Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Dec 1;5(56):2889–2906. doi: 10.1557/adv.2020.402

Ångström- and Nano-scale Pore-Based Nucleic Acid Sequencing of Current and Emergent Pathogens

Britney A Shepherd 16, Md Rubayat-E Tanjil 26, Yunjo Jeong 26, Bilgenur Baloğlu 36, Jingqiu Liao 46, Michael Cai Wang 16,26,
PMCID: PMC7790041  PMID: 33437534

Abstract

State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions.

Footnotes

*These authors contributed equally to this work.

Change history

12/29/2020

An Erratum to this paper has been published: 10.1557/adv.2020.424

Contributor Information

Bilgenur Baloğlu, Email: bbaloglu@uoguelph.ca.

Jingqiu Liao, Email: jl5897@cumc.columbia.edu.

Michael Cai Wang, Email: mcwang@usf.edu.

References

  • [1].Baloğlu B, Chen Z, Elbrecht V, Braukmann T, MacDonald S, Steinke D. bioRxiv. 2020. A workflow for accurate metabarcoding using nanopore MinION sequencing 1. [Google Scholar]
  • [2].Sci. Transl. Med. 2020. [DOI] [PMC free article] [PubMed]
  • [3].Sensors (Switzerland) 2019.
  • [4].Mirsaidov U M, Wang D, Timp W, Timp G. Molecular diagnostics for personal medicine using a nanopore. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010;2(4):367–381. doi: 10.1002/wnan.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Guglielmi G. The explosion of new coronavirus tests that could help to end the pandemic. Nature. 2020;583(7817):506–509. doi: 10.1038/d41586-020-02140-8. [DOI] [PubMed] [Google Scholar]
  • [6].George S, et al. bioRxiv. 2020. DNA Thermo-Protection Facilitates Whole Genome Sequencing of Mycobacteria Direct from Clinical Samples by the Nanopore Platform. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].UK Government, “Roll-out of 2 new rapid coronavirus tests ahead of winter - GOV.UK,” 2020. https://www.gov.uk/government/news/roll-out-of-2-new-rapid-coronavirus-tests-ahead-of-winter (accessed Aug. 10, 2020).
  • [8].“Novel Coronavirus (COVID-19) Overview.” https://nanoporetech.com/covid-19/overview (accessed Sep. 16, 2020).
  • [9].P. James et al.,, “LamPORE: rapid, accurate and highly scalable molecular screening for SARS-CoV-2 infection, based on nanopore sequencing,” medRxiv, vol. 2020, no. January, p. 2020.08.07.20161737, 2020, doi: 10.1101/2020.08.07.20161737.
  • [10].Sutton M A, et al. Radiation Tolerance of Nanopore Sequencing Technology for Life Detection on Mars and Europa. Sci. Rep. 2019;9(1):1–10. doi: 10.1038/s41598-019-41488-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Tucker T, Marra M, Friedman J M. Massively Parallel Sequencing: The Next Big Thing in Genetic Medicine. American Journal of Human Genetics. 2009;85(2):142–154. doi: 10.1016/j.ajhg.2009.06.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Yang J, et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. 2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Johnson S S, Zaikova E, Goerlitz D S, Bai Y, Tighe S W. Real-time DNA sequencing in the antarctic dry valleys using the Oxford nanopore sequencer. J. Biomol. Tech. 2017;28(1):2–7. doi: 10.7171/jbt.17-2801-009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Meier R, Wong W, Srivathsan A, Foo M. $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics. 2016;32(1):100–110. doi: 10.1111/cla.12115. [DOI] [PubMed] [Google Scholar]
  • [15].Viehweger A, et al. bioRxiv. 2018. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis; p. 483693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Howorka S. Building membrane nanopores. Nature Nanotechnology. 2017;12(7):619–630. doi: 10.1038/nnano.2017.99. [DOI] [PubMed] [Google Scholar]
