of highly hygroscopic nature (James, 1911). Later, among others, double nitrates like Mg3 Ln 2(NO3)12·24H2O and (NH4)2 Ln(NO3)5·4H2O (Ln = rare earth element) were used to separate the elements by means of fractional crystallization (Prandtl, 1938). Also, when more sophisticated separation procedures such as chromatographic methods and solvent extraction were developed (Bock, 1950), there was still considerable inter­est in these complex nitrates because of their high solubility even in organic solvents. Numerous structural investigations have been reported for this family, not least for the hydrated compounds (Wickleder, 2002).

Considering the structural information for the maximally hydrated rare earth nitrates, a general tendency of a decreasing amount of water with increasing atomic number is obvious: for the lighter homologues La–Nd and Sm–Tb, the hexa­hydrates are found as maximally hydrated compounds for the nitrates (La: Eriksson et al., 1980; Ce: Milinski et al., 1980; Pr: Decadt et al., 2012; Nd: Rogers et al., 1983; Sm: Kawashima et al., 2000; Eu: Stumpf & Bolte, 2001; Gd: Taha et al., 2012; Tb: Moret et al., 1990) while for the heavier elements Dy–Er and Yb, only penta­hydrates have been reported (Ho: Rincke et al., 2017; other: Junk et al., 1999). Confirming this trend, the highest hydrate of Lu nitrate is the tetra­hydrate (Junk et al., 1999), and for Tm the trihydrate exhibits the highest number of water mol­ecules reported so far (Riess, 2012).

In the present research communication, the new penta- and hexa­hydrates of Tm(NO3)3 are reported. While the penta­hydrate of Tm(NO3)3 fills the gap within the known compounds containing Er and Yb, the hexa­hydrate indeed represents the highest hydrated nitrate including Tm and shifts the border of known stable compounds notably to heavier rare earth elements.

Structural commentary  

Tm(NO3)3·5H2O crystallizes in the Y(NO3)3·5H2O type of structure (Eriksson, 1982) in space group P Inline graphic with all atoms at general positions. The structure consists of isolated mol­ecular [Tm(NO3)3(H2O)4] complexes and one additional free water mol­ecule per formula unit (Fig. 1). The nitrate anions act as bidentate ligands so the TmIII atom is tenfold coordinated. The nitrate ions form an equatorial belt separating one aqua ligand from the other three, and are slightly inclined in the same sense and form a propeller-like shape. The nitrate anions coordinate asymmetrically at one shorter [2.3980 (17)–2.4479 (16) Å] and one slightly longer distance [2.5081 (16)–2.6193 (18) Å] each. The shortest Tm—O bonds [2.3235 (17)–2.3526 (18) Å] are formed with the three aqua ligands on the same side of the plane, while the remaining Tm—O(H2) bond is in the range of the shorter bonds to the nitrate ions. The anions are almost planar with an O—N—O angular sum of 360.0° where the angle formed by the coordinating O atoms is significantly reduced. The N—O bond lengths are between 1.256 (3) and 1.290 (3) Å for coordinating and 1.213 (3) and 1.220 (3) Å for non-coordinating O atoms. Within the water mol­ecules, the O—H bond lengths are between 0.68 (6) and 0.86 (4) Å, and the H—O—H angles between 102 (4) and 111 (4)°. The structural entities, i.e. the mol­ecular [Tm(NO3)3(H2O)4] complexes and H2O mol­ecules, are inter­connected by almost linear hydrogen bonds (see Fig. 2) of medium–strong to weak strength. In detail, eight of ten independent H atoms form hydrogen bonds shorter than 2.30 Å with O—H⋯O angles greater than 163°, while atoms H2 and H10 are part of bifurcated and slightly longer hydrogen bonds (Table 1).

Figure 1.

Figure 1

Asymmetric unit of Tm(NO3)3·5H2O with the atom-numbering scheme. Anisotropic displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2.

Figure 2

Crystal structure of Tm(NO3)3·5H2O in a view along [100]. Hydrogen bonds are shown as dotted lines up to an O⋯H distance of 2.45 Å. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °) for Tm(NO3)3·5H2O.

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O1i 0.82 (4) 2.03 (4) 2.849 (2) 174 (3)
O10—H2⋯O13ii 0.78 (4) 2.32 (4) 2.996 (3) 145 (3)
O10—H2⋯O2ii 0.78 (4) 2.48 (4) 3.035 (3) 129 (3)
O11—H3⋯O14i 0.77 (5) 1.98 (5) 2.739 (3) 167 (5)
O11—H4⋯O2iii 0.85 (4) 2.03 (4) 2.874 (2) 171 (4)
O12—H5⋯O14iv 0.83 (4) 1.90 (4) 2.715 (3) 165 (4)
O12—H6⋯O7v 0.83 (4) 1.95 (4) 2.776 (2) 174 (4)
O13—H7⋯O5vi 0.82 (5) 1.98 (5) 2.784 (2) 166 (4)
O13—H8⋯O3vii 0.86 (4) 2.12 (4) 2.953 (3) 163 (4)
O14—H9⋯O3vii 0.84 (4) 2.27 (5) 3.095 (3) 167 (4)
O14—H10⋯O9 0.68 (6) 2.44 (6) 3.040 (3) 148 (5)
O14—H10⋯O6viii 0.68 (6) 2.62 (6) 3.132 (4) 134 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Tm(NO3)3·6H2O also crystallizes in space group P Inline graphic without occupying special positions and is isotypic with the respective Pr compound (Decadt et al., 2012). In comparison with Tm(NO3)3·5H2O the volume (as determined at 223 K) increases by 34.4 Å3 for the two additional H2O mol­ecules per unit cell. Further structural similarities to the penta­hydrate include the presence of mol­ecular [Tm(NO3)3(H2O)4] complexes and free water mol­ecules, but here two per formula unit. The [Tm(NO3)3(H2O)4] complexes of the penta- and hexa­hydrates differ slightly, since in the latter the four water mol­ecules and the three nitrate ligands accumulate on opposite sides of the complex (Fig. 3). With the nitrate anions as more or less bidentate ligands, again ten atoms are found in the first coordination sphere of the TmIII atom in Tm(NO3)3·6H2O. The resulting polyhedron can be described as a strongly distorted bicapped square anti­prism. The shortest Tm—O bonds are observed to the aqua ligands [2.2897 (18)–2.3360 (16) Å]. Similar to the penta­hydrate, the nitrate anions show an asymmetric coordination with one shorter [2.4039 (17)–2.4677 (17) Å] and one longer Tm—O distance [2.5034 (18), 2.5252 (18), 2.991 (2) Å] each. In one case, this is so severe that the corresponding Tm—O distance is even larger than the distance between the TmIII atom and the central N atoms of the two remaining anions, and the arrangement should therefore rather be described as a [9 + 1] coordination. The reason for this is probably the missing space in the coordination sphere of the TmIII atom, which makes such a distance increase necessary. A qualitatively analogous observation of a single extended Ln—N distance was made for all isotypic compounds of other rare earth elements, but the relative extension of the distance in the structure described here is much larger than in all other examples, as can be expected for the representative with the smallest ion radius so far. The consideration including a reduced coordination number for the TmIII atom is supported by the different shape of the respective nitrate ion. While two anions are very similar with two longer and one shorter N—O bonds for coordinating and non-coordinating O atoms, respectively, and one reduced O—N—O angle between the coordinating O atoms, the third anion exhibits only one longer N—O bond of 1.275 (2) Å, indicating the coordinating O atom, and two shorter and almost equal N—O distances of 1.232 (3) Å and 1.236 (3) Å with more regular O—N—O angles. However, all nitrate ions are planar with an O—N—O angular sum of 360.0°. The water mol­ecules show O—H bond lengths between 0.73 (5)and 0.85 (4) Å and H—O—H angles between 105 (5) and 112 (4)°. The metal complexes and the water mol­ecules build a three-dimensional network of hydrogen bonds, again of medium–strong to weak character (Table 2, Fig. 4). Nine of twelve independent H atoms form hydrogen bonds shorter than 2.2 Å with O—H⋯O angles greater than 164° while H6, H10, and H12 are involved in weak and bifurcated hydrogen bonds.

Figure 3.

Figure 3

Asymmetric unit of Tm(NO3)3·6H2O with the atom-numbering scheme. Anisotropic displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Table 2. Hydrogen-bond geometry (Å, °) for Tm(NO3)3·6H2O.

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O14 0.85 (4) 1.89 (4) 2.730 (3) 170 (4)
O10—H2⋯O15 0.73 (5) 2.00 (5) 2.714 (3) 164 (5)
O11—H4⋯O15i 0.74 (4) 1.93 (4) 2.666 (2) 174 (4)
O11—H3⋯O7ii 0.81 (4) 2.20 (4) 3.006 (2) 175 (4)
O12—H5⋯O8iii 0.80 (4) 2.15 (4) 2.943 (3) 172 (4)
O12—H6⋯O5iv 0.79 (4) 2.57 (4) 3.260 (3) 147 (4)
O12—H6⋯O7iv 0.79 (4) 2.61 (4) 3.269 (3) 142 (4)
O13—H7⋯O14v 0.78 (4) 1.93 (4) 2.713 (3) 174 (4)
O13—H8⋯O5vi 0.83 (5) 2.13 (5) 2.963 (2) 179 (5)
O14—H9⋯O6vi 0.80 (4) 2.01 (4) 2.804 (3) 176 (4)
O14—H10⋯O3iv 0.80 (5) 2.64 (5) 3.111 (3) 119 (4)
O14—H10⋯O3vii 0.80 (5) 2.24 (5) 2.885 (2) 138 (4)
O15—H11⋯O9ii 0.79 (5) 2.01 (5) 2.782 (3) 168 (4)
O15—H12⋯O4viii 0.79 (5) 2.29 (5) 2.926 (2) 137 (4)
O15—H12⋯O3iv 0.79 (5) 2.47 (5) 2.992 (3) 125 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Figure 4.

Figure 4

Crystal structure of Tm(NO3)3·6H2O in a view along [100]. Hydrogen bonds are shown as dotted lines up to an O⋯H distance of 2.5 Å. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Inter­estingly, the mol­ecular Tm complexes in both crystal structures exhibit an alleged higher symmetry, viz. a threefold rotation axis in the penta­hydrate and a mirror plane in the hexa­hydrate, as illustrated in Fig. 5. However, these are pseudo-symmetries, with the higher symmetry violated at a mol­ecular level and in the first coordination sphere, and incompatible with the space-group symmetry.

Figure 5.

Figure 5

Structural details to emphasize the mol­ecular pseudo-symmetry in the title compounds: (a) a pseudo-threefold rotation axis in the mol­ecular complex present in Tm(NO3)3·5H2O; (b) a pseudo-mirror plane in the mol­ecular complex present in Tm(NO3)3·6H2O. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Database survey  

The crystal structure of anhydrous Tm(NO3)3 was determined quite recently (Heinrichs, 2013), and one hydrated phase has been reported so far, i.e. the trihydrate (Riess, 2012). In addition, basic oxo-hydroxo-nitrate hydrates are known with Tm (Giester et al., 2009). The thulium nitrate penta­hydrate adopts the Y(NO3)3·5H2O type of structure (Eriksson, 1982; Klein, 2020), and is isotypic with the respective Eu (Ribár et al., 1986), Gd (Stockhause & Meyer, 1997), Dy, Er, Yb (Junk et al., 1999) and Ho compounds (Rincke et al., 2017). Tm(NO3)3·6H2O is isotypic with the nitrate hexa­hydrates of Y (Ribár et al., 1980), Pr (Rumanova et al., 1964; Fuller & Jacobsen, 1976; Decadt et al., 2012), Nd (Rogers et al., 1983; Shi & Wang, 1991), Sm (Shi & Wang, 1990; Kawashima et al., 2000), Eu (Stumpf & Bolte, 2001; Ananyev et al., 2016), Gd (Ma et al., 1991; Taha et al., 2012) and Tb (Moret et al., 1990).

