Abstract
This study reports the sugaring-out extraction of erythromycin from fermentation broth using acetonitrile (ACN) as solvent and glucose as a mass separating agent. Different process parameters—glucose concentration, temperature, ACN/water ratio and pH—were optimized to achieve maximum extraction of erythromycin. 88% (w/w) of erythromycin was extracted from the model system with following optimized conditions: glucose 156.3 g/L; temperature 4 °C; ACN/water ratio 1 and pH 8.3. Further, the effect of typical fermentation media components (starch, soybean flour, CaCO3, NaCl and (NH4)2SO4) on sugaring out extraction of erythromycin was also investigated. Starch, soybean flour and CaCO3 were observed to affect erythromycin extraction only at higher concentration. Removal of suspended solids from simulated as well as real broth prior to extraction enhanced the extraction efficiency (from 72% to 87%). Sugaring out extraction of erythromycin was found to be more effective than salting out extraction. Also, higher partition coefficient was achieved in the present work than other reported methods using carbohydrates as mass separating agent. Further, it was found that the antimicrobial activity of erythromycin was preserved during sugaring out extraction of erythromycin.
Keywords: Erythromycin, Downstream Process, Sugaring Out, ATPS, Bioseparation
Acknowledgement
Dr. Pradip B. Dhamole would like to thank Science and Engineering Research Board (SERB)-Department of Science and Technology (DST) (Govt. of India) for funding this work (vide Sanction order No. EMR/2016/005672 dated September 13, 2017).
References
- 1.Anisimov A P, Amoako K K. J. Med. Microbiol. 2006;55:1461. doi: 10.1099/jmm.0.46697-0. [DOI] [PubMed] [Google Scholar]
- 2.Bouzid F, Astier H, Osman DA, Javelle E, Hassan MO, Simon F, Garnotel E, Drancourt M. Int. J. Antimicrob. Agents. 2018;51:235. doi: 10.1016/j.ijantimicag.2017.07.007. [DOI] [PubMed] [Google Scholar]
- 3.Hoyt J C, Robbins RA. FEMS Microbiol. Lett. 2001;205:1. doi: 10.1111/j.1574-6968.2001.tb10917.x. [DOI] [PubMed] [Google Scholar]
- 4.Gautret P, Lagier J, Parola P, Doudier B, Courjon J, La Scola B, Rolain J, Brouqui P, Raoult D, Mailhe M, Doudier B, Courjon J. Int. J. Antimicrob. Agents. 2020;56:105949. doi: 10.1016/j.ijantimicag.2020.105949. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 5.Ulrich H, Pillat MM. Stem Cell Rev Rep. 2020;16:434. doi: 10.1007/s12015-020-09976-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Liu J, Chen Y, Wang W, Ren M, Wu P, Wang Y, Li C, Zhang L, Wu H, Weaver DT, Zhang B. Metab. Eng. 2017;39:29. doi: 10.1016/j.ymben.2016.10.012. [DOI] [PubMed] [Google Scholar]
- 7.Sanghvi G V, Ghevariya D, Gosai S, Langa R, Dhaduk N, Kunjadia P D, Vaishnav DJ, Dave GS. Biotechnol. Reports. 2014;1–2:2. doi: 10.1016/j.btre.2014.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL. Bioresour. Technol. 2009;100:3358. doi: 10.1016/j.biortech.2009.01.064. [DOI] [PubMed] [Google Scholar]
- 9.Aziz SNM, Zularisam AW, Sakinah AMM. Sep. Purif. Technol. 2019;229:115816. doi: 10.1016/j.seppur.2019.115816. [DOI] [Google Scholar]
- 10.Li Z, Qin F, Bao H, Gu X. J. Chem. Technol. Biotechnol. 2005;80:772. doi: 10.1002/jctb.1234. [DOI] [Google Scholar]
- 11.Ribeiro MHL, Ribeiro IAC. Sep. Purif. Technol. 2005;45:232. doi: 10.1016/j.seppur.2005.04.002. [DOI] [Google Scholar]
- 12.Weng X D, Ji YL, Ma R, Zhao FY, An QF, Gao CJ. J. Membr. Sci. 2016;510:122. doi: 10.1016/j.memsci.2016.02.070. [DOI] [Google Scholar]
- 13.He Y, Chen G, Ji Z, Li S. Sep. Purif. Technol. 2009;66:390. doi: 10.1016/j.seppur.2008.12.007. [DOI] [Google Scholar]
- 14.Le Q, Shong L, Shi Y. Sep. Purif. Technol. 2001;24:85. doi: 10.1016/S1383-5866(00)00217-3. [DOI] [Google Scholar]
- 15.Lee S C. J. Ind. Eng. Chem. 2009;15:403. doi: 10.1016/j.jiec.2008.12.009. [DOI] [Google Scholar]
- 16.Nabais AMA, Cardoso JP. Bioprocess Eng. 1999;21:157. doi: 10.1007/s004490050656. [DOI] [Google Scholar]