  • [17].Liu Y, Yobas L. Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor. ACS Nano. 2016;10(4):3985–3994. doi: 10.1021/acsnano.6b00610. [DOI] [PubMed] [Google Scholar]
  • [18].Nanotechnology. 2011.
  • [19].Liang L, Shen J W, Zhang Z, Wang Q. DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. Biosensors and Bioelectronics. 2017;89:280–292. doi: 10.1016/j.bios.2015.12.037. [DOI] [PubMed] [Google Scholar]
  • [20].Heerema S J, Schneider G F, Rozemuller M, Vicarelli L, Zandbergen H W, Dekker C. 1/F Noise in Graphene Nanopores. Nanotechnology. 2015;26(7):074001. doi: 10.1088/0957-4484/26/7/074001. [DOI] [PubMed] [Google Scholar]
  • [21].Sarkar D, Liu W, Xie X, Anselmo A C, Mitragotri S, Banerjee K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano. 2014;8(4):3992–4003. doi: 10.1021/nn5009148. [DOI] [PubMed] [Google Scholar]
  • [22].Mojtabavi M, VahidMohammadi A, Liang W, Beidaghi M, Wanunu M. ACS Nano. 2019. Single-Molecule Sensing Using Nanopores in Two-Dimensional Transition Metal Carbide (MXene) Membranes. [DOI] [PubMed] [Google Scholar]
  • [23].Tanjil M R-E, Jeong Y, Yin Z, Panaccione W, Wang M C. Ångstrom-Scale, Atomically Thin 2D Materials for Corrosion Mitigation and Passivation. Coatings. 2019;9(2):133. doi: 10.3390/coatings9020133. [DOI] [Google Scholar]
  • [24].Liu K, Feng J, Kis A, Radenovic A. Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Translocation. 2014. [DOI] [PubMed] [Google Scholar]
  • [25].Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Graphene as a subnanometre trans-electrode membrane. Nature. 2010;467(7312):190–193. doi: 10.1038/nature09379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Thomas S, Rajan A C, Rezapour M R, Kim K S. In search of a two-dimensional material for DNA sequencing. J. Phys. Chem. C. 2014;118(20):10855–10858. doi: 10.1021/jp501711d. [DOI] [Google Scholar]
  • [27].Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Graphene as a subnanometre trans-electrode membrane. Nature. 2010;467(7312):190–193. doi: 10.1038/nature09379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Su S, Guo X, Fu Y, Xie Y, Wang X, Xue J. Origin of nonequilibrium 1/: F noise in solid-state nanopores. Nanoscale. 2020;12(16):8975–8981. doi: 10.1039/C9NR09829A. [DOI] [PubMed] [Google Scholar]
  • [29].Robertson A W, et al. Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 2012;3(1):1144. doi: 10.1038/ncomms2141. [DOI] [PubMed] [Google Scholar]
  • [30].Rochman C M. Marine Anthropogenic Litter. Springer International Publishing: Cham; 2015. The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment; pp. 117–140. [Google Scholar]
  • [31].Russo C J, Golovchenko J A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl. Acad. Sci. U.S.A. 2012;109(16):5953. doi: 10.1073/pnas.1119827109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Danda G, et al. Monolayer WS2 Nanopores for DNA Translocation with Light-Adjustable Sizes. ACS Nano. 2017;11(2):1937–1945. doi: 10.1021/acsnano.6b08028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Feng J, et al. Electrochemical reaction in single layer MoS2: Nanopores opened atom by atom. Nano Lett. 2015;15(5):3431–3438. doi: 10.1021/acs.nanolett.5b00768. [DOI] [PubMed] [Google Scholar]
  • [34].Appl. Phys. Lett. 2015. [DOI] [PMC free article] [PubMed]
  • [35].Jain M, Olsen H E, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17(1):1–11. doi: 10.1186/s13059-015-0866-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Wloka C, Mutter N L, Soskine M, Maglia G. Alpha-Helical Fragaceatoxin C Nanopore Engineered for Double-Stranded and Single-Stranded Nucleic Acid Analysis. Angew. Chemie - Int. Ed. 2016;55(40):12494–12498. doi: 10.1002/anie.201606742. [DOI] [PubMed] [Google Scholar]