Synthesis and crystallization  

[Tm(NO3)3(H2O)4]·H2O was prepared by dissolving Tm2O3 (Fluka AG; 99.9%) in hot aqueous nitric acid (65%wt). From saturated solutions, crystals with sizes up to the millimetre range were grown at room temperature within one day. Single crystals were removed, cleansed from the mother liquor and placed on a microscope slide in air. For the single-crystal data collection, crystals were immersed into perfluoro­alkyl ether, which also acts as glue on a glass tip during the measurement. The remaining crystals were carefully ground to measure an X-ray powder pattern that, according to a comparison with the pattern simulated from the single-crystal structure determination, showed exclusively reflections of the penta­hydrate. The crystals are hygroscopic and usually deliquesce within hours under ambient conditions depending on air humidity. Rapid re-crystallization within minutes can be induced by scratching on the glass slide. Surprisingly, from one recrystallization the hexa­hydrate [Tm(NO3)3(H2O)4]·2H2O was obtained. All investigated crystals from this batch revealed the unit cell of the hexa­hydrate, so the crystallization seemed to result in a pure product in this case as well. Optically indistinguishable, the crystals of the hexa­hydrate showed the same deliquescence behaviour. It has not been possible to determine the exact conditions required to obtain the hexa­hydrate so far. According to EDX measurements, the crystals contain Tm as the only element heavier than oxygen.

Refinement  

Crystal data, data collection, and structure refinement details are summarized in Table 3. In both structure refinements, all hydrogen atoms have been located from difference Fourier maps and refined with free atomic coordinates and isotropic displacement parameters.

Table 3. Experimental details.

  Tm(NO3)3·5H2O Tm(NO3)3·6H2O
Crystal data
Chemical formula [Tm(NO3)3(H2O)4]·H2O [Tm(NO3)3(H2O)4]·2H2O
M r 445.04 463.06
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 223 223
a, b, c (Å) 6.5782 (4), 9.5213 (5), 10.4848 (6) 6.7050 (3), 8.9733 (4), 11.4915 (6)
α, β, γ (°) 63.696 (4), 84.656 (5), 76.146 (4) 70.924 (4), 88.908 (4), 68.923 (4)
V3) 571.51 (6) 605.90 (5)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.85 7.41
Crystal size (mm) 0.25 × 0.2 × 0.2 0.4 × 0.2 × 0.15
 
Data collection
Diffractometer Stoe StadiVari Stoe StadiVari
Absorption correction Empirical (using intensity measurements) (X-AREA; Stoe, 2015) Empirical (using intensity measurements) (X-AREA; Stoe, 2015)
T min, T max 0.798, 1.000 0.615, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18549, 4113, 3394 29880, 4385, 3899
R int 0.038 0.031
(sin θ/λ)max−1) 0.756 0.756
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.017, 0.029, 0.65 0.016, 0.035, 0.91
No. of reflections 4113 4385
No. of parameters 204 221
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.94, −0.92 1.11, −1.19

Computer programs: X-AREA (Stoe, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, TONi-2_223K, TONii-3_223K. DOI: 10.1107/S2056989020015388/wm5589sup1.cif

e-76-01863-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) TONi-2_223K. DOI: 10.1107/S2056989020015388/wm5589TONi-2_223Ksup2.hkl

Structure factors: contains datablock(s) TONii-3_223K. DOI: 10.1107/S2056989020015388/wm5589TONii-3_223Ksup3.hkl

CCDC references: 2045553, 2045552

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Thulium nitrate (TONi-2_223K). Crystal data

[Tm(NO3)3(H2O)4]·H2O Z = 2
Mr = 445.04 F(000) = 424
Triclinic, P1 Dx = 2.586 Mg m3
a = 6.5782 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5213 (5) Å Cell parameters from 15951 reflections
c = 10.4848 (6) Å θ = 3.2–36.9°
α = 63.696 (4)° µ = 7.85 mm1
β = 84.656 (5)° T = 223 K
γ = 76.146 (4)° Block, colourless
V = 571.51 (6) Å3 0.25 × 0.2 × 0.2 mm

Thulium nitrate (TONi-2_223K). Data collection

STOE StadiVari diffractometer 4113 independent reflections
Radiation source: Genix 3D HF Mo 3394 reflections with I > 2σ(I)
Graded multilayer mirror monochromator Rint = 0.038
Detector resolution: 5.81 pixels mm-1 θmax = 32.5°, θmin = 3.2°
ω scans h = −9→9
Absorption correction: empirical (using intensity measurements) (X-AREA; Stoe, 2015) k = −13→14
Tmin = 0.798, Tmax = 1.000 l = −14→15
18549 measured reflections

Thulium nitrate (TONi-2_223K). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 All H-atom parameters refined
wR(F2) = 0.029 w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
S = 0.65 (Δ/σ)max = 0.001
4113 reflections Δρmax = 0.94 e Å3
204 parameters Δρmin = −0.92 e Å3
0 restraints Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0130 (4)

Thulium nitrate (TONi-2_223K). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Thulium nitrate (TONi-2_223K). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Tm 0.24261 (2) 0.34935 (2) 0.29463 (2) 0.01335 (4)
N1 0.4678 (3) 0.2804 (2) 0.5557 (2) 0.0181 (4)
O1 0.2946 (3) 0.38136 (19) 0.50762 (18) 0.0237 (3)
O2 0.5532 (3) 0.21177 (19) 0.47971 (17) 0.0235 (3)
O3 0.5463 (4) 0.2559 (3) 0.6667 (2) 0.0334 (5)
N2 0.5187 (3) 0.2148 (2) 0.1245 (2) 0.0224 (4)
O4 0.4995 (3) 0.1419 (2) 0.25849 (18) 0.0281 (4)
O5 0.4049 (3) 0.35678 (19) 0.06621 (17) 0.0235 (3)
O6 0.6366 (4) 0.1552 (2) 0.0567 (2) 0.0393 (5)
N3 0.0240 (3) 0.6856 (2) 0.1466 (2) 0.0207 (4)
O7 0.0612 (3) 0.58072 (19) 0.09609 (18) 0.0229 (4)
O8 0.1039 (3) 0.63874 (19) 0.26683 (17) 0.0232 (3)
O9 −0.0817 (4) 0.8199 (2) 0.0805 (2) 0.0371 (5)
O10 −0.0906 (3) 0.3864 (2) 0.39356 (19) 0.0222 (3)
H1 −0.150 (6) 0.447 (4) 0.428 (4) 0.034 (8)*
H2 −0.182 (6) 0.374 (4) 0.360 (4) 0.028 (8)*
O11 0.1965 (3) 0.1013 (2) 0.46732 (19) 0.0221 (3)
H3 0.124 (7) 0.088 (5) 0.532 (5) 0.047 (11)*
H4 0.278 (6) 0.014 (5) 0.475 (4) 0.035 (9)*
O12 0.0243 (3) 0.2649 (2) 0.19433 (18) 0.0229 (3)
H5 0.038 (6) 0.169 (5) 0.212 (4) 0.041 (10)*
H6 0.009 (6) 0.311 (4) 0.106 (4) 0.035 (9)*
O13 0.5125 (3) 0.5005 (2) 0.22335 (18) 0.0207 (3)
H7 0.556 (8) 0.530 (5) 0.141 (5) 0.059 (12)*
H8 0.495 (7) 0.586 (5) 0.237 (4) 0.045 (10)*
O14 0.0035 (5) 0.9548 (2) 0.2793 (2) 0.0322 (5)
H9 0.120 (7) 0.892 (5) 0.285 (4) 0.038 (9)*
H10 −0.046 (9) 0.956 (6) 0.224 (6) 0.066 (16)*

Thulium nitrate (TONi-2_223K). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tm 0.01449 (5) 0.01318 (5) 0.01242 (4) −0.00290 (3) −0.00004 (3) −0.00565 (3)
N1 0.0201 (10) 0.0177 (8) 0.0181 (8) −0.0059 (7) −0.0007 (7) −0.0082 (7)
O1 0.0221 (9) 0.0251 (8) 0.0241 (8) 0.0038 (7) −0.0053 (6) −0.0142 (7)
O2 0.0262 (9) 0.0215 (7) 0.0233 (8) −0.0017 (7) 0.0005 (7) −0.0118 (6)
O3 0.0384 (12) 0.0372 (10) 0.0277 (10) −0.0024 (9) −0.0141 (9) −0.0170 (8)
N2 0.0248 (11) 0.0220 (9) 0.0214 (9) −0.0042 (8) 0.0040 (8) −0.0117 (8)
O4 0.0330 (10) 0.0251 (8) 0.0171 (8) 0.0029 (7) 0.0007 (7) −0.0059 (6)
O5 0.0291 (10) 0.0197 (7) 0.0214 (8) −0.0053 (7) 0.0058 (7) −0.0097 (6)
O6 0.0454 (13) 0.0381 (10) 0.0335 (10) 0.0016 (9) 0.0120 (9) −0.0224 (8)
N3 0.0231 (10) 0.0150 (8) 0.0220 (9) −0.0010 (7) −0.0039 (7) −0.0072 (7)
O7 0.0329 (10) 0.0166 (7) 0.0192 (8) −0.0016 (7) −0.0056 (7) −0.0084 (6)
O8 0.0266 (9) 0.0240 (8) 0.0225 (8) −0.0042 (7) −0.0037 (7) −0.0131 (6)
O9 0.0451 (13) 0.0182 (8) 0.0380 (10) 0.0105 (8) −0.0137 (9) −0.0093 (8)
O10 0.0165 (9) 0.0288 (8) 0.0288 (9) −0.0047 (7) 0.0026 (7) −0.0198 (7)
O11 0.0238 (9) 0.0172 (7) 0.0205 (8) −0.0036 (7) 0.0038 (7) −0.0051 (6)
O12 0.0371 (10) 0.0185 (8) 0.0152 (8) −0.0110 (7) −0.0035 (7) −0.0062 (6)
O13 0.0257 (9) 0.0196 (7) 0.0170 (8) −0.0078 (6) 0.0028 (6) −0.0073 (6)
O14 0.0520 (15) 0.0212 (9) 0.0236 (10) −0.0045 (9) 0.0004 (9) −0.0117 (8)

Thulium nitrate (TONi-2_223K). Geometric parameters (Å, º)