- 17.Nabais AMA, Cardoso JP. Bioprocess Eng. 1995;13:215. doi: 10.1007/BF00367257. [DOI] [Google Scholar]
- 18.Lightfoot EN, Moscariello JS. Bioseparations, Biotechnol. Bioeng. 2004;87:259. doi: 10.1002/bit.20111. [DOI] [PubMed] [Google Scholar]
- 19.Jones LA, Prabel JB, Glennon JJ, Copeland MF, Kavlock RJ. J. Agric. Food Chem. 1993;41:735. doi: 10.1021/jf00029a011. [DOI] [Google Scholar]
- 20.Leinonen H. Corrosion. 1996;52:337. doi: 10.5006/1.3292121. [DOI] [Google Scholar]
- 21.Gu Y, Shih P H. Enzyme Microb. Technol. 2004;35:592. doi: 10.1016/j.enzmictec.2004.08.011. [DOI] [Google Scholar]
- 22.Wang B, Ezejias T, Feng H, Blaschek H. Chem. Eng. Sci. 2008;63:2595. doi: 10.1016/j.ces.2008.02.004. [DOI] [Google Scholar]
- 23.Wang B, Feng H, Ezeji T, Blaschek H. Chem. Eng. Technol. 2008;31:1869. doi: 10.1002/ceat.200800003. [DOI] [Google Scholar]
- 24.Dhamole P B, Mahajan P, Feng H. J. Chem. Eng. Data. 2010;55:3803. doi: 10.1021/je1003115. [DOI] [Google Scholar]
- 25.Dai JY, Liu CJ, Xiu ZL. Process Biochem. 2015;50:1951. doi: 10.1016/j.procbio.2015.08.004. [DOI] [Google Scholar]
- 26.Yan L, Sun YQ, Xiu ZL. Sep. Purif. Technol. 2016;161:152. doi: 10.1016/j.seppur.2016.01.049. [DOI] [Google Scholar]
- 27.Dai JY, Ma LH, Wang ZF, Guan WT, Xiu ZL. Bioprocess Biosyst. Eng. 2017;40:423. doi: 10.1007/s00449-016-1710-x. [DOI] [PubMed] [Google Scholar]
- 28.Sun Y, Zhang S, Zhang X, Zheng Y, Xiu Z, Zhang S, Zhang X, Zheng Y, Xiu Z. Sep. Purif. Technol. 2018;204:133. doi: 10.1016/j.seppur.2018.04.064. [DOI] [Google Scholar]
- 29.Sun Y, Zhang X, Zheng Y, Yan L, Xiu Z. Sep. Purif. Technol. 2019;209:972. doi: 10.1016/j.seppur.2018.09.049. [DOI] [Google Scholar]
- 30.Shoushtari B A, Pazuki G, Shahrouzi J R, Shahriari S, Hadidi N. Fluid Phase Equilib. 2020;505:112360. doi: 10.1016/j.fluid.2019.112360. [DOI] [Google Scholar]
- 31.Moradi F, Shahrouzi J R. Fluid Phase Equilib. 2020;507:112388. doi: 10.1016/j.fluid.2019.112388. [DOI] [Google Scholar]
- 32.Chia S R, Chew K W, Show P L, Sivakumar M, Ling T C, Tao Y. J. Oceanol. Limnol. 2019;37:898. doi: 10.1007/s00343-019-8246-2. [DOI] [Google Scholar]
- 33.Cardoso G D B, Souza IN, Pereira MM, Freire MG, Soares CMF, Lima S. Sep. Purif. Technol. 2014;136:74. doi: 10.1016/j.seppur.2014.08.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Dhamole P B, Chavan S, Patil R G, Feng H, Bule M, Kinninge P. Korean J. Chem. Eng. 2016;33:1860. doi: 10.1007/s11814-016-0020-y. [DOI] [Google Scholar]
- 35.Tsai WH, Chuang HY, Chen HH, Wu YW, Cheng SH, Huang TC. J. Chromatogr. A. 2010;1217:7812. doi: 10.1016/j.chroma.2010.10.008. [DOI] [PubMed] [Google Scholar]
- 36.Zhu Z, Zhang Y, Wang J, Li X, Wang W, Huang Z. J. Chromatogr. A. 2019;1601:104. doi: 10.1016/j.chroma.2019.06.023. [DOI] [PubMed] [Google Scholar]
- 37.Chuo S C, Abd-Talib N, Mohd-Setapar S H, Hassan H, Nasir H M, Ahmad A, Lokhat D, Ashraf G M. Sci. Rep. 2018;8:1. doi: 10.1038/s41598-017-18279-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Bezerra M A, Santelli R E, Oliveira E P, Villar L S, Escaleira L A. Talanta. 2008;76:965. doi: 10.1016/j.talanta.2008.05.019. [DOI] [PubMed] [Google Scholar]
- 39.Zou X, Feng Hang H, Chu J, Ping Zhuang Y, Liang Zhang S. Bioresour. Technol. 2009;100:1406. doi: 10.1016/j.biortech.2008.09.017. [DOI] [PubMed] [Google Scholar]
- 40.Zhu Y, Jiang D, Sun D, Yan Y, Li C. J. Environ. Chem. Eng. 2016;4:3570. doi: 10.1016/j.jece.2016.07.036. [DOI] [Google Scholar]
- 41.Balouiri M, Sadiki M, Ibnsouda S K. J. Pharm. Anal. 2016;6:71. doi: 10.1016/j.jpha.2015.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Anuar N, Adnan A F M, Saat N, Aziz N, Taha R M. Scientific World J. 2013;2013:810547. doi: 10.1155/2013/810547. [DOI] [Google Scholar]
- 43.Koley S, Ghosh S. ChemPhysChem. 2015;16:3518. doi: 10.1002/cphc.201500663. [DOI] [PubMed] [Google Scholar]
- 44.Manic M S, Da Ponte M N, Najdanovic-Visak V. Chem. Eng. J. 2011;171:904. doi: 10.1016/j.cej.2011.04.037. [DOI] [Google Scholar]