  • [37].Larkin J, Henley R, Bell D C, Cohen-Karni T, Rosenstein J K, Wanunu M. Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano. 2013;7(11):10121–10128. doi: 10.1021/nn404326f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Qiu H, Sarathy A, Schulten K, Leburton J P. Detection and mapping of DNA methylation with 2D material nanopores. npj 2D Mater. Appl. 2017;1(1):3. doi: 10.1038/s41699-017-0005-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Belkin M, Chao S H, Jonsson M P, Dekker C, Aksimentiev A. Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano. 2015;9(11):10598–10611. doi: 10.1021/acsnano.5b04173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Yang J M, et al. Surface-Enhanced Raman Scattering Probing the Translocation of DNA and Amino Acid through Plasmonic Nanopores. Anal. Chem. 2019;91(9):6275–6280. doi: 10.1021/acs.analchem.9b01045. [DOI] [PubMed] [Google Scholar]
  • [41].Wanunu M, Morrison W, Rabin Y, Grosberg A Y, Meller A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 2010;5(2):160–165. doi: 10.1038/nnano.2009.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [42].Kowalczyk S W, Wells D B, Aksimentiev A, Dekker C. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 2012;12(2):1038–1044. doi: 10.1021/nl204273h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Wanunu M, Sutin J, McNally B, Chow A, Meller A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 2008;95(10):4716–4725. doi: 10.1529/biophysj.108.140475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Luan B, Stolovitzky G, Martyna G. Slowing and controlling the translocation of DNA in a solid-state nanopore. Nanoscale. 2012;4(4):1068–1077. doi: 10.1039/C1NR11201E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Peng H, Ling X S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology. 2009;20(18):185101. doi: 10.1088/0957-4484/20/18/185101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Van Dorp S, Keyser U F, Dekker N H, Dekker C, Lemay S G. Origin of the electrophoretic force on DNA in solid-state nanopores. Nat. Phys. 2009;5(5):347–351. doi: 10.1038/nphys1230. [DOI] [Google Scholar]
  • [47].Balasubramanian R, et al. DNA Translocation through Hybrid Bilayer Nanopores. J. Phys. Chem. C. 2019;123(18):11908–11916. doi: 10.1021/acs.jpcc.9b00399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].M. H. Lee et al.,, “A low-noise solid-state nanopore platform based on a highly insulating substrate,” Sci. Rep., vol. 4, Dec. 2014, doi: 10.1038/srep07448. [DOI] [PMC free article] [PubMed]
  • [49].Schneider G F, et al. DNA translocation through graphene nanopores. Nano Lett. 2010;10(8):3163–3167. doi: 10.1021/nl102069z. [DOI] [PubMed] [Google Scholar]
  • [50].Heerema S J, Vicarelli L, Pud S, Schouten R N, Zandbergen H W, Dekker C. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore. ACS Nano. 2018;12(3):2623–2633. doi: 10.1021/acsnano.7b08635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Haynes T, Smith I P S, Wallace E J, Trick J L, Sansom M S P, Khalid S. Electric-field-driven translocation of ssDNA through hydrophobic nanopores. ACS Nano. 2018;12(8):8208–8213. doi: 10.1021/acsnano.8b03365. [DOI] [PubMed] [Google Scholar]
  • [52].Graf M, Lihter M, Altus D, Marion S, Radenovic A. Transverse Detection of DNA Using a MoS2 Nanopore. Nano Lett. 2019;19(12):9075–9083. doi: 10.1021/acs.nanolett.9b04180. [DOI] [PubMed] [Google Scholar]
  • [53].“SERS/TERS.” https://www.renishaw.com/en/sers-ters—25811 (accessed Sep. 18, 2020).
  • [54].Cao J, et al. SERS Detection of Nucleobases in Single Silver Plasmonic Nanopores. ACS sensors. 2020;5(7):2198–2204. doi: 10.1021/acssensors.0c00844. [DOI] [PubMed] [Google Scholar]