Tm—O12 2.3235 (18) N3—O9 1.216 (3)
Tm—O11 2.3235 (17) N3—O8 1.256 (3)
Tm—O10 2.3526 (18) N3—O7 1.290 (2)
Tm—O7 2.3980 (17) O7—O8 2.153 (2)
Tm—O13 2.4089 (18) O7—O9 2.184 (2)
Tm—O4 2.4181 (17) O7—O12vii 2.776 (2)
Tm—O1 2.4479 (16) O7—O12 2.778 (2)
Tm—O5 2.5081 (16) O7—O10 3.056 (3)
Tm—O8 2.5776 (15) O7—O13 3.150 (3)
Tm—O2 2.6193 (18) O8—O9 2.175 (2)
Tm—N2 2.9035 (19) O8—O10 2.738 (3)
Tm—N3 2.9212 (18) O8—O13 2.788 (2)
Tm—N1 2.9690 (19) O8—O3iv 2.969 (3)
N1—O3 1.220 (3) O8—O14 2.982 (3)
N1—O2 1.257 (2) O9—O14 3.040 (3)
N1—O1 1.276 (3) O9—O6v 3.153 (3)
O1—O2 2.144 (2) O9—O6viii 3.199 (2)
O1—O3 2.180 (3) O10—O11 2.736 (2)
O1—O8 2.755 (2) O10—O12 2.775 (2)
O1—O10i 2.849 (2) O10—O1i 2.849 (2)
O1—O10 2.882 (3) O10—O13ix 2.996 (3)
O1—O13 3.035 (2) O10—O2ix 3.035 (3)
O1—O11 3.095 (2) O10—H1 0.82 (4)
O2—O3 2.174 (2) O10—H2 0.78 (4)
O2—O4 2.753 (2) O11—O14i 2.739 (3)
O2—O11 2.827 (3) O11—O12 2.777 (2)
O2—O13 2.844 (2) O11—O2ii 2.874 (2)
O2—O11ii 2.874 (2) O11—O4ii 3.253 (2)
O2—O10iii 3.035 (3) O11—H3 0.77 (5)
O3—O13iv 2.953 (3) O11—H4 0.85 (4)
O3—O8iv 2.969 (3) O12—O14x 2.715 (3)
O3—O14iv 3.095 (3) O12—O7vii 2.776 (2)
N2—O6 1.213 (3) O12—O9vii 3.288 (3)
N2—O4 1.271 (3) O12—H5 0.83 (4)
N2—O5 1.277 (3) O12—H6 0.83 (4)
O4—O5 2.146 (2) O13—O5v 2.784 (2)
O4—O6 2.184 (2) O13—O3iv 2.953 (3)
O4—O11 2.779 (3) O13—O10iii 2.996 (3)
O4—O12 3.088 (3) O13—O6v 3.286 (3)
O5—O6 2.181 (2) O13—H7 0.82 (5)
O5—O13v 2.784 (2) O13—H8 0.86 (4)
O5—O13 2.786 (2) O14—O12xi 2.715 (3)
O5—O7 2.812 (2) O14—O11i 2.739 (3)
O5—O12 2.867 (3) O14—O3iv 3.095 (3)
O5—O5v 2.981 (3) O14—O6viii 3.132 (4)
O6—O14vi 3.132 (4) O14—H9 0.84 (4)
O6—O9v 3.153 (3) O14—H10 0.68 (6)
O6—O9vi 3.199 (2)
O12—Tm—O11 73.38 (6) N3—O8—O1 146.83 (13)
O12—Tm—O10 72.80 (7) O7—O8—O1 114.60 (8)
O11—Tm—O10 71.63 (6) O9—O8—O1 171.15 (11)
O12—Tm—O7 72.07 (6) Tm—O8—O1 54.53 (5)
O11—Tm—O7 140.36 (7) O10—O8—O1 63.30 (7)
O10—Tm—O7 80.06 (7) N3—O8—O13 100.19 (13)
O12—Tm—O13 139.17 (6) O7—O8—O13 78.06 (8)
O11—Tm—O13 137.72 (6) O9—O8—O13 117.62 (10)
O10—Tm—O13 133.41 (6) Tm—O8—O13 53.17 (5)
O7—Tm—O13 81.90 (6) O10—O8—O13 104.61 (7)
O12—Tm—O4 81.26 (7) O1—O8—O13 66.39 (6)
O11—Tm—O4 71.73 (6) N3—O8—O3iv 127.07 (15)
O10—Tm—O4 139.74 (7) O7—O8—O3iv 130.96 (11)
O7—Tm—O4 120.66 (6) O9—O8—O3iv 113.90 (10)
O13—Tm—O4 85.91 (6) Tm—O8—O3iv 107.97 (7)
O12—Tm—O1 142.71 (7) O10—O8—O3iv 137.66 (9)
O11—Tm—O1 80.83 (6) O1—O8—O3iv 74.92 (7)
O10—Tm—O1 73.77 (7) O13—O8—O3iv 61.63 (7)
O7—Tm—O1 117.47 (5) N3—O8—O14 97.81 (13)
O13—Tm—O1 77.34 (6) O7—O8—O14 130.15 (10)
O4—Tm—O1 115.79 (6) O9—O8—O14 70.27 (8)
O12—Tm—O5 72.69 (6) Tm—O8—O14 168.88 (9)
O11—Tm—O5 116.78 (6) O10—O8—O14 129.72 (9)
O10—Tm—O5 139.64 (7) O1—O8—O14 115.20 (8)
O7—Tm—O5 69.91 (6) O13—O8—O14 120.95 (9)
O13—Tm—O5 69.01 (6) O3iv—O8—O14 62.67 (8)
O4—Tm—O5 51.62 (5) N3—O9—O8 28.84 (12)
O1—Tm—O5 144.29 (6) N3—O9—O7 30.33 (11)
O12—Tm—O8 113.85 (6) O8—O9—O7 59.18 (7)
O11—Tm—O8 132.83 (6) N3—O9—O14 95.93 (15)
O10—Tm—O8 67.31 (6) O8—O9—O14 67.39 (8)
O7—Tm—O8 51.11 (5) O7—O9—O14 125.90 (11)
O13—Tm—O8 67.90 (6) N3—O9—O6v 76.99 (16)
O4—Tm—O8 152.92 (6) O8—O9—O6v 82.55 (9)
O1—Tm—O8 66.42 (5) O7—O9—O6v 74.67 (9)
O5—Tm—O8 109.44 (5) O14—O9—O6v 91.35 (9)
O12—Tm—O2 136.38 (6) N3—O9—O6viii 152.81 (17)
O11—Tm—O2 69.47 (6) O8—O9—O6viii 124.77 (10)
O10—Tm—O2 114.60 (6) O7—O9—O6viii 170.46 (13)
O7—Tm—O2 149.67 (6) O14—O9—O6viii 60.20 (7)
O13—Tm—O2 68.73 (6) O6v—O9—O6viii 113.72 (8)
O4—Tm—O2 66.13 (6) Tm—O10—O11 53.69 (5)
O1—Tm—O2 49.93 (5) Tm—O10—O8 60.27 (6)
O5—Tm—O2 104.73 (6) O11—O10—O8 110.30 (8)
O8—Tm—O2 108.01 (5) Tm—O10—O12 53.11 (5)
O12—Tm—N2 75.56 (6) O11—O10—O12 60.49 (6)
O11—Tm—N2 94.20 (6) O8—O10—O12 96.36 (7)
O10—Tm—N2 147.88 (7) Tm—O10—O1i 130.59 (9)
O7—Tm—N2 95.49 (6) O11—O10—O1i 143.50 (9)
O13—Tm—N2 76.27 (6) O8—O10—O1i 73.51 (7)
O4—Tm—N2 25.62 (6) O12—O10—O1i 155.76 (9)
O1—Tm—N2 133.73 (6) Tm—O10—O1 54.63 (5)
O5—Tm—N2 26.00 (6) O11—O10—O1 66.79 (7)
O8—Tm—N2 132.96 (6) O8—O10—O1 58.62 (6)
O2—Tm—N2 85.07 (6) O12—O10—O1 106.09 (8)
O12—Tm—N3 92.45 (6) O1i—O10—O1 87.67 (7)
O11—Tm—N3 142.15 (6) Tm—O10—O13ix 122.60 (8)
O10—Tm—N3 70.66 (6) O11—O10—O13ix 128.05 (9)
O7—Tm—N3 25.75 (6) O8—O10—O13ix 103.81 (7)
O13—Tm—N3 74.57 (6) O12—O10—O13ix 78.12 (7)
O4—Tm—N3 141.95 (6) O1i—O10—O13ix 82.96 (7)
O1—Tm—N3 91.72 (5) O1—O10—O13ix 162.00 (8)
O5—Tm—N3 90.60 (5) Tm—O10—O2ix 135.89 (8)
O8—Tm—N3 25.43 (5) O11—O10—O2ix 90.74 (7)
O2—Tm—N3 131.08 (5) O8—O10—O2ix 158.09 (8)
N2—Tm—N3 116.50 (6) O12—O10—O2ix 88.57 (7)
O12—Tm—N1 145.99 (6) O1i—O10—O2ix 93.44 (7)
O11—Tm—N1 72.73 (6) O1—O10—O2ix 140.06 (8)
O10—Tm—N1 93.76 (6) O13ix—O10—O2ix 56.26 (6)
O7—Tm—N1 137.60 (5) Tm—O10—O7 50.62 (5)
O13—Tm—N1 72.24 (6) O11—O10—O7 100.01 (7)
O4—Tm—N1 90.89 (6) O8—O10—O7 43.18 (5)
O1—Tm—N1 24.96 (5) O12—O10—O7 56.67 (6)
O5—Tm—N1 126.60 (6) O1i—O10—O7 105.10 (7)
O8—Tm—N1 87.63 (5) O1—O10—O7 88.42 (7)
O2—Tm—N1 25.01 (5) O13ix—O10—O7 79.30 (7)
N2—Tm—N1 109.73 (6) O2ix—O10—O7 129.22 (8)
N3—Tm—N1 112.83 (5) Tm—O10—H1 133 (3)
O3—N1—O2 122.7 (2) O11—O10—H1 140 (2)
O3—N1—O1 121.65 (19) O8—O10—H1 77 (3)
O2—N1—O1 115.65 (18) O12—O10—H1 159 (2)
O3—N1—Tm 175.24 (17) O1i—O10—H1 5 (2)
O2—N1—Tm 61.74 (11) O1—O10—H1 88 (3)
O1—N1—Tm 54.03 (10) O13ix—O10—H1 84 (3)
N1—O1—O2 31.90 (10) O2ix—O10—H1 91 (3)
N1—O1—O3 28.46 (11) O7—O10—H1 110 (2)
O2—O1—O3 60.35 (8) Tm—O10—H2 117 (2)
N1—O1—Tm 101.01 (12) O11—O10—H2 103 (2)
O2—O1—Tm 69.19 (6) O8—O10—H2 125 (3)
O3—O1—Tm 129.44 (9) O12—O10—H2 64 (2)
N1—O1—O8 142.91 (14) O1i—O10—H2 103 (2)
O2—O1—O8 117.71 (9) O1—O10—H2 169 (2)
O3—O1—O8 152.42 (12) O13ix—O10—H2 26 (2)
Tm—O1—O8 59.05 (5) O2ix—O10—H2 39 (3)
N1—O1—O10i 125.68 (13) O7—O10—H2 90 (3)
O2—O1—O10i 155.65 (10) H1—O10—H2 103 (4)
O3—O1—O10i 97.77 (9) Tm—O11—O10 54.68 (5)
Tm—O1—O10i 132.31 (7) Tm—O11—O14i 126.09 (8)
O8—O1—O10i 76.13 (6) O10—O11—O14i 79.46 (8)
N1—O1—O10 136.42 (14) Tm—O11—O12 53.31 (5)
O2—O1—O10 111.95 (9) O10—O11—O12 60.44 (6)
O3—O1—O10 149.48 (11) O14i—O11—O12 128.28 (10)
Tm—O1—O10 51.60 (5) Tm—O11—O4 55.71 (5)
O8—O1—O10 58.08 (6) O10—O11—O4 108.60 (8)
O10i—O1—O10 92.33 (7) O14i—O11—O4 163.22 (11)
N1—O1—O13 85.66 (12) O12—O11—O4 67.54 (7)
O2—O1—O13 63.91 (7) Tm—O11—O2 60.20 (5)
O3—O1—O13 105.20 (10) O10—O11—O2 97.60 (7)
Tm—O1—O13 50.75 (5) O14i—O11—O2 106.22 (9)
O8—O1—O13 57.34 (6) O12—O11—O2 110.01 (8)
O10i—O1—O13 117.55 (8) O4—O11—O2 58.83 (7)
O10—O1—O13 95.28 (7) Tm—O11—O2ii 128.10 (9)
N1—O1—O11 82.07 (12) O10—O11—O2ii 169.77 (9)
O2—O1—O11 62.22 (7) O14i—O11—O2ii 102.25 (8)
O3—O1—O11 101.73 (9) O12—O11—O2ii 112.15 (8)
Tm—O1—O11 47.83 (4) O4—O11—O2ii 72.52 (7)
O8—O1—O11 100.20 (7) O2—O11—O2ii 91.62 (7)
O10i—O1—O11 138.47 (9) Tm—O11—O1 51.34 (5)
O10—O1—O11 54.35 (6) O10—O11—O1 58.86 (6)
O13—O1—O11 92.12 (6) O14i—O11—O1 82.73 (7)
N1—O2—O1 32.45 (11) O12—O11—O1 100.57 (7)
N1—O2—O3 28.19 (11) O4—O11—O1 88.96 (7)
O1—O2—O3 60.63 (8) O2—O11—O1 42.16 (5)
N1—O2—Tm 93.26 (12) O2ii—O11—O1 131.25 (8)
O1—O2—Tm 60.88 (6) Tm—O11—O4ii 126.48 (8)
O3—O2—Tm 121.43 (9) O10—O11—O4ii 135.39 (8)
N1—O2—O4 145.77 (15) O14i—O11—O4ii 67.19 (8)
O1—O2—O4 114.04 (9) O12—O11—O4ii 163.11 (9)
O3—O2—O4 170.50 (12) O4—O11—O4ii 98.00 (7)
Tm—O2—O4 53.43 (5) O2—O11—O4ii 66.31 (6)
N1—O2—O11 94.41 (14) O2ii—O11—O4ii 52.98 (5)
O1—O2—O11 75.62 (8) O1—O11—O4ii 87.35 (6)
O3—O2—O11 110.77 (10) Tm—O11—H3 125 (3)
Tm—O2—O11 50.33 (5) O10—O11—H3 75 (3)
O4—O2—O11 59.72 (7) O14i—O11—H3 9 (3)
N1—O2—O13 94.71 (12) O12—O11—H3 120 (3)
O1—O2—O13 73.45 (7) O4—O11—H3 172 (3)
O3—O2—O13 111.95 (9) O2—O11—H3 114 (3)
Tm—O2—O13 52.13 (5) O2ii—O11—H3 105 (3)
O4—O2—O13 71.96 (6) O1—O11—H3 87 (3)
O11—O2—O13 102.24 (7) O4ii—O11—H3 75 (3)
N1—O2—O11ii 135.37 (13) Tm—O11—H4 122 (3)
O1—O2—O11ii 156.10 (10) O10—O11—H4 169 (2)
O3—O2—O11ii 110.89 (9) O14i—O11—H4 108 (2)
Tm—O2—O11ii 121.11 (7) O12—O11—H4 109 (2)
O4—O2—O11ii 70.59 (6) O4—O11—H4 66 (2)
O11—O2—O11ii 88.37 (7) O2—O11—H4 88 (3)
O13—O2—O11ii 128.19 (8) O2ii—O11—H4 6 (3)
N1—O2—O10iii 93.92 (13) O1—O11—H4 129 (3)
O1—O2—O10iii 103.88 (9) O4ii—O11—H4 56 (2)
O3—O2—O10iii 83.51 (9) H3—O11—H4 111 (4)
Tm—O2—O10iii 113.27 (7) Tm—O12—O14x 125.11 (10)
O4—O2—O10iii 105.78 (8) Tm—O12—O10 54.08 (5)
O11—O2—O10iii 162.02 (8) O14x—O12—O10 116.16 (9)
O13—O2—O10iii 61.18 (6) Tm—O12—O7vii 120.70 (8)
O11ii—O2—O10iii 96.80 (7) O14x—O12—O7vii 105.94 (8)
N1—O3—O2 29.13 (11) O10—O12—O7vii 128.10 (8)
N1—O3—O1 29.90 (11) Tm—O12—O11 53.31 (5)
O2—O3—O1 59.02 (8) O14x—O12—O11 75.07 (8)
N1—O3—O13iv 123.70 (15) O10—O12—O11 59.06 (6)
O2—O3—O13iv 146.33 (11) O7vii—O12—O11 167.99 (10)
O1—O3—O13iv 96.81 (9) Tm—O12—O7 55.21 (5)
N1—O3—O8iv 133.41 (18) O14x—O12—O7 176.85 (10)
O2—O3—O8iv 120.98 (12) O10—O12—O7 66.77 (6)
O1—O3—O8iv 132.24 (11) O7vii—O12—O7 72.20 (7)
O13iv—O3—O8iv 56.18 (6) O11—O12—O7 106.19 (8)
N1—O3—O14iv 113.40 (16) Tm—O12—O5 56.63 (5)
O2—O3—O14iv 84.49 (9) O14x—O12—O5 117.49 (9)
O1—O3—O14iv 142.73 (10) O10—O12—O5 107.92 (8)
O13iv—O3—O14iv 112.24 (8) O7vii—O12—O5 75.17 (7)
O8iv—O3—O14iv 58.87 (6) O11—O12—O5 93.64 (8)
O6—N2—O4 122.98 (19) O7—O12—O5 59.73 (6)
O6—N2—O5 122.2 (2) Tm—O12—O4 50.70 (5)
O4—N2—O5 114.76 (17) O14x—O12—O4 87.49 (9)
O6—N2—Tm 178.28 (17) O10—O12—O4 99.49 (7)
O4—N2—Tm 55.33 (10) O7vii—O12—O4 111.72 (8)
O5—N2—Tm 59.44 (10) O11—O12—O4 56.27 (6)
N2—O4—O5 32.70 (10) O7—O12—O4 90.85 (7)
N2—O4—O6 27.78 (11) O5—O12—O4 42.04 (5)
O5—O4—O6 60.48 (8) Tm—O12—O9vii 131.81 (9)
N2—O4—Tm 99.05 (12) O14x—O12—O9vii 70.05 (7)
O5—O4—Tm 66.35 (6) O10—O12—O9vii 168.34 (9)
O6—O4—Tm 126.84 (9) O7vii—O12—O9vii 41.15 (5)
N2—O4—O2 133.14 (15) O11—O12—O9vii 132.43 (8)
O5—O4—O2 111.36 (9) O7—O12—O9vii 107.30 (7)
O6—O4—O2 141.71 (12) O5—O12—O9vii 75.57 (7)
Tm—O4—O2 60.45 (5) O4—O12—O9vii 90.46 (7)
N2—O4—O11 140.81 (15) Tm—O12—H5 123 (3)
O5—O4—O11 112.74 (9) O14x—O12—H5 10 (3)
O6—O4—O11 156.42 (13) O10—O12—H5 124 (3)
Tm—O4—O11 52.55 (5) O7vii—O12—H5 102 (3)
O2—O4—O11 61.45 (6) O11—O12—H5 77 (3)
N2—O4—O12 84.97 (14) O7—O12—H5 166 (3)
O5—O4—O12 63.46 (7) O5—O12—H5 107 (3)
O6—O4—O12 104.30 (10) O4—O12—H5 80 (3)
Tm—O4—O12 48.04 (5) O9vii—O12—H5 63 (3)
O2—O4—O12 103.44 (7) Tm—O12—H6 118 (3)
O11—O4—O12 56.19 (6) O14x—O12—H6 107 (2)
N2—O5—O4 32.54 (11) O10—O12—H6 130 (2)
N2—O5—O6 28.07 (11) O7vii—O12—H6 4 (3)
O4—O5—O6 60.61 (8) O11—O12—H6 164 (3)
N2—O5—Tm 94.56 (12) O7—O12—H6 71 (2)
O4—O5—Tm 62.03 (6) O5—O12—H6 71 (3)
O6—O5—Tm 122.63 (9) O4—O12—H6 107 (3)
N2—O5—O13v 109.94 (13) O9vii—O12—H6 40 (2)
O4—O5—O13v 142.41 (9) H5—O12—H6 102 (4)
O6—O5—O13v 81.90 (8) Tm—O13—O5v 116.85 (8)
Tm—O5—O13v 155.31 (8) Tm—O13—O5 57.18 (5)
N2—O5—O13 102.32 (14) O5v—O13—O5 64.70 (7)
O4—O5—O13 82.54 (8) Tm—O13—O8 58.93 (5)
O6—O5—O13 117.15 (11) O5v—O13—O8 108.57 (8)
Tm—O5—O13 53.82 (5) O5—O13—O8 96.27 (7)
O13v—O5—O13 115.30 (7) Tm—O13—O2 59.14 (5)
N2—O5—O7 146.29 (14) O5v—O13—O2 147.07 (8)
O4—O5—O7 114.45 (9) O5—O13—O2 92.32 (7)
O6—O5—O7 170.40 (11) O8—O13—O2 96.59 (7)
Tm—O5—O7 53.21 (5) Tm—O13—O3iv 113.42 (8)
O13v—O5—O7 103.03 (7) O5v—O13—O3iv 108.73 (8)
O13—O5—O7 68.48 (6) O5—O13—O3iv 155.31 (9)
N2—O5—O12 94.81 (14) O8—O13—O3iv 62.20 (7)
O4—O5—O12 74.50 (8) O2—O13—O3iv 101.59 (7)
O6—O5—O12 111.87 (10) Tm—O13—O10iii 121.66 (7)
Tm—O5—O12 50.68 (5) O5v—O13—O10iii 110.19 (8)
O13v—O5—O12 126.93 (9) O5—O13—O10iii 124.94 (8)
O13—O5—O12 103.34 (7) O8—O13—O10iii 132.34 (8)
O7—O5—O12 58.56 (6) O2—O13—O10iii 62.57 (6)
N2—O5—O5v 121.20 (17) O3iv—O13—O10iii 79.74 (7)
O4—O5—O5v 128.22 (13) Tm—O13—O1 51.90 (5)
O6—O5—O5v 107.16 (11) O5v—O13—O1 163.64 (9)
Tm—O5—O5v 107.25 (8) O5—O13—O1 108.19 (7)
O13v—O5—O5v 57.69 (6) O8—O13—O1 56.27 (6)
O13—O5—O5v 57.60 (7) O2—O13—O1 42.63 (5)
O7—O5—O5v 82.40 (7) O3iv—O13—O1 71.17 (7)
O12—O5—O5v 140.96 (9) O10iii—O13—O1 86.04 (6)
N2—O6—O5 29.68 (12) Tm—O13—O7 48.90 (5)
N2—O6—O4 29.23 (11) O5v—O13—O7 79.82 (7)
O5—O6—O4 58.91 (7) O5—O13—O7 56.15 (6)
N2—O6—O14vi 99.61 (16) O8—O13—O7 41.95 (5)
O5—O6—O14vi 122.89 (10) O2—O13—O7 107.68 (8)
O4—O6—O14vi 75.58 (9) O3iv—O13—O7 99.84 (7)
N2—O6—O9v 136.91 (18) O10iii—O13—O7 169.66 (8)
O5—O6—O9v 124.28 (11) O1—O13—O7 84.06 (7)
O4—O6—O9v 134.81 (12) Tm—O13—O6v 111.12 (7)
O14vi—O6—O9v 67.17 (7) O5v—O13—O6v 41.08 (5)
N2—O6—O9vi 142.10 (16) O5—O13—O6v 86.61 (7)
O5—O6—O9vi 169.33 (12) O8—O13—O6v 71.96 (6)
O4—O6—O9vi 113.34 (10) O2—O13—O6v 168.28 (9)
O14vi—O6—O9vi 57.38 (6) O3iv—O13—O6v 75.62 (6)
O9v—O6—O9vi 66.27 (8) O10iii—O13—O6v 127.02 (8)
O9—N3—O8 123.31 (19) O1—O13—O6v 126.97 (7)
O9—N3—O7 121.3 (2) O7—O13—O6v 62.22 (6)
O8—N3—O7 115.44 (17) Tm—O13—H7 119 (3)
O9—N3—Tm 173.32 (18) O5v—O13—H7 10 (3)
O8—N3—Tm 61.80 (10) O5—O13—H7 64 (3)
O7—N3—Tm 53.84 (10) O8—O13—H7 119 (3)
N3—O7—O8 31.79 (10) O2—O13—H7 138 (3)
N3—O7—O9 28.42 (11) O3iv—O13—H7 114 (3)
O8—O7—O9 60.21 (8) O10iii—O13—H7 102 (3)
N3—O7—Tm 100.41 (12) O1—O13—H7 171 (3)
O8—O7—Tm 68.76 (6) O7—O13—H7 88 (3)
O9—O7—Tm 128.67 (10) O6v—O13—H7 51 (3)
N3—O7—O12vii 109.38 (13) Tm—O13—H8 119 (3)
O8—O7—O12vii 139.23 (9) O5v—O13—H8 97 (3)
O9—O7—O12vii 82.11 (8) O5—O13—H8 148 (3)
Tm—O7—O12vii 148.08 (8) O8—O13—H8 63 (3)
N3—O7—O12 135.69 (15) O2—O13—H8 114 (3)
O8—O7—O12 112.27 (9) O3iv—O13—H8 12 (3)
O9—O7—O12 146.72 (12) O10iii—O13—H8 86 (3)
Tm—O7—O12 52.72 (5) O1—O13—H8 82 (3)
O12vii—O7—O12 107.80 (7) O7—O13—H8 96 (3)
N3—O7—O5 138.14 (16) O6v—O13—H8 64 (3)
O8—O7—O5 112.81 (9) H7—O13—H8 103 (4)
O9—O7—O5 151.26 (12) O12xi—O14—O11i 99.62 (8)
Tm—O7—O5 56.88 (5) O12xi—O14—O8 155.24 (10)
O12vii—O7—O5 92.35 (7) O11i—O14—O8 104.73 (8)
O12—O7—O5 61.71 (6) O12xi—O14—O9 124.30 (10)
N3—O7—O10 79.13 (13) O11i—O14—O9 123.04 (11)
O8—O7—O10 60.53 (7) O8—O14—O9 42.34 (5)
O9—O7—O10 97.66 (9) O12xi—O14—O3iv 108.74 (10)
Tm—O7—O10 49.32 (5) O11i—O14—O3iv 109.99 (9)
O12vii—O7—O10 146.96 (10) O8—O14—O3iv 58.46 (7)
O12—O7—O10 56.57 (6) O9—O14—O3iv 89.88 (8)
O5—O7—O10 101.99 (7) O12xi—O14—O6viii 75.69 (8)
N3—O7—O13 82.94 (13) O11i—O14—O6viii 102.46 (10)
O8—O7—O13 59.99 (7) O8—O14—O6viii 103.01 (9)
O9—O7—O13 104.46 (10) O9—O14—O6viii 62.42 (7)
Tm—O7—O13 49.20 (5) O3iv—O14—O6viii 145.65 (9)
O12vii—O7—O13 122.65 (9) O12xi—O14—H9 114 (3)
O12—O7—O13 96.65 (7) O11i—O14—H9 115 (3)
O5—O7—O13 55.37 (6) O8—O14—H9 50 (3)
O10—O7—O13 89.60 (7) O9—O14—H9 80 (3)
N3—O8—O7 32.77 (10) O3iv—O14—H9 10 (3)
N3—O8—O9 27.84 (10) O6viii—O14—H9 137 (3)
O7—O8—O9 60.61 (8) O12xi—O14—H10 104 (5)
N3—O8—Tm 92.77 (11) O11i—O14—H10 120 (5)
O7—O8—Tm 60.13 (6) O8—O14—H10 67 (4)
O9—O8—Tm 120.49 (8) O9—O14—H10 25 (4)
N3—O8—O10 93.66 (14) O3iv—O14—H10 112 (5)
O7—O8—O10 76.28 (8) O6viii—O14—H10 37 (4)
O9—O8—O10 107.87 (10) H9—O14—H10 103 (5)
Tm—O8—O10 52.43 (5)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) x+1, y−1, z; (vii) −x, −y+1, −z; (viii) x−1, y+1, z; (ix) x−1, y, z; (x) x, y−1, z; (xi) x, y+1, z.

Thulium nitrate (TONi-2_223K). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O10—H1···O1i 0.82 (4) 2.03 (4) 2.849 (2) 174 (3)
O10—H2···O13ix 0.78 (4) 2.32 (4) 2.996 (3) 145 (3)
O10—H2···O2ix 0.78 (4) 2.48 (4) 3.035 (3) 129 (3)
O11—H3···O14i 0.77 (5) 1.98 (5) 2.739 (3) 167 (5)
O11—H4···O2ii 0.85 (4) 2.03 (4) 2.874 (2) 171 (4)
O12—H5···O14x 0.83 (4) 1.90 (4) 2.715 (3) 165 (4)
O12—H6···O7vii 0.83 (4) 1.95 (4) 2.776 (2) 174 (4)
O13—H7···O5v 0.82 (5) 1.98 (5) 2.784 (2) 166 (4)
O13—H8···O3iv 0.86 (4) 2.12 (4) 2.953 (3) 163 (4)
O14—H9···O3iv 0.84 (4) 2.27 (5) 3.095 (3) 167 (4)
O14—H10···O9 0.68 (6) 2.44 (6) 3.040 (3) 148 (5)
O14—H10···O6viii 0.68 (6) 2.62 (6) 3.132 (4) 134 (5)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (vii) −x, −y+1, −z; (viii) x−1, y+1, z; (ix) x−1, y, z; (x) x, y−1, z.