  • [55].Huang J A, et al. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 2019;10(1):1–10. doi: 10.1038/s41467-018-07882-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].Chen C, et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 2018;9(1):1–9. doi: 10.1038/s41467-017-02088-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].He Z, et al. Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. J. Am. Chem. Soc. 2019;141(2):753–757. doi: 10.1021/jacs.8b11506. [DOI] [PubMed] [Google Scholar]
  • [58].Spitzberg J D, Zrehen A, van Kooten X F, Meller A. Plasmonic-Nanopore Biosensors for Superior Single-Molecule Detection. Adv. Mater. 2019;31(23):1900422. doi: 10.1002/adma.201900422. [DOI] [PubMed] [Google Scholar]
  • [59].Garoli D, et al. Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. Nanoscale. 2018;10(36):17105–17111. doi: 10.1039/C8NR05026K. [DOI] [PubMed] [Google Scholar]
  • [60].Garoli D, Yamazaki H, MacCaferri N, Wanunu M. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications. Nano Lett. 2019;19(11):7553–7562. doi: 10.1021/acs.nanolett.9b02759. [DOI] [PubMed] [Google Scholar]
  • [61].Restrepo-Pérez L, Joo C, Dekker C. Paving the way to single-molecule protein sequencing. Nature Nanotechnology. 2018;13(9):786–796. doi: 10.1038/s41565-018-0236-6. [DOI] [PubMed] [Google Scholar]
  • [62].Srivathsan A, et al. A MinIONTM-based pipeline for fast and cost-effective DNA barcoding. Mol. Ecol. Resour. 2018;18(5):1035–1049. doi: 10.1111/1755-0998.12890. [DOI] [PubMed] [Google Scholar]
  • [63].Phys. Rev. Lett. 2009.
  • [64].Powell M R, et al. Noise properties of rectifying nanopores. J. Phys. Chem. C. 2011;115(17):8775–8783. doi: 10.1021/jp2016038. [DOI] [Google Scholar]
  • [65].Zhang Z Y, Deng Y S, Tian H B, Yan H, Cui H L, Wang D Q. Noise analysis of monolayer graphene nanopores. Int. J. Mol. Sci. 2018;19(9):2639. doi: 10.3390/ijms19092639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [66].Fragasso A, Schmid S, Dekker C. Comparing Current Noise in Biological and Solid-State Nanopores. ACS Nano. 2020;14(2):1338–1349. doi: 10.1021/acsnano.9b09353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67].Hall A R, Scott A, Rotem D, Mehta K K, Bayley H, Dekker C. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol. 2010;5(12):874–877. doi: 10.1038/nnano.2010.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [68].Nelson E M, Li H, Timp G. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. ACS Nano. 2014;8(6):5484–5493. doi: 10.1021/nn405331t. [DOI] [PubMed] [Google Scholar]
  • [69].Keyser U F, et al. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2006;2(7):473–477. doi: 10.1038/nphys344. [DOI] [Google Scholar]
  • [70].Farimani A B, Dibaeinia P, Aluru N R. DNA origami-graphene hybrid nanopore for DNA detection. ACS Appl. Mater. Interfaces. 2017;9(1):92–100. doi: 10.1021/acsami.6b11001. [DOI] [PubMed] [Google Scholar]
  • [71].Nat. Commun. 2020.
  • [72].Shukla V, Jena N K, Grigoriev A, Ahuja R. Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing. ACS Appl. Mater. Interfaces. 2017;9(46):39945–39952. doi: 10.1021/acsami.7b06827. [DOI] [PubMed] [Google Scholar]
  • [73].Min S K, Kim W Y, Cho Y, Kim K S. Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 2011;6(3):162–165. doi: 10.1038/nnano.2010.283. [DOI] [PubMed] [Google Scholar]
  • [74].Luan B, Zhou R. Single-File Protein Translocations through Graphene-MoS2 Heterostructure Nanopores. J. Phys. Chem. Lett. 2018;9(12):3409–3415. doi: 10.1021/acs.jpclett.8b01340. [DOI] [PubMed] [Google Scholar]

Articles from Mrs Advances are provided here courtesy of Nature Publishing Group

RESOURCES