Thulium nitrate (TONii-3_223K). Crystal data

[Tm(NO3)3(H2O)4]·2H2O Z = 2
Mr = 463.06 F(000) = 444
Triclinic, P1 Dx = 2.538 Mg m3
a = 6.7050 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.9733 (4) Å Cell parameters from 47483 reflections
c = 11.4915 (6) Å θ = 2.6–36.6°
α = 70.924 (4)° µ = 7.41 mm1
β = 88.908 (4)° T = 223 K
γ = 68.923 (4)° Block, colourless
V = 605.90 (5) Å3 0.4 × 0.2 × 0.15 mm

Thulium nitrate (TONii-3_223K). Data collection

STOE StadiVari diffractometer 4385 independent reflections
Radiation source: Genix 3D HF Mo 3899 reflections with I > 2σ(I)
Graded multilayer mirror monochromator Rint = 0.031
Detector resolution: 5.81 pixels mm-1 θmax = 32.5°, θmin = 3.3°
ω scans h = −10→10
Absorption correction: empirical (using intensity measurements) (X-AREA; Stoe, 2015) k = −13→13
Tmin = 0.615, Tmax = 1.000 l = −17→17
29880 measured reflections

Thulium nitrate (TONii-3_223K). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 All H-atom parameters refined
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.020P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max < 0.001
4385 reflections Δρmax = 1.11 e Å3
221 parameters Δρmin = −1.18 e Å3
0 restraints Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0687 (8)

Thulium nitrate (TONii-3_223K). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Thulium nitrate (TONii-3_223K). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Tm 0.19543 (2) 0.41275 (2) 0.27232 (2) 0.01566 (4)
N1 −0.1763 (3) 0.7245 (2) 0.18627 (18) 0.0219 (3)
O1 −0.1088 (3) 0.6386 (2) 0.29939 (16) 0.0306 (4)
O2 −0.0716 (3) 0.6650 (2) 0.10973 (17) 0.0332 (4)
O3 −0.3348 (3) 0.8577 (2) 0.15483 (19) 0.0338 (4)
N2 0.0790 (3) 0.1833 (2) 0.18432 (18) 0.0239 (4)
O4 0.2565 (3) 0.1444 (2) 0.24492 (17) 0.0283 (3)
O5 −0.0588 (3) 0.3320 (2) 0.16876 (17) 0.0282 (3)
O6 0.0422 (4) 0.0843 (2) 0.14426 (19) 0.0358 (4)
N3 0.0931 (3) 0.1599 (2) 0.50588 (18) 0.0216 (3)
O7 −0.0255 (3) 0.2987 (2) 0.42350 (16) 0.0267 (3)
O8 0.2889 (3) 0.1045 (3) 0.4993 (2) 0.0356 (4)
O9 0.0120 (3) 0.0838 (2) 0.59033 (18) 0.0367 (4)
O10 0.3559 (3) 0.6083 (2) 0.22157 (17) 0.0282 (4)
H1 0.361 (6) 0.677 (5) 0.151 (4) 0.049 (10)*
H2 0.385 (7) 0.637 (6) 0.269 (4) 0.051 (11)*
O11 0.2745 (3) 0.4539 (2) 0.45290 (15) 0.0234 (3)
H3 0.200 (7) 0.521 (5) 0.484 (4) 0.048 (11)*
H4 0.367 (6) 0.390 (5) 0.499 (3) 0.034 (9)*
O12 0.5603 (3) 0.2458 (2) 0.32343 (18) 0.0251 (3)
H5 0.606 (6) 0.147 (5) 0.366 (3) 0.037 (9)*
H6 0.652 (7) 0.283 (5) 0.310 (4) 0.049 (11)*
O13 0.3038 (3) 0.4359 (2) 0.07487 (15) 0.0230 (3)
H7 0.400 (7) 0.363 (5) 0.063 (4) 0.046 (10)*
H8 0.236 (7) 0.500 (6) 0.006 (4) 0.059 (12)*
O14 0.3663 (3) 0.8009 (2) −0.01622 (17) 0.0272 (3)
H9 0.252 (7) 0.832 (5) −0.055 (4) 0.039 (10)*
H10 0.391 (7) 0.883 (6) −0.019 (4) 0.058 (12)*
O15 0.4146 (3) 0.7754 (2) 0.36863 (17) 0.0244 (3)
H11 0.301 (7) 0.813 (6) 0.390 (4) 0.052 (12)*
H12 0.439 (8) 0.856 (6) 0.327 (4) 0.066 (14)*

Thulium nitrate (TONii-3_223K). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tm 0.01512 (5) 0.01444 (4) 0.01475 (5) −0.00368 (3) 0.00155 (2) −0.00370 (3)
N1 0.0208 (8) 0.0134 (7) 0.0251 (9) −0.0038 (6) 0.0013 (7) −0.0012 (6)
O1 0.0303 (9) 0.0238 (8) 0.0203 (8) 0.0029 (7) 0.0054 (6) −0.0003 (6)
O2 0.0341 (9) 0.0324 (9) 0.0227 (8) 0.0000 (7) 0.0010 (7) −0.0103 (7)
O3 0.0260 (8) 0.0168 (7) 0.0389 (10) 0.0031 (6) 0.0023 (7) 0.0028 (7)
N2 0.0287 (9) 0.0200 (8) 0.0211 (8) −0.0114 (7) −0.0005 (7) −0.0019 (7)
O4 0.0266 (8) 0.0189 (7) 0.0328 (9) −0.0058 (6) −0.0084 (7) −0.0028 (6)
O5 0.0235 (8) 0.0266 (8) 0.0298 (8) −0.0052 (6) −0.0022 (6) −0.0081 (7)
O6 0.0485 (12) 0.0275 (9) 0.0345 (10) −0.0192 (8) −0.0063 (8) −0.0084 (7)
N3 0.0214 (8) 0.0162 (7) 0.0242 (9) −0.0049 (6) 0.0059 (7) −0.0056 (6)
O7 0.0282 (8) 0.0178 (7) 0.0252 (8) −0.0058 (6) 0.0035 (6) 0.0004 (6)
O8 0.0191 (8) 0.0347 (10) 0.0532 (12) −0.0060 (7) 0.0103 (8) −0.0200 (9)
O9 0.0394 (10) 0.0256 (8) 0.0320 (9) −0.0102 (8) 0.0145 (8) 0.0039 (7)
O10 0.0495 (11) 0.0276 (8) 0.0170 (7) −0.0257 (8) 0.0066 (7) −0.0073 (6)
O11 0.0259 (8) 0.0216 (7) 0.0160 (7) −0.0025 (6) −0.0007 (6) −0.0050 (6)
O12 0.0169 (7) 0.0180 (7) 0.0331 (9) −0.0032 (6) −0.0001 (6) −0.0029 (6)
O13 0.0257 (8) 0.0220 (7) 0.0165 (7) −0.0040 (6) 0.0027 (6) −0.0061 (6)
O14 0.0336 (9) 0.0208 (8) 0.0258 (8) −0.0112 (7) 0.0027 (7) −0.0049 (6)
O15 0.0267 (8) 0.0183 (7) 0.0249 (8) −0.0065 (6) −0.0009 (7) −0.0050 (6)

Thulium nitrate (TONii-3_223K). Geometric parameters (Å, º)

Tm—O10 2.2897 (18) O7—O8 2.162 (3)
Tm—O11 2.3255 (17) O7—O9 2.171 (2)
Tm—O12 2.3276 (17) O7—O11 2.907 (3)
Tm—O13 2.3360 (16) O7—O11i 3.006 (2)
Tm—O1 2.4039 (17) O8—O9 2.151 (3)
Tm—O4 2.4179 (18) O8—O8vii 2.774 (4)
Tm—O7 2.4677 (17) O8—O12vii 2.943 (3)
Tm—O2 2.5034 (18) O8—O11 2.969 (3)
Tm—O5 2.5252 (18) O8—O12 2.974 (3)
Tm—N1 2.8787 (18) O8—O15viii 3.184 (3)
Tm—N2 2.902 (2) O9—O15i 2.782 (3)
Tm—O8 2.991 (2) O9—O9vi 2.970 (5)
Tm—N3 3.1452 (18) O9—O6vi 3.009 (3)
N1—O3 1.227 (2) O10—O11 2.714 (2)
N1—O2 1.251 (3) O10—O15 2.714 (3)
N1—O1 1.267 (2) O10—O14 2.730 (3)
O1—O2 2.134 (2) O10—O13 2.734 (2)
O1—O3 2.177 (2) O10—O12 2.863 (3)
O1—O7 2.758 (2) O10—H1 0.85 (4)
O1—O11 2.768 (3) O10—H2 0.73 (5)
O1—O11i 3.004 (2) O11—O15viii 2.666 (2)
O1—O10 3.166 (3) O11—O12 2.917 (3)
O1—O15ii 3.174 (3) O11—O1i 3.004 (2)
O2—O3 2.175 (3) O11—O7i 3.006 (2)
O2—O13 2.738 (3) O11—O15 3.199 (3)
O2—O5 2.809 (3) O11—H3 0.81 (4)
O2—O10 2.965 (3) O11—H4 0.74 (4)
O2—O6iii 3.102 (3) O12—O8vii 2.943 (3)
O2—O13iii 3.184 (3) O12—O13 2.986 (3)
O3—O14iv 2.885 (2) O12—O9vii 3.170 (3)
O3—O15ii 2.992 (3) O12—H5 0.80 (4)
O3—O14ii 3.111 (3) O12—H6 0.79 (4)
N2—O6 1.221 (3) O13—O14ix 2.713 (3)
N2—O4 1.263 (3) O13—O5iii 2.963 (2)
N2—O5 1.277 (3) O13—O2iii 3.184 (3)
O4—O5 2.148 (2) O13—H7 0.78 (4)
O4—O6 2.173 (3) O13—H8 0.83 (5)
O4—O12 2.781 (3) O14—O13ix 2.713 (3)
O4—O13 2.827 (2) O14—O6iii 2.804 (3)
O4—O8 2.829 (3) O14—O3iv 2.885 (2)
O4—O15v 2.926 (2) O14—O3x 3.111 (3)
O4—O7 3.087 (3) O14—H9 0.80 (4)
O5—O6 2.190 (3) O14—H10 0.80 (5)
O5—O7 2.849 (3) O15—O11viii 2.666 (2)
O5—O13iii 2.963 (2) O15—O9i 2.782 (3)
O5—O13 2.969 (2) O15—O4xi 2.926 (2)
O6—O14iii 2.804 (3) O15—O3x 2.992 (3)
O6—O9vi 3.009 (3) O15—O1x 3.174 (3)
O6—O2iii 3.102 (3) O15—O8viii 3.184 (3)
N3—O9 1.232 (2) O15—H11 0.79 (5)
N3—O8 1.236 (3) O15—H12 0.79 (5)
N3—O7 1.275 (2)
O10—Tm—O11 72.03 (6) O7—O8—O12 100.29 (9)
O10—Tm—O12 76.62 (7) O8vii—O8—O12 61.49 (8)
O11—Tm—O12 77.63 (7) O4—O8—O12 57.20 (6)
O10—Tm—O13 72.46 (6) O12vii—O8—O12 124.10 (7)
O11—Tm—O13 141.28 (6) O11—O8—O12 58.78 (6)
O12—Tm—O13 79.64 (7) N3—O8—Tm 85.50 (14)
O10—Tm—O1 84.81 (7) O9—O8—Tm 114.83 (9)
O11—Tm—O1 71.62 (6) O7—O8—Tm 54.39 (6)
O12—Tm—O1 147.76 (7) O8vii—O8—Tm 106.06 (10)
O13—Tm—O1 119.66 (6) O4—O8—Tm 49.00 (5)
O10—Tm—O4 136.37 (7) O12vii—O8—Tm 164.48 (8)
O11—Tm—O4 127.07 (6) O11—O8—Tm 45.93 (4)
O12—Tm—O4 71.71 (6) O12—O8—Tm 45.93 (5)
O13—Tm—O4 72.95 (6) N3—O8—O15viii 118.44 (15)
O1—Tm—O4 136.08 (7) O9—O8—O15viii 114.99 (11)
O10—Tm—O7 142.62 (6) O7—O8—O15viii 113.47 (9)
O11—Tm—O7 74.59 (6) O8vii—O8—O15viii 73.26 (9)
O12—Tm—O7 112.05 (6) O4—O8—O15viii 125.89 (8)
O13—Tm—O7 143.65 (6) O12vii—O8—O15viii 95.36 (8)
O1—Tm—O7 68.96 (6) O11—O8—O15viii 51.20 (6)
O4—Tm—O7 78.37 (6) O12—O8—O15viii 68.83 (7)
O10—Tm—O2 76.28 (7) Tm—O8—O15viii 90.93 (6)
O11—Tm—O2 116.27 (6) N3—O9—O8 29.45 (12)
O12—Tm—O2 143.26 (7) N3—O9—O7 30.60 (11)
O13—Tm—O2 68.82 (6) O8—O9—O7 60.05 (9)
O1—Tm—O2 51.50 (6) N3—O9—O15i 122.54 (15)
O4—Tm—O2 114.16 (6) O8—O9—O15i 151.29 (11)
O7—Tm—O2 104.56 (6) O7—O9—O15i 92.26 (9)
O10—Tm—O5 138.32 (6) N3—O9—O9vi 81.16 (15)
O11—Tm—O5 143.50 (6) O8—O9—O9vi 81.92 (10)
O12—Tm—O5 122.22 (6) O7—O9—O9vi 82.92 (10)
O13—Tm—O5 75.17 (6) O15i—O9—O9vi 103.45 (11)
O1—Tm—O5 89.05 (6) N3—O9—O6vi 155.54 (18)
O4—Tm—O5 51.46 (6) O8—O9—O6vi 132.39 (12)
O7—Tm—O5 69.56 (6) O7—O9—O6vi 154.89 (11)
O2—Tm—O5 67.92 (6) O15i—O9—O6vi 70.34 (7)
O10—Tm—N1 79.34 (6) O9vi—O9—O6vi 117.98 (10)
O11—Tm—N1 94.01 (6) Tm—O10—O11 54.60 (5)
O12—Tm—N1 155.94 (6) Tm—O10—O15 125.53 (8)
O13—Tm—N1 94.17 (6) O11—O10—O15 72.21 (7)
O1—Tm—N1 25.80 (6) Tm—O10—O14 123.63 (9)
O4—Tm—N1 128.96 (6) O11—O10—O14 170.18 (10)
O7—Tm—N1 86.74 (5) O15—O10—O14 106.61 (8)
O2—Tm—N1 25.70 (6) Tm—O10—O13 54.55 (5)
O5—Tm—N1 77.55 (6) O11—O10—O13 107.65 (8)
O10—Tm—N2 143.67 (6) O15—O10—O13 179.02 (11)
O11—Tm—N2 142.17 (6) O14—O10—O13 73.69 (7)
O12—Tm—N2 96.51 (6) Tm—O10—O12 52.28 (5)
O13—Tm—N2 71.21 (6) O11—O10—O12 63.00 (7)
O1—Tm—N2 113.66 (7) O15—O10—O12 114.74 (9)
O4—Tm—N2 25.46 (6) O14—O10—O12 124.80 (9)
O7—Tm—N2 73.26 (6) O13—O10—O12 64.45 (7)
O2—Tm—N2 90.88 (6) Tm—O10—O2 55.11 (6)
O5—Tm—N2 26.04 (6) O11—O10—O2 92.39 (8)
N1—Tm—N2 103.50 (6) O15—O10—O2 123.68 (9)
O10—Tm—O8 128.95 (6) O14—O10—O2 80.12 (8)
O11—Tm—O8 66.54 (6) O13—O10—O2 57.26 (6)
O12—Tm—O8 66.66 (6) O12—O10—O2 103.77 (8)
O13—Tm—O8 129.82 (6) Tm—O10—O1 49.12 (5)
O1—Tm—O8 108.14 (5) O11—O10—O1 55.52 (6)
O4—Tm—O8 62.01 (6) O15—O10—O1 93.03 (8)
O7—Tm—O8 45.43 (5) O14—O10—O1 115.31 (9)
O2—Tm—O8 149.59 (6) O13—O10—O1 87.66 (7)
O5—Tm—O8 92.10 (6) O12—O10—O1 97.74 (7)
N1—Tm—O8 130.80 (5) O2—O10—O1 40.57 (5)
N2—Tm—O8 76.75 (5) Tm—O10—H1 130 (3)
O10—Tm—N3 140.57 (6) O11—O10—H1 167 (3)
O11—Tm—N3 68.94 (6) O15—O10—H1 100 (3)
O12—Tm—N3 89.70 (6) O14—O10—H1 7 (3)
O13—Tm—N3 141.77 (6) O13—O10—H1 81 (3)
O1—Tm—N3 88.19 (5) O12—O10—H1 130 (3)
O4—Tm—N3 68.85 (6) O2—O10—H1 84 (3)
O7—Tm—N3 22.36 (5) O1—O10—H1 116 (3)
O2—Tm—N3 126.79 (6) Tm—O10—H2 120 (3)
O5—Tm—N3 80.10 (6) O11—O10—H2 65 (3)
N1—Tm—N3 108.51 (5) O15—O10—H2 11 (3)
N2—Tm—N3 73.74 (5) O14—O10—H2 115 (3)
O8—Tm—N3 23.07 (5) O13—O10—H2 168 (3)
O3—N1—O2 122.6 (2) O12—O10—H2 103 (3)
O3—N1—O1 121.5 (2) O2—O10—H2 131 (3)
O2—N1—O1 115.82 (18) O1—O10—H2 96 (3)
O3—N1—Tm 177.14 (17) H1—O10—H2 108 (4)
O2—N1—Tm 60.15 (11) Tm—O11—O15viii 123.70 (8)
O1—N1—Tm 55.68 (10) Tm—O11—O10 53.37 (5)
N1—O1—O2 31.87 (11) O15viii—O11—O10 122.60 (9)
N1—O1—O3 28.72 (11) Tm—O11—O1 55.51 (5)
O2—O1—O3 60.58 (9) O15viii—O11—O1 164.63 (9)
N1—O1—Tm 98.52 (12) O10—O11—O1 70.56 (7)
O2—O1—Tm 66.66 (7) Tm—O11—O7 54.93 (5)
O3—O1—Tm 127.24 (9) O15viii—O11—O7 107.83 (8)
N1—O1—O7 128.53 (15) O10—O11—O7 106.57 (8)
O2—O1—O7 106.29 (10) O1—O11—O7 58.11 (6)
O3—O1—O7 140.60 (12) Tm—O11—O12 51.22 (5)
Tm—O1—O7 56.61 (5) O15viii—O11—O12 77.11 (7)
N1—O1—O11 139.90 (14) O10—O11—O12 60.99 (6)
O2—O1—O11 112.99 (9) O1—O11—O12 106.16 (7)
O3—O1—O11 155.01 (11) O7—O11—O12 86.16 (7)
Tm—O1—O11 52.87 (5) Tm—O11—O8 67.52 (6)
O7—O1—O11 63.47 (6) O15viii—O11—O8 68.58 (7)
N1—O1—O11i 140.49 (14) O10—O11—O8 114.24 (8)
O2—O1—O11i 158.78 (12) O1—O11—O8 99.54 (8)
O3—O1—O11i 115.14 (9) O7—O11—O8 43.17 (6)
Tm—O1—O11i 114.13 (7) O12—O11—O8 60.70 (6)
O7—O1—O11i 62.71 (6) Tm—O11—O1i 129.79 (8)
O11—O1—O11i 79.48 (7) O15viii—O11—O1i 67.77 (7)
N1—O1—O10 86.14 (13) O10—O11—O1i 167.02 (9)
O2—O1—O10 64.64 (8) O1—O11—O1i 100.52 (7)
O3—O1—O10 106.16 (9) O7—O11—O1i 74.86 (7)
Tm—O1—O10 46.07 (5) O12—O11—O1i 131.78 (8)
O7—O1—O10 98.82 (7) O8—O11—O1i 75.93 (7)
O11—O1—O10 53.92 (6) Tm—O11—O7i 132.35 (8)
O11i—O1—O10 132.50 (8) O15viii—O11—O7i 102.34 (7)
N1—O1—O15ii 89.65 (13) O10—O11—O7i 113.06 (8)
O2—O1—O15ii 117.05 (9) O1—O11—O7i 76.86 (7)
O3—O1—O15ii 64.92 (7) O7—O11—O7i 102.68 (7)
Tm—O1—O15ii 150.29 (9) O12—O11—O7i 170.75 (9)
O7—O1—O15ii 96.18 (7) O8—O11—O7i 127.94 (8)
O11—O1—O15ii 129.57 (8) O1i—O11—O7i 54.64 (5)
O11i—O1—O15ii 51.03 (5) Tm—O11—O15 106.37 (7)
O10—O1—O15ii 163.64 (8) O15viii—O11—O15 102.98 (7)
N1—O2—O1 32.31 (11) O10—O11—O15 53.90 (6)
N1—O2—O3 28.38 (11) O1—O11—O15 91.32 (7)
O1—O2—O3 60.69 (8) O7—O11—O15 149.18 (8)
N1—O2—Tm 94.15 (13) O12—O11—O15 100.27 (7)
O1—O2—Tm 61.84 (6) O8—O11—O15 160.04 (8)
O3—O2—Tm 122.53 (9) O1i—O11—O15 118.68 (7)
N1—O2—O13 145.64 (15) O7i—O11—O15 70.75 (6)
O1—O2—O13 113.94 (9) Tm—O11—H3 129 (3)
O3—O2—O13 170.33 (12) O15viii—O11—H3 105 (3)
Tm—O2—O13 52.70 (5) O10—O11—H3 113 (3)
N1—O2—O5 107.14 (15) O1—O11—H3 74 (3)
O1—O2—O5 87.66 (9) O7—O11—H3 99 (3)
O3—O2—O5 121.17 (11) O12—O11—H3 173 (3)
Tm—O2—O5 56.41 (5) O8—O11—H3 126 (3)
O13—O2—O5 64.70 (7) O1i—O11—H3 54 (3)
N1—O2—O10 95.68 (14) O7i—O11—H3 4 (3)
O1—O2—O10 74.80 (8) O15—O11—H3 73 (3)
O3—O2—O10 113.21 (10) Tm—O11—H4 121 (3)
Tm—O2—O10 48.61 (5) O15viii—O11—H4 4 (3)
O13—O2—O10 57.13 (6) O10—O11—H4 118 (3)
O5—O2—O10 102.39 (8) O1—O11—H4 168 (3)
N1—O2—O6iii 118.54 (14) O7—O11—H4 110 (3)
O1—O2—O6iii 143.35 (11) O12—O11—H4 74 (3)
O3—O2—O6iii 93.77 (9) O8—O11—H4 69 (3)
Tm—O2—O6iii 134.73 (9) O1i—O11—H4 72 (3)
O13—O2—O6iii 86.94 (7) O7i—O11—H4 105 (3)
O5—O2—O6iii 128.98 (8) O15—O11—H4 101 (3)
O10—O2—O6iii 94.82 (8) H3—O11—H4 108 (4)
N1—O2—O13iii 119.36 (15) Tm—O12—O4 55.65 (5)
O1—O2—O13iii 129.73 (11) Tm—O12—O10 51.09 (5)
O3—O2—O13iii 103.41 (9) O4—O12—O10 101.51 (7)
Tm—O2—O13iii 113.12 (7) Tm—O12—O11 51.15 (5)
O13—O2—O13iii 86.20 (7) O4—O12—O11 96.35 (7)
O5—O2—O13iii 58.87 (6) O10—O12—O11 56.01 (6)
O10—O2—O13iii 143.20 (8) Tm—O12—O8vii 121.45 (8)
O6iii—O2—O13iii 78.86 (6) O4—O12—O8vii 81.85 (7)
N1—O3—O2 28.99 (12) O10—O12—O8vii 161.11 (9)
N1—O3—O1 29.74 (11) O11—O12—O8vii 105.28 (8)
O2—O3—O1 58.73 (8) Tm—O12—O8 67.41 (6)
N1—O3—O14iv 129.45 (15) O4—O12—O8 58.77 (7)
O2—O3—O14iv 112.88 (10) O10—O12—O8 109.76 (8)
O1—O3—O14iv 136.24 (11) O11—O12—O8 60.52 (6)
N1—O3—O15ii 99.15 (14) O8vii—O12—O8 55.90 (7)
O2—O3—O15ii 123.07 (9) Tm—O12—O13 50.30 (5)
O1—O3—O15ii 73.86 (8) O4—O12—O13 58.57 (6)
O14iv—O3—O15ii 123.21 (8) O10—O12—O13 55.69 (6)
N1—O3—O14ii 103.78 (16) O11—O12—O13 96.31 (7)
O2—O3—O14ii 86.31 (9) O8vii—O12—O13 136.79 (9)
O1—O3—O14ii 119.12 (10) O8—O12—O13 108.33 (8)
O14iv—O3—O14ii 101.62 (7) Tm—O12—O9vii 159.42 (9)
O15ii—O3—O14ii 91.31 (7) O4—O12—O9vii 105.31 (8)
O6—N2—O4 122.0 (2) O10—O12—O9vii 149.31 (9)
O6—N2—O5 122.5 (2) O11—O12—O9vii 133.55 (8)
O4—N2—O5 115.49 (19) O8vii—O12—O9vii 40.99 (5)
O6—N2—Tm 175.95 (18) O8—O12—O9vii 96.86 (7)
O4—N2—Tm 55.34 (11) O13—O12—O9vii 130.07 (8)
O5—N2—Tm 60.28 (11) Tm—O12—H5 124 (3)
N2—O4—O5 32.44 (11) O4—O12—H5 80 (3)
N2—O4—O6 28.47 (12) O10—O12—H5 167 (3)
O5—O4—O6 60.91 (9) O11—O12—H5 111 (3)
N2—O4—Tm 99.20 (13) O8vii—O12—H5 6 (3)
O5—O4—Tm 66.85 (7) O8—O12—H5 60 (3)
O6—O4—Tm 127.60 (9) O13—O12—H5 133 (3)
N2—O4—O12 149.28 (14) O9vii—O12—H5 38 (3)
O5—O4—O12 118.57 (9) Tm—O12—H6 124 (3)
O6—O4—O12 167.51 (11) O4—O12—H6 151 (3)
Tm—O4—O12 52.63 (5) O10—O12—H6 73 (3)
N2—O4—O13 89.39 (12) O11—O12—H6 103 (3)
O5—O4—O13 71.81 (8) O8vii—O12—H6 113 (3)
O6—O4—O13 105.26 (9) O8—O12—H6 150 (3)
Tm—O4—O13 52.19 (5) O13—O12—H6 98 (3)
O12—O4—O13 64.35 (6) O9vii—O12—H6 76 (3)
N2—O4—O8 121.99 (15) H5—O12—H6 112 (4)
O5—O4—O8 105.54 (10) Tm—O13—O14ix 126.06 (8)
O6—O4—O8 128.45 (10) Tm—O13—O10 52.99 (5)
Tm—O4—O8 68.99 (6) O14ix—O13—O10 123.85 (9)
O12—O4—O8 64.03 (7) Tm—O13—O2 58.48 (5)
O13—O4—O8 117.39 (8) O14ix—O13—O2 170.54 (10)
N2—O4—O15v 105.48 (13) O10—O13—O2 65.61 (7)
O5—O4—O15v 132.47 (10) Tm—O13—O4 54.86 (5)
O6—O4—O15v 80.38 (8) O14ix—O13—O4 82.46 (7)
Tm—O4—O15v 144.77 (8) O10—O13—O4 103.61 (7)
O12—O4—O15v 105.17 (7) O2—O13—O4 95.85 (8)
O13—O4—O15v 150.26 (9) Tm—O13—O5iii 128.52 (8)
O8—O4—O15v 76.65 (7) O14ix—O13—O5iii 103.47 (7)
N2—O4—O7 84.55 (14) O10—O13—O5iii 112.21 (8)
O5—O4—O7 62.95 (8) O2—O13—O5iii 70.49 (7)
O6—O4—O7 104.27 (9) O4—O13—O5iii 130.25 (8)
Tm—O4—O7 51.53 (5) Tm—O13—O5 55.31 (5)
O12—O4—O7 85.18 (7) O14ix—O13—O5 115.55 (8)
O13—O4—O7 100.94 (7) O10—O13—O5 104.14 (7)
O8—O4—O7 42.60 (6) O2—O13—O5 58.80 (7)
O15v—O4—O7 105.93 (7) O4—O13—O5 43.43 (6)
N2—O5—O4 32.07 (11) O5iii—O13—O5 93.63 (7)
N2—O5—O6 28.04 (11) Tm—O13—O12 50.06 (5)
O4—O5—O6 60.10 (8) O14ix—O13—O12 80.61 (7)
N2—O5—Tm 93.68 (13) O10—O13—O12 59.86 (6)
O4—O5—Tm 61.69 (7) O2—O13—O12 106.36 (7)
O6—O5—Tm 121.66 (9) O4—O13—O12 57.07 (6)
N2—O5—O2 138.74 (15) O5iii—O13—O12 171.66 (8)
O4—O5—O2 112.22 (9) O5—O13—O12 91.06 (7)
O6—O5—O2 153.44 (11) Tm—O13—O2iii 119.90 (8)
Tm—O5—O2 55.67 (5) O14ix—O13—O2iii 76.74 (7)
N2—O5—O7 95.06 (13) O10—O13—O2iii 159.18 (9)
O4—O5—O7 74.85 (8) O2—O13—O2iii 93.80 (7)
O6—O5—O7 111.87 (9) O4—O13—O2iii 80.58 (7)
Tm—O5—O7 54.27 (5) O5iii—O13—O2iii 54.24 (6)
O2—O5—O7 88.06 (7) O5—O13—O2iii 64.66 (6)
N2—O5—O13iii 122.46 (14) O12—O13—O2iii 134.09 (8)
O4—O5—O13iii 139.71 (10) Tm—O13—H7 122 (3)
O6—O5—O13iii 101.74 (9) O14ix—O13—H7 5 (3)
Tm—O5—O13iii 120.11 (8) O10—O13—H7 122 (3)
O2—O5—O13iii 66.89 (6) O2—O13—H7 171 (3)
O7—O5—O13iii 142.29 (8) O4—O13—H7 78 (3)
N2—O5—O13 82.93 (13) O5iii—O13—H7 108 (3)
O4—O5—O13 64.76 (7) O5—O13—H7 113 (3)
O6—O5—O13 100.34 (9) O12—O13—H7 77 (3)
Tm—O5—O13 49.52 (5) O2iii—O13—H7 78 (3)
O2—O5—O13 56.50 (6) Tm—O13—H8 129 (3)
O7—O5—O13 103.35 (7) O14ix—O13—H8 103 (3)
O13iii—O5—O13 86.37 (7) O10—O13—H8 113 (3)
N2—O6—O4 29.55 (12) O2—O13—H8 71 (3)
N2—O6—O5 29.44 (12) O4—O13—H8 130 (3)
O4—O6—O5 58.99 (8) O5iii—O13—H8 1 (3)
N2—O6—O14iii 116.45 (16) O5—O13—H8 94 (3)
O4—O6—O14iii 146.00 (11) O12—O13—H8 172 (3)
O5—O6—O14iii 87.01 (9) O2iii—O13—H8 54 (3)
N2—O6—O9vi 83.84 (14) H7—O13—H8 107 (4)
O4—O6—O9vi 77.76 (9) O13ix—O14—O10 98.12 (8)
O5—O6—O9vi 91.17 (9) O13ix—O14—O6iii 118.03 (9)
O14iii—O6—O9vi 104.35 (9) O10—O14—O6iii 107.66 (9)
N2—O6—O2iii 83.25 (14) O13ix—O14—O3iv 112.05 (8)
O4—O6—O2iii 93.56 (9) O10—O14—O3iv 139.09 (9)
O5—O6—O2iii 74.80 (8) O6iii—O14—O3iv 82.46 (7)
O14iii—O6—O2iii 76.63 (7) O13ix—O14—O3x 93.53 (8)
O9vi—O6—O2iii 165.92 (9) O10—O14—O3x 72.61 (7)
O9—N3—O8 121.2 (2) O6iii—O14—O3x 147.52 (9)
O9—N3—O7 119.94 (19) O3iv—O14—O3x 78.38 (7)
O8—N3—O7 118.84 (19) O13ix—O14—O13 69.68 (7)
O9—N3—Tm 167.34 (15) O10—O14—O13 53.22 (6)
O8—N3—Tm 71.43 (13) O6iii—O14—O13 82.55 (7)
O7—N3—Tm 47.41 (10) O3iv—O14—O13 163.54 (9)
N3—O7—O8 30.06 (11) O3x—O14—O13 118.06 (7)
N3—O7—O9 29.46 (11) O13ix—O14—H9 116 (3)
O8—O7—O9 59.52 (9) O10—O14—H9 109 (3)
N3—O7—Tm 110.23 (13) O6iii—O14—H9 3 (3)
O8—O7—Tm 80.17 (8) O3iv—O14—H9 83 (3)
O9—O7—Tm 139.69 (10) O3x—O14—H9 150 (3)
N3—O7—O1 147.87 (15) O13—O14—H9 82 (3)
O8—O7—O1 125.43 (10) O13ix—O14—H10 114 (3)
O9—O7—O1 152.51 (11) O10—O14—H10 111 (3)
Tm—O7—O1 54.43 (5) O6iii—O14—H10 108 (3)
N3—O7—O5 121.52 (14) O3iv—O14—H10 31 (3)
O8—O7—O5 104.49 (9) O3x—O14—H10 48 (3)
O9—O7—O5 130.94 (10) O13—O14—H10 164 (3)
Tm—O7—O5 56.17 (5) H9—O14—H10 109 (4)
O1—O7—O5 76.12 (7) O11viii—O15—O10 105.91 (8)
N3—O7—O11 89.75 (13) O11viii—O15—O9i 123.52 (9)
O8—O7—O11 69.95 (8) O10—O15—O9i 97.93 (9)
O9—O7—O11 109.13 (10) O11viii—O15—O4xi 135.84 (8)
Tm—O7—O11 50.47 (5) O10—O15—O4xi 113.20 (8)
O1—O7—O11 58.42 (6) O9i—O15—O4xi 71.01 (7)
O5—O7—O11 106.35 (7) O11viii—O15—O3x 101.79 (8)
N3—O7—O11i 109.28 (13) O10—O15—O3x 74.76 (7)
O8—O7—O11i 123.31 (10) O9i—O15—O3x 133.98 (8)
O9—O7—O11i 91.56 (9) O4xi—O15—O3x 70.82 (7)
Tm—O7—O11i 112.11 (7) O11viii—O15—O1x 61.19 (6)
O1—O7—O11i 62.65 (6) O10—O15—O1x 80.98 (7)
O5—O7—O11i 128.92 (7) O9i—O15—O1x 175.19 (8)
O11—O7—O11i 77.32 (7) O4xi—O15—O1x 105.04 (8)
N3—O7—O4 83.39 (12) O3x—O15—O1x 41.22 (5)
O8—O7—O4 62.31 (8) O11viii—O15—O8viii 60.23 (6)
O9—O7—O4 105.04 (9) O10—O15—O8viii 151.59 (9)
Tm—O7—O4 50.10 (4) O9i—O15—O8viii 110.39 (8)
O1—O7—O4 99.67 (7) O4xi—O15—O8viii 75.62 (6)
O5—O7—O4 42.20 (5) O3x—O15—O8viii 83.73 (7)
O11—O7—O4 90.17 (7) O1x—O15—O8viii 70.61 (6)
O11i—O7—O4 161.88 (7) O11viii—O15—O11 77.02 (7)
N3—O8—O9 29.33 (11) O10—O15—O11 53.89 (6)
N3—O8—O7 31.10 (11) O9i—O15—O11 77.44 (7)
O9—O8—O7 60.43 (8) O4xi—O15—O11 143.83 (8)
N3—O8—O8vii 164.0 (2) O3x—O15—O11 124.74 (8)
O9—O8—O8vii 137.71 (14) O1x—O15—O11 105.40 (7)
O7—O8—O8vii 157.96 (15) O8viii—O15—O11 133.51 (8)
N3—O8—O4 95.90 (15) O11viii—O15—H11 116 (3)
O9—O8—O4 114.74 (11) O10—O15—H11 105 (3)
O7—O8—O4 75.09 (9) O9i—O15—H11 8 (3)
O8vii—O8—O4 84.07 (10) O4xi—O15—H11 73 (3)
N3—O8—O12vii 103.77 (15) O3x—O15—H11 140 (3)
O9—O8—O12vii 75.16 (9) O1x—O15—H11 174 (3)
O7—O8—O12vii 133.87 (10) O8viii—O15—H11 104 (3)
O8vii—O8—O12vii 62.61 (9) O11—O15—H11 78 (3)
O4—O8—O12vii 116.75 (8) O11viii—O15—H12 116 (3)
N3—O8—O11 87.65 (14) O10—O15—H12 108 (3)
O9—O8—O11 107.57 (9) O9i—O15—H12 103 (3)
O7—O8—O11 66.87 (8) O4xi—O15—H12 32 (3)
O8vii—O8—O11 108.35 (11) O3x—O15—H12 43 (3)
O4—O8—O11 94.14 (8) O1x—O15—H12 73 (3)
O12vii—O8—O11 145.13 (10) O8viii—O15—H12 64 (3)
N3—O8—O12 131.37 (16) O11—O15—H12 162 (3)
O9—O8—O12 160.61 (11) H11—O15—H12 105 (5)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x, −y+1, −z; (iv) −x, −y+2, −z; (v) x, y−1, z; (vi) −x, −y, −z+1; (vii) −x+1, −y, −z+1; (viii) −x+1, −y+1, −z+1; (ix) −x+1, −y+1, −z; (x) x+1, y, z; (xi) x, y+1, z.

Thulium nitrate (TONii-3_223K). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O10—H1···O14 0.85 (4) 1.89 (4) 2.730 (3) 170 (4)
O10—H2···O15 0.73 (5) 2.00 (5) 2.714 (3) 164 (5)
O11—H4···O15viii 0.74 (4) 1.93 (4) 2.666 (2) 174 (4)
O11—H3···O7i 0.81 (4) 2.20 (4) 3.006 (2) 175 (4)
O12—H5···O8vii 0.80 (4) 2.15 (4) 2.943 (3) 172 (4)
O12—H6···O5x 0.79 (4) 2.57 (4) 3.260 (3) 147 (4)
O12—H6···O7x 0.79 (4) 2.61 (4) 3.269 (3) 142 (4)
O13—H7···O14ix 0.78 (4) 1.93 (4) 2.713 (3) 174 (4)
O13—H8···O5iii 0.83 (5) 2.13 (5) 2.963 (2) 179 (5)
O14—H9···O6iii 0.80 (4) 2.01 (4) 2.804 (3) 176 (4)
O14—H10···O3x 0.80 (5) 2.64 (5) 3.111 (3) 119 (4)
O14—H10···O3iv 0.80 (5) 2.24 (5) 2.885 (2) 138 (4)
O15—H11···O9i 0.79 (5) 2.01 (5) 2.782 (3) 168 (4)
O15—H12···O4xi 0.79 (5) 2.29 (5) 2.926 (2) 137 (4)
O15—H12···O3x 0.79 (5) 2.47 (5) 2.992 (3) 125 (4)

Symmetry codes: (i) −x, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x, −y+2, −z; (vii) −x+1, −y, −z+1; (viii) −x+1, −y+1, −z+1; (ix) −x+1, −y+1, −z; (x) x+1, y, z; (xi) x, y+1, z.

References

  1. Ananyev, I. V., Nelyubina, Yu. V., Puntus, L. N., Lyssenko, K. A. & Eremenko, I. L. (2016). Russ. Chem. Bull. 65, 1178–1188.
  2. Bock, R. (1950). Angew. Chem. 62, 375–382.
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Cleve, P. T. (1897). C. R. Hebd. Seances Acad. Sci. 89, 328–329.
  5. Decadt, R., Van Der Voort, P., Van Driessche, I., Van Deun, R. & Van Hecke, K. (2012). Acta Cryst. E68, i59–i60. [DOI] [PMC free article] [PubMed]
  6. Eriksson, B. (1982). Acta Chem. Scand. A36, 186–188.
  7. Eriksson, B., Larsson, L. O., Niinistö, L. & Valkonen, J. (1980). Inorg. Chem. 19, 1207–1210.
  8. Fuller, C. C. & Jacobsen, R. A. (1976). Cryst. Struct. Commun. 5, 349–352.
  9. Giester, G., Žák, Z. & Unfried, P. (2009). J. Alloys Compd. 481, 116–128.
  10. Heinrichs, C. (2013). Dissertation, Universität zu Köln, Köln, Germany.
  11. James, C. (1911). J. Am. Chem. Soc. 33, 1332–1344.
  12. Junk, P. C., Kepert, D. L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 497–505.
  13. Kawashima, R., Sasaki, M., Satoh, S., Isoda, H., Kino, Y. & Shiozaki, Y. (2000). J. Phys. Soc. Jpn, 69, 3297–3303.
  14. Klein, W. (2020). Z. Kristallogr. New Cryst. Struct. 235, 801–802.
  15. Ma, H., Gao, S. & Yang, Z. (1991). Wuji Huaxue Xuebao, 7, 351–353.
  16. Milinski, N., Ribár, B. & Satarić, M. (1980). Cryst. Struct. Commun. 9, 473–476.
  17. Moret, E., Bünzli, J. G. & Schenk, K. J. (1990). Inorg. Chim. Acta, 178, 83–88.
  18. Prandtl, W. (1938). Z. Anorg. Allg. Chem. 238, 321–334.
  19. Ribár, B., Kapor, A., Argay, Gy. & Kálmán, A. (1986). Acta Cryst. C42, 1450–1452.
  20. Ribár, B., Milinski, N., Budovalcev, Z. & Krstanović, I. (1980). Cryst. Struct. Commun. 9, 203–206.
  21. Riess, K. (2012). Dissertation. Carl von Ossietzky Universität, Oldenburg, Germany.
  22. Rincke, C., Schmidt, H. & Voigt, W. (2017). Z. Anorg. Allg. Chem. 643, 437–442.
  23. Rogers, D. J., Taylor, N. J. & Toogood, G. E. (1983). Acta Cryst. C39, 939–941.
  24. Rumanova, I. M., Volodina, G. F. & Belov, N. V. (1964). Kristallografiya, 9, 642–654.
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Shi, B. D. & Wang, J. Z. (1990). Jiegou Huaxue, 9, 164–167.
  28. Shi, B. D. & Wang, J. Z. (1991). Xiamen Daxue Xuebao Ziran Kexueban 30, 55–58.
  29. Stockhause, S. & Meyer, G. (1997). Z. Kristallogr. New Cryst. Struct. 212, 315.
  30. Stoe (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.
  31. Stumpf, T. & Bolte, M. (2001). Acta Cryst. E57, i10–i11.
  32. Taha, Z. A., Ajlouni, A., Hijazi, A. K., Kühn, F. E. & Herdtweck, E. (2012). Acta Cryst. E68, i56–i57. [DOI] [PMC free article] [PubMed]
  33. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  34. Wickleder, M. S. (2002). Chem. Rev. 102, 2011–2088. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, TONi-2_223K, TONii-3_223K. DOI: 10.1107/S2056989020015388/wm5589sup1.cif

e-76-01863-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) TONi-2_223K. DOI: 10.1107/S2056989020015388/wm5589TONi-2_223Ksup2.hkl

Structure factors: contains datablock(s) TONii-3_223K. DOI: 10.1107/S2056989020015388/wm5589TONii-3_223Ksup3.hkl

CCDC references: 2045553, 2045552

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES