Abstract
Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.
Keywords: Brassica napus, blackleg, resistance genes
1. Introduction
The Brassicaceae family consists of diverse members, comprised of 372 genera and 4060 species [1]. The members include, but are not limited to, domesticated and wild root vegetables like turnip (Brassica rapa ssp. rapa, ssp. oleifera), swede (Brassica napus var. napobrassica), kohlrabi (Brassica oleracea var. gongylodes), radish (Raphanus sativus), and leafy vegetables (B. rapa ssp. chinensis, B. oleracea var. viridis, var. acephala, Eruca sativa, Diplotaxis tenuifolia) like cabbages (B. oleracea var. capitata, Brassica fruticulosa, Coincya monensis), broccoli (B. oleracea var. italica), cauliflower (B. oleracea var. botrytis), Brussel sprouts (B. oleracea var. gemmifera), mustards (Brassica juncea, Brassica nigra, Brassica carinata, Brassica elongata, Hirschfeldia incana, Sinapis arvensis, Sinapis alba), oilseed crops (B. napus, B. rapa, B. juncea, Camelina sativa), and a model plant (Arabidopsis thaliana). Interspecific hybridisations between diploid B. rapa (AA, 2n = 20), B. nigra (BB, 2n = 16), and B. oleracea (CC, 2n = 18) resulted in allotetraploid B. juncea (AABB, 2n = 4x = 36), B. napus (AACC, 2n = 4x = 38), and B. carinata (BBCC, 2n = 4x = 34), as shown in the triangle of U [2]. These Brassicaceae plant species have gained economic importance as condiments, dyes, medicinal uses, scientific models, ornamentals, vegetables, and the profitable canola oilseed [3,4,5,6,7,8]. The International Food Standards identified canola oil as those with low-erucic acid varieties from polyploid B. napus and B. juncea or diploid B. rapa [9].
Oilseed Brassicas are ranked second behind soybean in terms of worldwide production, with 75 million tonnes with an estimated value of 62.23 billion USD, cultivated over 38 million hectares in 63 countries in 2018 [10]. The top five producing countries, Canada, China, India, France and Australia, share 68% and 72% of the total production and cultivation, respectively (Table 1) [10]. Canola oil is recommended by health experts due to the low levels of saturated fat and high levels of omega-3 and -6 [11,12]. The oil can also be used for the production of margarine and as an additive for biodiesel, feedstock, fertilizer, adhesives, plastics and lubricants. The world export rate for canola oil and derived products is expected to rise from 20% to 40% in the coming years [13].
Table 1.
The top 10 producing countries for canola with corresponding area harvested and yield in 2018 [10].
| Country | Production (Tonnes, 106) | Area Harvested (Ha, 106) | Yield (Tonnes Per Ha) |
|---|---|---|---|
| 1. Canada | 20.34 | 9.12 | 2.23 |
| 2. China | 13.28 | 6.55 | 2.03 |
| 3. India | 8.43 | 6.70 | 1.26 |
| 4. France | 4.95 | 1.62 | 3.06 |
| 5. Australia | 3.89 | 3.17 | 1.23 |
| 6. Germany | 3.67 | 1.22 | 3.00 |
| 7. Ukraine | 2.75 | 1.04 | 2.65 |
| 8. Poland | 2.20 | 0.84 | 2.64 |
| 9. USA | 2.01 | 0.79 | 2.55 |
| 10. Russia | 1.99 | 1.50 | 1.33 |
Blackleg disease, caused by the fungal pathogen Leptosphaeria maculans, is considered as one the main constraints to B. napus production [14,15,16]. The pathogen inoculum is disseminated through air and rain splashes [17], and may remain in infected crop residues for many years through the production of fruiting bodies (pycnidia and pseudothecia) [18,19]. L. maculans is a highly adapted fungal pathogen, capable of infecting all parts of the canola plant. Initially, spores enter into leaf openings or wounds, where they initiate a biotrophic mode of infection and eventually transition to a necrotrophic lifestyle as they find their way into the stem, leading to stem canker development. This stem colonization disrupts the nutrient flow and affects metabolic processes, ultimately killing the plant [20,21,22,23,24,25,26,27].
The first reported blackleg outbreak in Brassica was documented in B. oleracea [28]. Significant losses in B. napus were later reported in 1961 and 1972 in Canada and Australia, respectively [29,30,31]. An average of 10 to 20% annual yield losses is associated with this disease across canola-growing regions [19,32,33,34,35]. In uncontrolled conditions, losses range between 30% and 50% [36], with severe loss correlated to early seedling stage infection, particularly in the four- to five-leaf stage [36,37]. One of the most damaging incidences was documented in the Eyre Peninsula of South Australia following the breakdown of resistance of the cultivar Surpass 400 in 2003. This outbreak resulted in 90% production loss, equating to approximately 7.3 million USD [38,39].
Plants protect themselves by providing non-specific barriers in physical forms, such as a rigid cell wall [40,41], and chemical systems, such as producing proteins, sugars, lipoglycans and endotoxins [42,43]. When these barriers are overcome by pathogens, plants initiate a two-layered immunity response. The first layer involves detection of the pathogen-associated molecular patterns (PAMP) by the surface-localized receptors; this phase is termed PAMP-triggered immunity or PTI. However, PTI usually only leads to a mild defense response [44,45], which can be overridden by some pathogen races. As a counter response, the second layer of inducible response, called effector-triggered immunity (ETI), is initiated. This response relies on the interaction of a plant resistance gene (R gene), encoding recognition receptors, with race-specific pathogen effectors, encoded by avirulence (Avr) genes. This interaction usually leads to a hypersensitive defense response, which is usually manifested in rapid cell death, thereby limiting further pathogen growth, and phenotypically observed as complete resistance [45,46,47].
Based on conserved motifs, domains and features, R genes may be grouped into different classes collectively known as resistance gene analogs (RGAs). Three broad classes of RGAs are known: nucleotide-binding site-leucine rich repeats (NLRs), receptor-like protein kinases (RLKs), and receptor-like proteins (RLPs) [44,48,49]. Among them, NLRs are the largest class of RGAs predominately involved in plant disease resistance [50,51,52], whilst surface-localised RLKs and membrane-associated RLPs are pattern recognition receptors and integral components of the first line of defense [49,53,54], and have also been known to be involved in growth and development processes in plants [55].
There are two mechanisms controlling blackleg resistance. Qualitative resistance is generally controlled by a single major gene and is race-specific seedling resistance, active from the cotyledon through to the adult plant [56,57,58,59], while quantitative resistance is governed by multiple minor genes and is a partial resistance that is expressed in the later stages at leaf petioles and stem tissues [32,60]. To date, at least 16 R genes against blackleg have been genetically mapped in B. napus and other Brassica species (Figure 1 and Figure 2, Table 2). Of these, three have been cloned, and some of the 13 other genes are suspected to be identical or allelic forms due the different populations and markers used in their mapping (Figure 2). While R genes have been known to effect complete resistance, some R genes (Rlm1, Rlm3, Rlm6, Rlm7, LepR1, and LepR3) have been reported to break down and lose effectiveness in the field [38,61,62,63,64,65,66]. Currently, the deployment of R genes by crop rotation in canola cultivars is an integral approach to sustainably manage canola cultivation against blackleg infection and resistance breakdown [35,67,68].
Figure 1.
The complex interaction between resistance (R) genes and counterpart avirulence (Avr) genes mediating blackleg resistance in canola. R genes located in the same block (green) are allelic or suspected to be allelic forms. Avr genes that mask other interactions are indicated by an “x” sign. Genes (R and Avr) with an asterisk represent cloned genes. Avr genes with a question mark (?) are hypothetical genes that have not been isolated/discovered to date.
Figure 2.
Current physical location of the known blackleg R genes based on quantitative trail loci (QTL) and candidate gene positions. Mb = million base pairs; B. napus pangenome [69,70,71], B. oleracea pangenome [72,73], B. juncea genome v. 1.5 [74] and B. rapa genome v. 3.0 [75].
Table 2.
List of candidate genes harbouring resistance to Leptosphaeria maculans with their reported resistance gene analog (RGA) function along with their closest gene ortholog having disease resistance/other function.
| Gene (Position) | Candidate Genes | RGA Type | Gene Ortholog (TAIR10) | Molecular Function | References |
|---|---|---|---|---|---|
| Rlm1 (A07 in Bna) | BnaA07g28760D | RLP | AT1G56140 | LRR TM prot_k | [76] |
| BnaA07g29310D | RLK | AT1G71390 | RLP 11 | [76] | |
| BnaA07g27720D | NLR | AT1G69160 | BIG GRAIN LIKE 1 supressor | [76] | |
| BnaA07g28550D | - | AT1G33612 | Receptor for the Plant Natriuretic Peptide | [76] | |
| BnaA07g28840D | RLK | AT1G70740 | Prot_k superfam_prot | [77] | |
| BnaA07g27460D | RLK | AT1G68830 | STN7 prot_k | [78] | |
| Rlm3, Rlm4 & Rlm7 (A07 in Bna) | BnaA07g20490D- | AT1G79090 | Protein PAT1 homolog | [76] | |
| BnaA07g20910D | NLR | AT1G77610 | UDP-galactose transporter 1 | [76] | |
| BnaA07g17000D | NLR | AT1G12220 | DRP RPS5/nucleotide binding | [79] | |
| BnaA07g17760D | RLK | AT1G56145 | LRR TM prot_k | [79] | |
| BnaA07g18000D | RLK | AT3G58690 | Prot_k superfam_prot | [79] | |
| BnaA07g18480D | RLK | AT3G59700 | L-type lectin-domain containing receptor kinase V.5 | [79] | |
| BnaA07g20630D | RLK | AT1G78290 | SRK2C/ST_k | [79] | |
| BnaA07g18680D | TM-CC | AT3G60470 | LRR TM prot_k | [79] | |
| BnaA07g18770D | TM-CC | AT3G60600 | VAP 1-1/protein binding | [79] | |
| BnaA07g18880D | TM-CC | AT3G61050 | NTMC2T4/lipid binding | [79] | |
| BnaA07g19680D | TM-CC | AT1G79830 | GC5 (golgin candidate 5)/protein binding | [79] | |
| BnaA07g20240D | RLK | AT1G79640 | Prot_k superfam_prot/ST_k tyrosine | [80] | |
| Rlm12 (A01 in Bna) | BnaA01g12900D | RLP | AT4G23100 | Glutamate-cysteine ligase, chloroplastic | [81] |
| BnaA01g12800D | RLP | AT4G22990 | Major Facilitator Superfamily with SPX | [81] | |
| BnaA01g12940D | RLP | AT4G23240 | Putative cysteine-rich RLP kinase 16 | [81] | |
| LepR1 (A02 in Bna) | BnaA02g15610D | RLK | AT1G71870 | Protein DETOXIFICATION 54/MATE efflux fam_prot | [70,76] |
| BnaA02g15810D | RLK | AT1G72140 | Protein NRT1/PTR FAMILY 5.12/proton-dependent oligopeptide transport (POT) fam_prot | [70,76] | |
| BnaA02g15820D | RLK | AT1G72150 | Patellin-1/transporter | [70,76] | |
| BnaA02g15890D | RLK | AT1G72290.1 (CDS) | Cysteine protease inhibitor WSCP | [70,76] | |
| BnaA02g16700D | RLK | AT2G18910 | Expressed protein/hydroxyproline-rich glycoprotein fam_prot | [70,76] | |
| BnaA02g16770D | RLK | AT1G74190 | RLP 15 | [70,76] | |
| BnaA02g16960D | NLR | AT1G30490.1 (CDS) | Homeobox-leucine zipper protein ATHB-9 | [70,76] | |
| BnaA02g18160D | TM-CC | AT1G76570 | Chlorophyll a-b binding protein 7, chloroplastic | [70,76] | |
| BnaA02g20380D | RLK | AT4G01440 | WAT1-related protein | [70,76] | |
| BnaA02g20440D | RLK | AT4G01590 | DNA-directed RNA polymerase III subunit | [70,76] | |
| BnaA02g20610D | RLK | AT4G02510 | Translocase of chloroplast 159, chloroplastic/TM receptor | [70,76] | |
| BnaA02g21110D | RLK | AT5G19010 | MAP kinase 16 | [70,76] | |
| BnaA02g21890D | RLK | AT4G11010 | Nucleoside diphosphate kinase/ATP binding | [70,76] | |
| BnaA02g22210D | RLK | AT5G43370 | Probable inorganic phosphate transporter 1-2 | [70,76] | |
| BnaA02g22280D | RLK | AT5G43710 | Alpha-mannosidase/glycoside hydrolase family 47 protein | [70,76] | |
| BnaA02g22610D | NLR | AT5G40910 | DRP (TNL class) | [70,76] | |
| BnaA02g23050D | TM-CC | AT5G42570 | Intracellular protein transport | [82,83] | |
| BnaA02g24000D | NLR | AT5G45490 | Probable DRP | [82,83] | |
| BnaA02g24440D | RLP | AT5G46330 | LRR RLP kinase/TM ST_k | [82,83] | |
| BnaA02g24500D | NLR | AT5G46510 | DRP (TNL class) | [82,83] | |
| BnaA02g24510D | NLR | AT5G46450 | DRP (TNL class) | [82,83] | |
| BnaA02g24530D | NLR | AT5G46450 | DRP (TNL class) | [82,83] | |
| BnaA02g24540D | NLR | AT5G46450 | DRP (TNL class) | [82,83] | |
| BnaA02g24560D | NLR | AT5G46451 | DRP (TNL class) | [82,83] | |
| BnaA02g25110D | NLR | AT5G47220 | Ethylene responsive element binding factor 2 | [84] | |
| LepR2 (A10 in Bna) | BnaA10g03460D | RLK | AT1G05300 | Zinc transporter 5 | [70,76] |
| BnaA10g06440D | RLK | AT5G53070 | Ribosomal protein L9/RNase H1 | [70,76] | |
| BnaA10g07140D | RLK | AT3G15240 | ST_k WNK (With No Lysine)-like protein | [70,76] | |
| BnaA10g09460D | NLR | AT5G55220 | Trigger factor-like protein TIG, chloroplastic | [70,76] | |
| BnaA10g09870D | RLK | AT5G55670 | RNA-binding (RRM/RBD/RNP motifs) fam_prot | [70,76] | |
| BnaA10g10000D | NLR | AT5G55910 | ST_k D6PK | [70,76] | |
| BnaA10g12510D | RLK | AT5G59200 | Putative pentatricopeptide repeat-containing protein, chloroplastic | [70,76] | |
| BnaA10g13610D | NLR | AT5G60000 | TM protein | [70,76] | |
| BnaA10g14660D | RLK | AT5G20900 | TIFY 3B/JAZ12 (JASMONATE-ZIM-DOMAIN PROTEIN 12) | [70,76] | |
| BnaA10g14840D | RLK | AT5G20670 | Unknown protein | [70,76] | |
| BnaA10g06390D | RLK | AT5G53000 | PP2A regulatory subunit TAP46 | [70,76] | |
| BnaA10g07390D | RLK | AT5G52520 | Proline--tRNA ligase, chloroplastic/mitochondrial | [70,76] | |
| BnaA10g07400D | RLK | AT5G52510 | SCL8 | [70,76] | |
| BnaA10g07410D | RLK | AT5G52510 | SCL8 | [70,76] | |
| BnaA10g07650D | RLK | AT5G51970 | Sorbitol dehydrogenase | [70,76] | |
| BnaA10g09120D | RLK | AT5G54850 | Unknown protein | [70,76] | |
| BnaA10g09500D | RLK | AT5G55280 | Cell division protein FtsZ homolog 1, chloroplastic | [70,76] | |
| BnaA10g10380D | RLK | AT5G56220 | P-loop containing nucleoside triphosphate hydrolases superfam_prot/nucleotide binding | [70,76] | |
| BnaA10g10430D | RLK | AT5G56210 | WPP domain-interacting protein 2 | [70,76] | |
| BnaA10g11120D | RLK | AT5G57110 | Calcium-transporting ATPase | [70,76] | |
| BnaA10g11930D | RLK | AT5G58410 | E3 ubiquitin-protein ligase listerin/zinc ion binding | [70,76] | |
| BnaA10g12560D | RLK | AT5G59610 | Chaperone DnaJ-domain superfam_prot/DNAJ heat shock N-terminal domain-containing protein | [70,76] | |
| BnaA10g12830D | RLK | AT4G34110 | Polyadenylate-binding/RNA binding/translation initiation factor | [70,76] | |
| BnaA10g12860D | RLK | AT5G59900 | Putative pentatricopeptide repeat-containing protein | [70,76] | |
| BnaA10g12870D | RLK | AT5G22880 | Histone H2B/DNA binding | [70,76] | |
| BnaA10g12880D | RLK | AT5G59950 | RNA-binding fam_prot/RNA and export factor-binding protein | [70,76] | |
| BnaA10g12890D | RLK | AT5G59990 | CCT motif fam_prot | [70,76] | |
| BnaA10g12900D | RLK | AT5G60020 | Laccase-17 | [70,76] | |
| BnaA10g12950D | RLK | AT5G60120 | Target of early activation tagged (EAT) 2/TF | [70,76] | |
| BnaA10g14170D | RLK | AT5G22170 | TM protein | [70,76] | |
| BnaA10g14640D | RLK | AT2G24080 | F-box protein (DUF295) | [70,76] | |
| BnaA10g15480D | RLK | AT5G19690 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit STT3A | [70,76] | |
| BnaA10g18330D | RLK | AT5G16000 | Protein NSP-INTERACTING KINASE 1 | [70,76] | |
| BnaA10g19700D | RLK | AT5G13870 | Xyloglucan endotransglucosylase/hydrolase | [70,76] | |
| BnaA10g20110D | RLK | AT5G13180 | NAC domain-containing protein 83/TF | [70,76] | |
| BnaA10g23030D | RLK | AT5G08450 | Zinc finger CCCH domain protein | [70,76] | |
| BnaA10g23040D | RLK | AT5G08440 | Unknown protein | [70,76] | |
| BnaA10g26650D | RLK | AT5G03290 | Isocitrate dehydrogenase (NAD) catalytic subunit 5, mitochondrial | [70,76] | |
| BLMR1 (A10 in Bna) | BnaA10g21910D | - | AT5G10360 | 40S ribosomal protein S6 (RPS6B) | [85] |
| BnaA10g19660D | - | AT3G17620 | Putative F-box domain protein | [85] | |
| BLMR2 (A10 in Bna) | BnaA10g11390D | - | AT5G57340 | Ras guanine nucleotide exchange factor Q-like protein | [85] |
| BnaA10g11500D | TM | AT5G57560 | Xyloglucan endotransglucosylase/hydrolase | [85] | |
| LepR4 (A06 in Bra) | Bra018037 | NLR | AT5G17680 | DRP (TNL class) | [86] |
| Bra018057 | NLR | AT5G66900 | DRP (CNL class) | [86] | |
| Bra018198 | NLR | AT3G46710 | DRP (CNL class) | [86] | |
| Bra019483 | NLR | AT2G15530 | RING/U-box superfam_prot | [86] | |
| Rlm1 (C06 in Bol) | Bo6g077080 | NLR | AT3G60490 | Ethylene-responsive TF ERF035 APETALA2 | [87] |
| Bo6g088090 | RLK | AT1G73080 | RLP kinase LRR-RLK, STKc | [87] | |
| Bo6g080150 | RLK | AT1G80080 | Protein TOO MANY MOUTHS_TMM LRR | [87] | |
| Bo6g093010 | RLK | AT1G71830 | Somatic embryogenesis receptor kinase 1 LRR-RLK, STKc | [87] | |
| Bo6g089160 | NLR | AT1G72890 | DRP (TIR-NBS class) | [87] | |
| Bo6g089290 | NLR | AT1G72850 | DRP (TIR-NBS class) | [88] | |
| LepR1 (C02 in Bol) | Bo2g093170 | NLR | AT1G57850 | TIR domain protein family | [88] |
| Bo2g095430 | LRR | AT1G22000 | Putative F-box/LRR protein | [88] | |
| Bo2g095460 | RLK | AT1G79620 | LRR RLP kinase | [88] | |
| Bo2g103360 | NLR | AT5G36930 | DRP (TNL class) | [88] | |
| Bo2g103380 | LRR | AT4G03220 | Putative F-box/LRR protein | [88] | |
| Bo2g104830 | LRR | AT3G47580 | LRR RLP kinase | [88] | |
| Bo2g118150 | RLK | AT1G56120 | LRR TM prot_k | [88] | |
| Bo2g118200 | RLK | AT1G56130 | Probable LRR RLK ST_k | [88] | |
| Bo2g124490 | NLR | AT1G63730 | DRP (TNL class) | [88] | |
| Bo2g124590 | RLK | AT5G44700 | LRR RLK ST_k GSO2 | [88] | |
| Bo2g125680 | RLK | AT3G47570 | Probable LRR RLK ST_k | [88] | |
| Bo2g125700 | RLK | AT5G20480 | LRR RLK ST_k | [88] | |
| Bo2g126850 | NLR | AT5G45220 | DRP (TNL class) | [88] | |
| Bo2g126860 | NLR | AT2G17050 | DRP (TNL class) | [88] | |
| Bo2g126870 | NLR | AT5G45210 | DRP (TNL class) | [88] | |
| Bo2g126880 | NLR | AT5G17880 | Disease resistance-like protein CSA1 | [88] | |
| Bo2g126900 | NLR | AT5G45220 | DRP (TNL class) | [88] | |
| Bo2g126920 | NLR | AT5G45230 | DRP (TNL class) | [88] | |
| Bo2g126980 | NLR | AT5G45240 | DRP (TNL class) | [88] | |
| Bo2g127270 | NLR | AT5G45490 | Probable DRP | [88] | |
| Bo2g127290 | NLR | AT5G45490 | Probable DRP | [88] | |
| Bo2g127320 | NLR | AT5G45510 | Probable DRP | [88] | |
| Bo2g129990 | RLK | AT5G46330 | LRR RLP kinase | [88] | |
| Bo2g130040 | NLR | AT5G46470 | DRP RPS6 | [88] | |
| Bo2g130050 | LRR | AT5G40060 | DRP (NLR class) | [88] | |
| Bo2g130080 | NLR | AT5G46270 | DRP (TNL class) | [88] | |
| Bo2g130090 | NLR | AT5G46450 | DRP (TNL class) | [88] | |
| Bo2g130100 | NLR | AT5G46450 | DRP (TNL class) | [88] | |
| Bo2g130110 | NLR | AT4G08450 | DRP (TNL class) | [88] | |
| Bo2g130150 | NLR | AT4G08450 | DRP (TNL class) | [88] | |
| Bo2g130180 | NLR | AT5G46450 | DRP (TNL class) | [88] | |
| Bo2g131530 | NLR | AT4G16920 | DRP (TNL class) | [88] | |
| Bo2g131540 | NLR | AT5G46270 | DRP (TNL class) | [88] | |
| Bo2g131590 | NLR | AT5G46450 | DRP (TNL class) | [88] | |
| Bo2g131610 | NLR | AT5G46260 | DRP (TNL class) | [88] | |
| Bo2g131620 | NLR | AT5G40060 | DRP (NLR class) | [88] | |
| LepR2 (C09 in Bol) | Bo9g111490 | LRR | AT1G51370 | F-box domain/LRR protein | [89] |
| Bo9g111500 | LRR | AT5G25850 | Putative F-box domain/LRR protein | [89] | |
| Bo9g111510 | LRR | AT5G53840 | F-box domain/LRR protein | [89] | |
| Bo9g113780 | RLK | AT5G53890 | LRR RLP kinase | [89] | |
| Bo9g117290 | RLK | AT5G54380 | RLP kinase THESEUS 1 | [89] | |
| Bo9g119130 | RLK | AT5G55090 | MAP kinase 15 | [89] | |
| Bo9g120720 | LRR | AT5G66330 | LRR fam_prot | [89] | |
| Bo9g122300 | RLK | AT5G56040 | LRR RLP kinase | [89] | |
| Bo9g125930 | LRR | AT3G56780 | F-box domain/LRR protein | [89] | |
| Bo9g126120 | LRR | AT5G56560 | F-box domain/LRR protein | [89] | |
| Bo9g126140 | LRR | AT5G56560 | F-box domain/LRR protein | [89] | |
| Bo9g126150 | RLK | AT5G56580 | MAP kinase 6 | [89] | |
| Bo9g135700 | CC | AT2G42480 | MATH & CC domain-containing protein | [89] | |
| LepR4 (C03 in Bol) | Bo3g099380 | RLK | AT5G65240 | LRR prot_k | [90] |
| Bo3g102880 | NLR | AT4G36150 | DRP (TNL class) | [90] | |
| Bo3g103150 | RLK | AT5G63710 | LRR prot_k | [90] | |
| Bo3g107230 | RLK | AT5G62710 | LRR prot_k | [90] | |
| Bo3g107530 | RLK | AT1G53510 | MAP Pkinase 18 | [90] | |
| Bo3g110840 | RLK | AT3G47090 | LRR prot_k | [90] | |
| Bo3g114980 | RLK | AT3G47090 | MAP Pkinase_Tyr, ST_k | [90] | |
| Bo3g130040 | RLK | AT3G45640 | MAP Pkinase | [90] | |
| Bo3g134690 | RLK | AT3G47580 | LRR protein Pkinase | [90] | |
| LepR4 (C08 in Bol) | Bo8g077170 | RLK | AT1G53510 | MAP Pkinase 18 | [90] |
| Bo8g077270 | NLR | AT5G17680 | DRP (TNL class) | [90] | |
| Bo8g077320 | CC | AT3G48860 | CC domain containing protein SCD2 | [90] | |
| Rlm6 (A07 in Bju) | BjuA027357 | RLK | AT1G66830 | Probable inactive LRR RLP kinase | [91] |
| BjuA043308 | RLK | AT1G67510 | LRR prot_k fam_prot | [91] | |
| Rlm6 (B04 in Bju) | BjuB042709 | RLK | AT1G10850 | LRR prot_k fam_prot/ST_k | [91] |
| BjuB042726 | RLK | AT1G11130 | LRR prot_k fam_prot/receptor signalling protein ST_k | [91] | |
| LMJR1 (B03 in Bju) | BjuB043144 | RLK | AT1G61360 | ST_k | [92] |
| BjuB032936 | RLK | AT1G29720 | Probable LRR RLK ST_k | [92] | |
| BjuB043487 | RLK | AT1G21209 | Wall associated kinase 4 | [92] | |
| BjuB043117 | RLP | AT1G10520 | DNA polymerase lambda | [92] | |
| BjuB047419 | RLP | AT1G71400 | RLP 12 | [92] | |
| LMJR2 (B08 in Bju) | BjuB015599 | RLK | AT5G59680 | Probable LRR RLK ST_k | [92] |
| BjuB041327 | RLK | AT4G08850 | MDIS1-interacting RLK 2 | [92] | |
| BjuB040922 | RLK | AT5G07620 | Prot_k superfam_prot | [92] | |
| BjuB041021 | RLK | AT5G10530 | L-type lectin-domain containing receptor kinase IX.1 | [92] | |
| BjuB019224 | RLK | AT3G56050 | Probable inactive RLP kinase | [92] | |
| BjuB045981 | RLP | AT5G56810 | Putative F-box domain/LRR protein | [92] | |
| rjlm2 (B01 in Bju) | BjuB026698 | RLK | AT2G35620 | LRR RLK ST_k FEI 2 | [92] |
| BjuB025797 | RLK | AT5G38210 | Prot_k fam_prot | [92] | |
TAIR10 = Arabidopsis thaliana genome reference with e-value hit ≤ 0.000003, Bna = Brassica napus, Bra = Brassica rapa, Bol = Brassica oleracea, Bju = Brassica juncea, RLP = receptor-like protein, RLK = receptor-like kinase, NLR = nucleotide binding site (NBS) leucine-rich repeat (LRR), TM-CC = transmembrane (TM) coiled-coil (CC), LRR = leucine-rich repeat, TNL = toll-interleukin-resistance (TIR)-NBS-LRR, CNL = CC-NBS-LRR, MAP = mitogen-activated protein, ST_k = serine/threonine protein kinase, SCL8 = scarecrow-like TF 8, DRP = disease resistance protein, prot_k = protein kinase, fam_prot =family protein, TF = transcription factor.
This review focuses on the gene for gene mechanism of blackleg resistance, R gene content in canola and its relatives, candidate blackleg R genes, genetic factors in L. maculans pathogenicity and resistance, and future work that can advance knowledge towards a more resistant canola crop.
2. The Current Resistance Genes Go Beyond Simple Allelism
The flax–rust interaction provided some of the first evidence of a gene for gene interaction between plants and pathogens, whereby resistance is conferred by the highly specific recognition between the plant R genes and the pathogen’s Avr genes [93]. This molecular interaction initiates a cascade of signalling pathways, resulting in a hypersensitive response in the plant, which restricts further pathogen growth [94] and in some cases leads to systemic acquired resistance (SAR) [95]. Whilst the flax–rust interaction laid the foundation for understanding the basic mechanisms of R-gene-mediated resistance in plants, recent advances indicate a rather complex interaction in several crop-pathosystems, which goes beyond the simple gene-for-gene recognition. Such a case has been documented in the Brassica- L. maculans interaction, where several R genes have been found to interact with the same Avr genes in the pathogen, and in some instances, some R gene–Avr pairs mask the resistance response in other interactions. On the side of the host, several genes are suspected to be allelic forms of other genes, adding another layer of complexity for understanding the Brassica–L. maculans interaction.
Rlm2 is a natural allele for resistance in B. napus, while LepR3 is an introgressed gene from B. rapa subsp. sylvestris; however, subsequent investigations proved they are variants of the same gene [96,97]. Rlm2 and LepR3 are located on chromosome A10 (14,404,296 to 14,408,251 bp of B. napus Darmor-bzh genome v4.1) [98] and encode an extracellular leucine-rich receptor (RLP), whose structure was found to be similar to the widely known Cf-a protein in tomato [99,100]. Further functional analysis of both of these genes found that their resistance expression is mediated by associating with the helper proteins SOBIR1 (Suppressor of BIR1) and BAK1 (BRI1-Associated Kinase-1) proteins [97,100,101].
Whilst Rlm2 and LepR3 are allelic, they each recognise different L. maculans Avr genes; Rlm2 interacts with AvrLm2 while LepR3 interacts with AvrLm1. The interaction of LepR3 and Rlm1 with the same Avr gene (AvrLm1) originating from different Brassica species [96,97] provides evidence of a two-for-one gene interaction for blackleg resistance (Rlm1 and LepR3-AvrLm1), deviating from the earliest classical gene-for-gene interaction [93]. Recently, LepR2 and RlmS, reported as independent genes, were found to interact with the same Avr gene, AvrLmS-Lep2 [102]. However, since LepR2 and RlmS are from B. rapa subsp. sylvestris, they could be the same gene or allelic variants. Cloning of LepR2, RlmS, and Rlm1 will help explain why two genes recognise the same Avr gene.
Rlm5 and Rlm9 also recognise the same Avr gene (AvrLm5-9) [103]. Rlm5 is a B juncea R gene that resides in a region homologous to chromosome A10 of B. napus [104,105]. Rlm9 is on chromosome A07 (15.9 Mb in B. napus Darmor-bzh genome v4.1) and encodes a wall-associated kinase-like protein RLK [106]. However, as with the case of LepR3 and Rlm1, it is unclear if Rlm9 and Rlm5 are allelic variants or independent genes [103]. Only when Rlm5 is cloned can the relationship of these two genes be further dissected, which will explain why they share the same Avr gene.
In another interaction, genes Rlm4 and Rlm7 both recognise the same effector [107]. Rlm4 and Rlm7, along with Rlm3 and Rlm9, form a tightly linked cluster on chromosome A07 of B. napus, and may be alleles of the same R locus [108]. This hypothesis has a valid precedence as shown in the case of Rlm2 and LepR3, which were found to be allelic [109].
A further gene, a B. rapa subsp. sylvestris R gene, LepR4 is mapped on chromosome A06 (9,873,739 to 10,977,390 bp) in B. rapa v1.2 [110] but a recent finding in B. oleracea showed that LepR4 candidate genes were detected on two different chromosomes, C03 and C08 [90,111]. Earlier, this gene was reported to have two alleles, LepR4a and LepR4b, each having different levels of resistance [86]. In B. juncea, another gene Rlm6 has also been genetically mapped onto two different chromosomes, A07 and B04 [91]. Both LepR4 and Rlm6 are yet to be cloned. In B. nigra, the R gene Rlm10 mapped on chromosome B04 interacts with two Avr genes, AvrLm10a and AvrLm10b [112,113], indicating a gene-for-two-gene interaction.
Other interactions seemed to follow the gene-for-gene, R-gene-to-Avr-gene interaction, and are relatively more straightforward to analyse compared with the previous examples. These include the interaction of Rlm3 to AvrLm3, Rlm8 to AvrLm8, Rlm11 to AvrLm11, and LepR1 to AvrLepR1 [104,108,114,115]. However, as with most R genes, the specific genes controlling such resistance have yet to be closed. Hence, the identification of their sequences will likely contribute to how they should be effectively deployed for blackleg management.
Due to differences in the mapping population and the pathogen race compositions used, some blackleg R genes identified are thought to be redundant with other previously known R genes. Furthermore, their corresponding effectors remain to be verified. For example, BLMR1 was thought to be redundant to LepR3 [97] but an RNA sequencing analysis revealed a difference in the N-terminal leucine-rich repeat motifs [116] (Figure 1). BLMR2, RPg3Dun, RlmSkipton, and QRlm.wwai-A10 are other genes that need confirmatory analysis [117,118,119] (Figure 1).
The simple gene-for-gene allelism provides a basic understanding in the Brassica-L. maculans interaction, however, complications exist for some of these genes, as some of them interact with the same Avr gene while several others are suspected to be allelic forms of the others. Furthermore, some of the interactions display an epistatic effect over the other interactions (Figure 1). These anomalies represent some of the challenges in studying the Brassica-L. maculans interaction, which need to be resolved to enhance current strategies for resistance deployment as a major component of blackleg management.
3. Exploring Resistance Genes in Brassica napus and Its Relatives
Despite natural resistance to L. maculans in the B. napus A-genome, there is a requirement to find novel sources of resistance for continuous improvement of the crop. One method for this is to utilise exotic germplasm via intergeneric/interspecific hybridisation breeding [120]. Several Brassicaceae species have been successfully hybridised/crossed with B. napus to improve resistance to blackleg, but information on the derived progenies is limited (Table 3). Only a few of these lines, containing B. rapa and B. juncea genes, have been successfully converted into commercial cultivars [104,121]. Other species including A. thaliana, Brassica insularis, Brassica atlantica, Brassica macrocarpa, C. sativa, Diplotaxis muralis, Eruca pinnatifia, Erucastrum gallicum, Raphanus raphanistrum, S. alba, Sisymbrium loeselii, and Thlaspi arvense have been found with proteins/compounds that may benefit B. napus against L. maculans [122,123,124,125,126,127,128,129,130,131,132,133,134]. Only 13 of these species have published information on their R gene content (Table 4). There are between 87–641 NLRs, 300–1,556 RLKs, and 56–272 RLPs in the genome assemblies [135,136,137,138,139,140,141,142,143] (Table 3).
Table 3.
Successful Brassica napus progenies hybridized/developed with selected Brassicaceae species having blackleg resistance in cotyledon stage.
| Species | Types of Progenies | References |
|---|---|---|
| Brassica carinata and Brassica rapa | Double haploid (DH) lines | [86,115,144,145,146,147] |
| Brassica juncea | Recombinant and backcrossed (BC) lines | [148,149,150] |
| Brassica nigra | Hybrid and recombinant lines | [149,151,152] |
| Brassica elongata, Brassica fruticulosa, Brassica souliei and Diplotaxis tenuifolia | Hybrid | [130] |
| Coincya monensis and Hirschfeldia incana | Hybrid and BC lines | [130,132] |
| Sinapsis arvensis | Somatic hybrids and BC lines | [130,132,153,154] |
| Brassica tournefortii | Somatic hybrids | [155] |
Table 4.
List of Brassicaceae species containing resistance gene analogs like nucleotide-binding site leucine-rich repeat (NLR), receptor-like protein kinase (RLK), and receptor-like protein (RLP).
| Species (Common Name) | NLR | RLK | RLP | Software Used | References |
|---|---|---|---|---|---|
| Arabidopsis lyrata (Lyre-leaved rock-cress) | 243 | 514 | 73 | RGAugury | [140] |
| 506 | 495 | 56 | RGAugury | [138] | |
| 198 | - | - | HMM/MEME | [143] | |
| 200 | - | - | HMM/LRRfinder | [137] | |
| Arabidopsis thaliana (Mouse-ear cress) | 205 | 516 | 73 | RGAugury | [140] |
| 410 | 517 | 75 | RGAugury | [138] | |
| 152 | - | - | NLGenome Sweeper | [141] | |
| 213 | - | - | HMMER | [142] | |
| 165 | - | - | HMM/MEME | [143] | |
| 167 | - | - | HMM/LRRfinder | [137] | |
| Brassica juncea (Indian mustard) | 315 | 1085 | 191 | RGAugury | [140] |
| - | 493 | 228 | RGAugury | [91] | |
| Brassica napus (Oilseed rape) | 286 1 | 989 1 | 77 1 | RGAugury | [140] |
| 208 2 | 680 2 | 223 2 | RGAugury | [140] | |
| 621 3 | 1497 3 | 273 3 | RGAugury | [140] | |
| 566 4 | 1517 4 | 260 4 | RGAugury | [140] | |
| 464 | - | - | HMMER | [136] | |
| 641 | - | - | MEME/MAST | [135] | |
| B. napus pangenome | 16430 | 51611 | 5229 | RGAugury | [70] |
| Brassica nigra (Black mustard) | 372 | 776 | 176 | RGAugury | [140] |
| - | 317 | 176 | RGAugury | [91] | |
| Brassica oleracea (Cabbage) | 493 | 822 | 159 | RGAugury | [72] |
| 438 | 796 | 155 | RGAugury | [140] | |
| 146 | - | - | HMMER | [136] | |
| 443 | - | - | MEME/MAST | [135] | |
| 157 | - | - | HMMER | [142] | |
| 408 | - | - | HMMER | [139] | |
| B. oleracea pangenome | 616 | 932 | 223 | RGAugury | [72] |
| Brassica rapa (Field mustard) | 263 | 670 | 106 | RGAugury | [140] |
| 488 | 747 | 118 | RGAugury | [138] | |
| - | 300 | 65 | RGAugury | [91] | |
| 202 | - | - | HMMER | [136] | |
| 249 | - | - | MEME/MAST | [135] | |
| 206 | - | - | HMMER | [142] | |
| 204 | - | - | HMM/MEME | [143] | |
| 201 | - | - | HMM/LRRfinder | [137] | |
| Brassica macrocarpa(‘Egadi‘ cabbage) | 447 | 862 | 186 | RGAugury | [72] |
| Camelina sativa (False flax) | 504 | 1469 | 280 | RGAugury | [140] |
| Capsella rubella (pink shepherd’s-purse) | 180 | 539 | 87 | RGAugury | [140] |
| 200 | 536 | 97 | RGAugury | [138] | |
| 127 | - | - | HMM/MEME | [143] | |
| Eutrema salsugineum (Saltwater cress) | 165 | 509 | 77 | RGAugury | [140] |
| 348 | 483 | 83 | RGAugury | [138] | |
| 88 | - | - | HMM/MEME | [143] | |
| 87 | - | - | HMM/LRRfinder | [137] | |
| Raphanus raphanistrum (Wild radish) | 206 | 585 | 142 | RGAugury | [140] |
| Thlaspi arvense (Field penny-cress) | 183 | 474 | 120 | RGAugury | [140] |
1Brassica napus cv. Darmor v.8, 2 Brassica napus cv. Tapidor, 3 Brassica napus cv. Darmor v.4, 4 Brassica napus cv. ZS11.
It can be noted that RLKs are more abundant than other R genes. In the B. napus pangenome, across the 52 lines, there were 35,181 more RLK genes more than NLRs and 46,382 more RLK genes than RLPs, and in the 10 individuals in the B. oleracea pangenome, there were 316 more RLKs than NLRs and 709 more RLKs than RLPs [70,72]. The abundance of RLKs, over other R-genes type, could be due to their versatile roles in plants, as they are not only involved in defence but in other processes [156]. For example, RLKs are involved in growth and development such as cell proliferation and homeostasis, vascular differentiation, and steroid hormone perception [157,158,159]. RLKs interact with NLR/RLPs to initiate resistance [160,161,162,163,164,165,166,167] and their extracellular component suggests an ability to cope with the population of ligands from pathogens [168].
Most of the NLRs in the genome are involved in defence mechanisms [51] and some of the plant–pathogen interaction with effectors is indirect [169]. For example, a resistant tobacco with an NLR-N gene requires an NRIP1 (NLR, specifically with TIR domain) before interacting with effector p50 of Tobacco mosaic virus [170]. A resistant Arabidopsis with ZAR1 (NLR) requires ZED1 pseudokinase (NLR) as a decoy, and thus ZAR1-mediated immunity is induced by interacting with type III Avr HopZ1a for resistance against Pseudomonas syringae [171]. NLRs perceive pathogen effector proteins in the cytoplasm, after which the plant initiates immunity through a hypersensitive response [172]. Of the 313 cloned R genes in plants, 191 are NLRs [169], with two NLRs in Brassica, CRa and Crr1a. CRa and Crr1a are resistant to isolates M85 and Ano-01 of Plasmodiophora brassicae, respectively, which causes clubroot disease in B. rapa [173,174].
RLPs are RLKs but without kinase domain, and usually an RLP gene would need other triggering genes to initiate resistance [54,175]. Aside from cloned RLP genes for resistance to L. maculans, other examples are Cf-4 and RLP23. Cf-4 perceives Avr4 with the help of kinase-active BAK1 to trigger an immunity response to Cladosporium fulvum in tomato [167]. RLP23 requires NEP-like protein 20 and kinases (SOBIR1 and BAK1) with the effector to signal an immune response to potato late blight and rot caused by Phytophthora infestans and Sclerotinia sclerotiorum [161,162].
Among the relatives of canola, B-genome-containing species (B. nigra, B. carinata, and B. juncea) are excellent sources of resistance to L. maculans [148,176,177]. Five R genes (Rlm6, Rlm10, LMJR1, LMJR2, and rjlm2) have been identified in the B-genome but only Rlm6 is utilised in canola cultivars. Of the B genome species, B. nigra [178] and B. juncea [74] reference genomes have been published, while B. carinata genome assembly has yet to become available. Microsatellite markers indicated that resistance in B. carinata resides on chromosomes B01, B03, B06, and B07 in B. napus-B. carinata doubled haploid populations [145,146,147]. Nonetheless, studies can now rely on a pseudo-reference for B. carinata using its diploid ancestors: B. nigra and B. oleracea [179].
In other species, A. thaliana has been found to confer resistance to L. maculans; RESISTANCE TO LEPTOSPHAERIA MACULANS (RLM) 1 or AtRLM1A, a 4.93 Kb gene on chromosome 1 (23,779,223 to 23,784,155 bp of A. thaliana Araport11), AtRLM2 or AtRLM1B, a 5.59 Kb gene on chromosome 1 (23,711,420 to 23,717,006 bp of A. thaliana Araport11), and AtRLM1A [180,181,182]. AtRLM1 and AtRLM2 require camalexin production for resistance that causes lignification and the formation of vascular plugs as physical barriers [183,184]. AtRLM3, a 9.71 Kb gene on chromosome 4 9,557,175 to 9,566,887 bp of A. thaliana Araport11 [180], confers resistance not only to L. maculans but also to other diseases including Botrytis cinerea, Alternaria brassicicola and Alternaria brassicae [185]. AtRLM3 has three BREVIS RADIX domains instead of leucine-rich repeats (LRR) that possibly regulates downstream defence signalling responses [186]. AtRLM gene homologs have been found in Arabidopsis lyrata, B. rapa, C. sativa, Capsella rubella, and Eutrema salsugineum based on annotation studies [181,186]. An AtRLM1A-like gene was identified in C. rubella, AtRLM1B and other AtRLM1-like genes in A. lyrata, B. rapa and E. salsugineum; and the AtRLM3 gene is conserved in A. lyrata and C. sativa [181,186]. These species are potential sources to search for new resistance against L. maculans.
Other Brassicaceae relatives such as C. monensis, S. arvenis, S. alba, D. muralis and Diplotaxis tenuifolia have been found to have a resistance response against L. maculans in cotyledons and adult stages [122,123,132,133,154]. These species may contain vast numbers of disease resistance genes based on transcriptomic analysis [187,188,189]. The Brassicaceae, especially the wild relatives of B. napus, are indeed a potential source of novel R genes and alleles in improving resistance to L. maculans and for other diseases in the family. Their genome sequences provide an opportunity to search for orthologous allelic variants to the existing R genes for L. maculans, and a vast genetic resource that could considerably enrich B. napus in many years to come.
4. Genome Sequencing in Brassica Species Hastened the Identification of Resistance Genes
The availability of genome sequences marked a milestone in the identification of R genes and their cloning. B. rapa was the first Brassica species to have a genome sequence available [110]. Subsequently, the genome sequences of B. napus, B. oleracea, B. juncea, and B. nigra have become available [69,74,75,98,180,190,191], some of which have multiple genome assemblies. Recent genomic analysis has highlighted a significant gene presence absence variation in plant species, with disease resistance genes tending to demonstrate significant presence/absence variation [70,73,192,193,194]. This has led to the construction of pangenomes along with corresponding structural variation data including copy number and presence/absence variations for a wide range of crop species [195,196] including Brassica species [70,71,72,73,197].
The first two cloned genes for L. maculans resistance, LepR3 and Rlm2, correspond to BnaA10g20720D and Rlm9 to BnaA07g20220D in B. napus cv. Darmor bzh genome v4.1 [97,100,106], and the physical location has been updated in the B. napus pangenome (Figure 2). Most of the candidate genes for blackleg resistance encode RLKs followed by NLRs and RLPs, and a few encode TM-CCs, secreted peptides (SP) and enzymatic R genes (Table 2). These candidate genes can be useful a reference for researchers moving towards gene cloning and functional analyses. It is expected that the number of cloned R genes for blackleg resistance will increase in the near future.
5. Genetic Factors Involving the Pathogenicity and Resistance in Leptosphaeria maculans
Unlocking the genome of pathogens gives a better understanding of their pathogenicity, life-cycle, and evolution [198]. To date, 10 L. maculans Avr genes have been cloned (Figure 1). AvrLm2, AvrLm3, AvrLm4-7, AvrLm5–9, AvrLm10a and AvrLm10b, AvrLm11, and AvrLmS-Lep2 encode cysteine-rich proteins [102,103,107,113,199,200,201,202,203], while AvrLm1 contains only one cysteine residue [204].
All cloned and current candidate Avr genes reside in AT-rich sequences with degenerated transposable elements, where repeat-induced point mutation (RIP) often occurs [102,103,113,114,200,201,202,203,205]. As such, it was initially thought that RIP accounts for most of the virulence in L. maculans [109]. However, amino acid substitutions are the major cause of virulence, as occurs in AvrLm2, AvrLm3, AvrLm4, AvrLm5-9 and gene deletions to AvrLm1, AvrLm6, AvrLm10a and AvrLm10b, and AvrLm11 [103,109,113,114,200,201,206,207,208]. In AvrLm7, it is either RIP mutation or gene deletion causes virulence [109].
AvrLm4-7 promotes L. maculans pathogenicity to susceptible B. napus and suppresses SA and ET signalling pathways, including abscisic acid (ABA) and hydrogen peroxide (H2O2) [209]. Similarly, AvrLm1 suppresses SA and JA signalling pathways in transient gene expression of A. thaliana (Columbia-0 line) and targets phosphorylation of B. napus mitogen-activated protein kinase (MAP_k) 9 (BnMAP_k9) gene, which leads to an increase in cell death in A. thaliana [210]. As AvrLm2 suppressed JA signalling, an MAP_k signal was induced; the mechanism could be similar to AvrLm1 to BnMAP_k9 gene but needs to further verification [211]. In a different study in A. thaliana–pathogen interaction, as the AP2C1 gene (protein phosphatase gene) influenced MAP_k4 and MAP_k6 genes, the levels of JA and ET signalling genes were lowered, which subsequently compromised the plant immunity [212]. When MAP_k signalling genes were suppressed by Xanthomonas type III Avr genes (XopE1, XopM, XopQ, AvrBs1 and AvrXv4), cell death occurs in Nicotiana benthamiana [213]. Another adenosine kinase has been found to be significant for proper fungal growth, hyphae development and virulence of L. maculans in B. napus [214]. LmSNF1 (sucrose non-fermenting protein kinase 1 gene), LmStuA (TF gene), NEP1-like proteins, immunophilin gene family, isocitrate lyase, candidate secreted effector proteins, CAZymes, glycosyl hydrolase, cytokinin profiles, and carbohydrate with esterase domain containing genes play roles in L. maculans pathogenicity [215,216,217,218,219,220,221,222].
Generally, when L. maculans enters the plant, SA and JA-related genes are affected and act as initial defence compounds [84,209,216,217,218,223,224,225]. There are also genes that may contribute or act as basal defence, such as pattern recognition receptor CERK1 (e.g., chitin elicitor receptor kinase 1), WRKY transcription factors (TF) (e.g., WRKYs 33, 40 and 51), glucosinolate-related genes (e.g., cytochrome P450, SUPERROOT1, and nitrile-specifier protein 5), and calcium-related biological functions (e.g., homologs of CAM1, CAM5 and CAM7; CYCLIC NUCLEOTIDE-GATED CALCIUM CHANNEL 3, 12 and 19; CALMODULIN-DOMAIN PROTEIN KINASE 5, 9; CALCIUM-DEPENDENT PROTEIN KINASE 6 and 28; and CALCINEURIN B-LIKE GENE 1) [211,216].
When there is resistance, ABA is induced in plants harbouring Rlm4, LepR3, and Rlm2 [116,209]. On the other hand, high expression of calcium-related signalling genes and TFs (basic leucine zipper (bZIP) and basic helix–loop–helix (bHLH)) aside from JA and ABA were found in plants containing Rlm2 [211]. Calcium-dependent protein kinases have been reported to trigger signalling pathways for an immediate plant defence [226,227], while for TFs, bZIP acts as a precursor in plant immunity [228] and bHLH interacts with signalling plant defence receptors [229,230]. bHLH might have an important role in Rlm2-mediated defence, as it activates SOBIR1 gene in Gossypium barbadense against Verticillium wilt [211,230]. Lastly, LepR1-mediated resistance was correlated with indole-derived phytoalexins [84], which may be a Brassica’s counterpart to camalexin that has been found to be effective against L. maculans [183,231].
6. Conclusions
L. maculans can adapt to the host over time in the field. Thus, canola breeders and scientists should use genomics and bioinformatics tools and platforms in Brassica research [232] to hasten the search for novel R genes for identification, cloning and deployment. The extensive applications of genomics, pangenomics, and superpangenomics to canola and its relatives [233] will result in genomic-driven breeding strategies. Additionally, applying these methodologies to the host will result in an L. maculans-informed canola breeding. We see transcriptomics uncover the Brassica-L. maculans interaction and reveal role players in the pathogenicity and resistance, which opens an opportunity for gene editing such as CRISPR technology by gene activation or inactivation [234,235,236,237]. Transcriptomics is also used to study the relatives of canola, which present a novel variation that may have natural and better resistance to the pathogen. Furthermore, physiological and other molecular mechanisms acting not only in the genes of canola but to other Brassicaceae species could also be explored for information which can be translated and useful in improving the crop [238]. The comprehensive information in this review allow breeders to integrate Brassica and L. maculans-sequencing-based information for developing a better and resistant B. napus.
Acknowledgments
All authors acknowledge the University of Western Australia Research Training Program economic support during A.Y.C., N.S.M.S. and J.C.A respective doctoral studies.
Author Contributions
A.Y.C. and J.B. conceived the outline of the review. A.Y.C. prepared the original draft and wrote the main text, while N.S.M.S. and J.C.A. edited the manuscript. A.Y.C. produced the figures and tables. J.B. and D.E. reviewed and suggested revisions to the manuscript. All authors have read and agreed to the published version of the manuscript.
Funding
This work is funded by the Australian Research Council (Projects LP110100200, FT130100604, LP130100925, LP140100537 and DP160104497).
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Conflicts of Interest
The authors declare no conflict of interest.
Footnotes
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Tamokou J.D.D., Mbaveng A.T., Kuete V. Chapter 8—Antimicrobial Activities of African Medicinal Spices and Vegetables. In: Kuete V., editor. Medicinal Spices and Vegetables from Africa. Academic Press; Cambridge, MA, USA: 2017. pp. 207–237. [DOI] [Google Scholar]
- 2.Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 1935;7:389–452. [Google Scholar]
- 3.Avato P., Argentieri M.P. Brassicaceae: A rich source of health improving phytochemicals. Phytochem. Rev. 2015;14:1019–1033. doi: 10.1007/s11101-015-9414-4. [DOI] [Google Scholar]
- 4.Koornneef M., Meinke D. The development of Arabidopsis as a model plant. Plant J. 2010;61:909–921. doi: 10.1111/j.1365-313X.2009.04086.x. [DOI] [PubMed] [Google Scholar]
- 5.Rahman M., Khatun A., Liu L., Barkla B.J. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules. 2018;23:231. doi: 10.3390/molecules23010231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Schmidt R., Bancroft I. Genetics and Genomics of the Brassicaceae. 1st ed. Springer Science & Business Media; New York, NY, USA: 2010. p. 680. [DOI] [Google Scholar]
- 7.Simpson M.G. 8—Diversity and Classification of Flowering Plants: Eudicots. In: Simpson M.G., editor. Plant Systematics. 2nd ed. Academic Press; San Diego, CA, USA: 2010. pp. 275–448. [DOI] [Google Scholar]
- 8.Weeks D.P. Chapter Four—Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus. In: Weeks D.P., Yang B., editors. Progress in Molecular Biology and Translational Science. Volume 149. Academic Press; Cambridge, MA, USA: 2017. pp. 65–80. [DOI] [PubMed] [Google Scholar]
- 9.CODEX ALIMENTARIUS . International Food Standards: Standard for the Named Vegetable Oils CX-S 210—1999. Food and Agriculture Organization of the United Nations; Rome, Italy: 2019. [Google Scholar]
- 10.FAO FAOSTAT. [(accessed on 20 February 2020)]; Available online: http://www.fao.org/faostat/en/#data/QC.
- 11.AOF . Canola Oil and Cancer the Facts. Australian Oilseeds Federation; Australia Square, NSW, Australia: 2012. [Google Scholar]
- 12.Lin L., Allemekinders H., Dansby A., Campbell L., Durance-Tod S., Berger A., Jones P.J.H. Evidence of health benefits of canola oil. Nutr. Rev. 2013;71:370–385. doi: 10.1111/nure.12033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Gaber M., Tujillo F., Mansour M., Juliano P. Improving Oil Extraction from Canola Seeds by Conventional and Advanced Methods. Food Eng. Rev. 2018;10:198–210. [Google Scholar]
- 14.Chambers K. Ph.D. Thesis. University of Melbourne; Melbourne, Australia: 2017. Pathogenicity Genes of Leptosphaeria maculans, the Fungus that Causes Blackleg Disease of Canola (Brassica napus) [Google Scholar]
- 15.Howlett B.J. Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Can. J. Plant Pathol. 2004;26:245–252. doi: 10.1080/07060660409507141. [DOI] [Google Scholar]
- 16.McVetty P.B.E., Duncan R.W. Reference Module in Food Science. Elsevier; Amsterdam, The Netherlands: 2016. Canola/Rapeseed: Genetics and Breeding☆. [DOI] [Google Scholar]
- 17.CCC Canola Council of Canada “Canola Encyclopedia: About Blackleg”. [(accessed on 10 April 2020)]; Available online: https://www.canolacouncil.org/canola-encyclopedia/diseases/blackleg/about-blackleg/
- 18.Li H., Sivasithamparam K., Barbetti M.J. Soilborne ascospores and pycnidiospores of Leptosphaeria maculans can contribute significantly to blackleg disease epidemiology in oilseed rape (Brassica napus) in Western Australia. Australas Plant Pathol. 2007;36:439–444. doi: 10.1071/AP07048. [DOI] [Google Scholar]
- 19.West J.S., Kharbanda P.D., Barbetti M.J., Fitt B.D.L. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol. 2001;50:10–27. doi: 10.1046/j.1365-3059.2001.00546.x. [DOI] [Google Scholar]
- 20.Bokor A., Barbetti M.J., Brown A.G.P., Mac Nish G.C.A., Wood P.M. Blackleg of rapeseed. J. Dep. Agric. West. Aust. Ser. 4. 1975;16:7–10. [Google Scholar]
- 21.Chen C.Y., Howlett B.J. Rapid necrosis of guard cells is associated with the arrest of fungal growth in leaves of Indian mustard (Brassica juncea) inoculated with avirulent isolates of Leptosphaeria maculans. Physiol. Mol. Plant Pathol. 1996;48:73–81. doi: 10.1006/pmpp.1996.0007. [DOI] [Google Scholar]
- 22.Guo M., Chen Y., Du Y., Dong Y., Guo W., Zhai S., Zhang H., Dong S., Zhang Z., Wang Y., et al. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 2011;7:e1001302. doi: 10.1371/journal.ppat.1001302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Hammond K.E., Lewis B.G., Musa T.M. A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathol. 1985;34:557–565. doi: 10.1111/j.1365-3059.1985.tb01407.x. [DOI] [Google Scholar]
- 24.Howlett B.J., Idnurm A., Pedras M.S.C. Leptosphaeria maculans, the Causal Agent of Blackleg Disease of Brassicas. Fungal Genet. Biol. 2001;33:1–14. doi: 10.1006/fgbi.2001.1274. [DOI] [PubMed] [Google Scholar]
- 25.Rimmer S.R., Buchwaldt L. Diseases. In: Kimber D.M.D.I., editor. Brassica Oilseeds: Production and Utilization. CABI; Wallingford, UK: 1995. pp. 114–118. [Google Scholar]
- 26.Wang D. Master’s Thesis. The University of Manitoba; Winnipeg, MB, Canada: 2016. Transferring Blackleg Resistance from Brassica carinata and Synthetic Hexaploid Brassica accessions into Brassica napus. [Google Scholar]
- 27.Williams P.H. Biology of Leptosphaeria maculans. Can. J. Plant Pathol. 1992;14:30–35. doi: 10.1080/07060669209500903. [DOI] [Google Scholar]
- 28.Henderson M.P. The Black-leg Disease of Cabbage Caused by Phoma lingam (Tode) Desmaz. Univ. Wis. Madison. 1918;8:379–431. [Google Scholar]
- 29.Gugel R.K., Petrie G.A. History, occurrence, impact, and control of blackleg of rapeseed. Can. J. Plant Pathol. 1992;14:36–45. doi: 10.1080/07060669209500904. [DOI] [Google Scholar]
- 30.McGee D., Emmett R. Blackleg (Leptosphaeria maculans (Desm.) Ces. et de Not.) of rapeseed in Victoria: Crop losses and factors which affect disease severity. Aust. J. Agric. Res. 1977;28:47–51. doi: 10.1071/AR9770047. [DOI] [Google Scholar]
- 31.Vanterpool T.C. Rape diseases in Saskatchewan in 1961. Can. Plant Dis. Surv. 1961;41:372–373. [Google Scholar]
- 32.Fitt B., Brun H., Barbetti M.J., Rimmer S.R. World-Wide Importance of Phoma Stem Canker (Leptosphaeria maculans and L. biglobosa) on Oilseed Rape (Brassica napus) Eur. J. Plant Pathol. 2006;114:3–15. doi: 10.1007/s10658-005-2233-5. [DOI] [Google Scholar]
- 33.Toscano-Underwood C., Huang Y., Fitt B., Hall A. Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris. Plant Pathol. 2003;52:726–736. doi: 10.1111/j.1365-3059.2003.00930.x. [DOI] [Google Scholar]
- 34.Van de Wouw A.P., Marcroft S.J., Howlett B.J. Blackleg disease of canola in Australia. Crop Pasture Sci. 2016;67:273–283. doi: 10.1071/CP15221. [DOI] [Google Scholar]
- 35.Zhang X., Fernando W.G.D. Insights into fighting against blackleg disease of Brassica napus in Canada. Crop Pasture Sci. 2018;69:40–47. doi: 10.1071/CP16401. [DOI] [Google Scholar]
- 36.GRDC Grains Research & Development Corporation “Plan Ahead to Fight Blackleg in Canola This Season”. [(accessed on 10 April 2020)]; Available online: https://grdc.com.au/news-and-media/news-and-media-releases/west/2019/4/plan-ahead-to-fight-blackleg-in-canola-this-season.
- 37.Sprague S., Marcroft S., van De Wouw A.P., Lindbeck K., Brill R., McMaster C. Blackleg in Canola—Outcomes from 2016 and Update for 2017. [(accessed on 10 April 2020)]; Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2017/08/blackleg-in-canola-outcomes-from-2016-and-update-for-2017.
- 38.Sprague S.J., Balesdent M.-H., Brun H., Hayden H.L., Marcroft S.J., Pinochet X., Rouxel T., Howlett B.J. Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia. Eur. J. Plant Pathol. 2006;114:33–40. doi: 10.1007/s10658-005-3683-5. [DOI] [Google Scholar]
- 39.Van de Wouw A.P., Cozijnsen A.J., Hane J.K., Brunner P.C., McDonald B.A., Oliver R.P., Howlett B.J. Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants. PLoS Pathog. 2010;6:e1001180. doi: 10.1371/journal.ppat.1001180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Fu Z.Q., Dong X. Systemic acquired resistance: Turning local infection into global defense. Annu. Rev. Plant Biol. 2013;64:839–863. doi: 10.1146/annurev-arplant-042811-105606. [DOI] [PubMed] [Google Scholar]
- 41.Malinovsky F.G., Batoux M., Schwessinger B., Youn J.H., Stransfeld L., Win J., Kim S.K., Zipfel C. Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1. Plant Physiol. 2014;164:1443–1455. doi: 10.1104/pp.113.234625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Boyd L.A., Ridout C., O’Sullivan D.M., Leach J.E., Leung H. Plant-pathogen interactions: Disease resistance in modern agriculture. Trends Genet. TIG. 2013;29:233–240. doi: 10.1016/j.tig.2012.10.011. [DOI] [PubMed] [Google Scholar]
- 43.Freeman B.C., Beattie G.A. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Health Instr. 2008 doi: 10.1094/PHI-I-2008-0226-01. [DOI] [Google Scholar]
- 44.Jones J.D., Dangl J.L. The plant immune system. Nature. 2006;444:323–329. doi: 10.1038/nature05286. [DOI] [PubMed] [Google Scholar]
- 45.Zhang J., Zhou J.-M. Plant Immunity Triggered by Microbial Molecular Signatures. Mol. Plant. 2010;3:783–793. doi: 10.1093/mp/ssq035. [DOI] [PubMed] [Google Scholar]
- 46.Cui H., Tsuda K., Parker J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 2015;66:487–511. doi: 10.1146/annurev-arplant-050213-040012. [DOI] [PubMed] [Google Scholar]
- 47.Yu X., Feng B., He P., Shan L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annu. Rev. Phytopathol. 2017;55:109–137. doi: 10.1146/annurev-phyto-080516-035649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Dangl J.L., Jones J.D.G. Plant pathogens and integrated defence responses to infection. Nature. 2001;411:826–833. doi: 10.1038/35081161. [DOI] [PubMed] [Google Scholar]
- 49.Sekhwal M.K., Li P., Lam I., Wang X., Cloutier S., You F.M. Disease Resistance Gene Analogs (RGAs) in Plants. Int. J. Mol. Sci. 2015;16:19248–19290. doi: 10.3390/ijms160819248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Gururani M.A., Venkatesh J., Upadhyaya C.P., Nookaraju A., Pandey S.K., Park S.W. Plant disease resistance genes: Current status and future directions. Physiol. Mol. Plant Pathol. 2012;78:51–65. doi: 10.1016/j.pmpp.2012.01.002. [DOI] [Google Scholar]
- 51.McHale L., Tan X., Koehl P., Michelmore R.W. Plant NBS-LRR proteins: Adaptable guards. Genome Biol. 2006;7:212. doi: 10.1186/gb-2006-7-4-212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Meyers B.C., Dickerman A.W., Michelmore R.W., Sivaramakrishnan S., Sobral B.W., Young N.D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999;20:317–332. doi: 10.1046/j.1365-313X.1999.t01-1-00606.x. [DOI] [PubMed] [Google Scholar]
- 53.Bohm H., Albert I., Fan L., Reinhard A., Nurnberger T. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 2014;20:47–54. doi: 10.1016/j.pbi.2014.04.007. [DOI] [PubMed] [Google Scholar]
- 54.Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35:345–351. doi: 10.1016/j.it.2014.05.004. [DOI] [PubMed] [Google Scholar]
- 55.Yang X., Deng F., Ramonell K. Receptor-like kinases and receptor-like proteins: Keys to pathogen recognition and defense signaling in plant innate immunity. Front. Biol. 2012;7:155–166. doi: 10.1007/s11515-011-1185-8. [DOI] [Google Scholar]
- 56.Balesdent M.H., Barbetti M.J., Li H., Sivasithamparam K., Gout L., Rouxel T. Analysis of Leptosphaeria maculans Race Structure in a Worldwide Collection of Isolates. Phytopathology. 2005;95:1061. doi: 10.1094/PHYTO-95-1061. [DOI] [PubMed] [Google Scholar]
- 57.Delourme R., Chèvre A.M., Brun H., Rouxel T., Balesdent M.H., Dias J.S., Salisbury P., Renard M., Rimmer S.R. Major Gene and Polygenic Resistance to Leptosphaeria maculans in Oilseed Rape (Brassica napus) Eur. J. Plant Pathol. 2006;114:41–52. doi: 10.1007/s10658-005-2108-9. [DOI] [Google Scholar]
- 58.Elliott V.L., Marcroft S.J., Howlett B.J., Van de Wouw A.P. Gene-for-gene resistance is expressed in cotyledons, leaves and pods, but not during late stages of stem colonization in the Leptosphaeria maculans–Brassica napus pathosystem. Plant Breed. 2016;135:200–207. doi: 10.1111/pbr.12343. [DOI] [Google Scholar]
- 59.Rimmer S.R., van den Berg C.G.J. Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans. Can. J. Plant Pathol. 1992;14:56–66. doi: 10.1080/07060669209500906. [DOI] [Google Scholar]
- 60.Huang Y.J., Pirie E.J., Evans N., Delourme R., King G.J., Fitt B.D.L. Quantitative resistance to symptomless growth of Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) Plant Pathol. 2009;58:314–323. doi: 10.1111/j.1365-3059.2008.01957.x. [DOI] [Google Scholar]
- 61.Brun H., Chèvre A.-M., Fitt B.D., Powers S., Besnard A.-L., Ermel M., Huteau V., Marquer B., Eber F., Renard M., et al. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol. 2010;185:285–299. doi: 10.1111/j.1469-8137.2009.03049.x. [DOI] [PubMed] [Google Scholar]
- 62.Rouxel T., Penaud A., Pinochet X., Brun H., Gout L., Delourme R., Schmit J., Balesdent M.-H. A 10-year Survey of Populations of Leptosphaeria maculans in France Indicates a Rapid Adaptation towards the Rlm1 Resistance Gene of Oilseed Rape. Eur. J. Plant Pathol. 2003;109:871–881. doi: 10.1023/A:1026189225466. [DOI] [Google Scholar]
- 63.Sprague S.J., Marcroft S.J., Hayden H.L., Howlett B.J. Major Gene Resistance to Blackleg in Brassica napus Overcome Within Three Years of Commercial Production in Southeastern Australia. Plant Dis. 2006;90:190–198. doi: 10.1094/PD-90-0190. [DOI] [PubMed] [Google Scholar]
- 64.Van de Wouw A.P., Howlett B.J., Idnurm A. Changes in allele frequencies of avirulence genes in the blackleg fungus, Leptosphaeria maculans, over two decades in Australia. Crop Pasture Sci. 2017;69:20–29. doi: 10.1071/CP16411. [DOI] [Google Scholar]
- 65.Winter M., Koopmann B. Race spectra of Leptosphaeria maculans, the causal agent of blackleg disease of oilseed rape, in different geographic regions in northern Germany. Eur. J. Plant Pathol. 2016;145:629–641. doi: 10.1007/s10658-016-0932-8. [DOI] [Google Scholar]
- 66.Zhang X., Peng G., Kutcher H., Balesdent M.-H., Delourme R., Fernando W. Breakdown of Rlm3 resistance in the Brassica napus—Leptosphaeria maculans pathosystem in western Canada. Eur. J. Plant Pathol. 2016;145:659–674. doi: 10.1007/s10658-015-0819-0. [DOI] [Google Scholar]
- 67.Raman H., Raman R., Larkan N. Genetic Dissection of Blackleg Resistance Loci in Rapeseed (Brassica napus L.) In: Andersen S.V., editor. Plant Breed from Laboratories to Fields. IntechOpen Limited; London, UK: 2013. pp. 85–120. [DOI] [Google Scholar]
- 68.Salisbury P.A., Cowling W.A., Potter T.D. Continuing innovation in Australian canola breeding. Crop Pasture Sci. 2016;67:266–272. doi: 10.1071/CP15262. [DOI] [Google Scholar]
- 69.Bayer P.E., Hurgobin B., Golicz A.A., Chan C.K., Yuan Y., Lee H., Renton M., Meng J., Li R., Long Y., et al. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol. J. 2017;15:1602–1610. doi: 10.1111/pbi.12742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Dolatabadian A., Bayer P.E., Tirnaz S., Hurgobin B., Edwards D., Batley J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 2019;18:969–982. doi: 10.1111/pbi.13262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Hurgobin B., Golicz A.A., Bayer P.E., Chan C.K., Tirnaz S., Dolatabadian A., Schiessl S.V., Samans B., Montenegro J.D., Parkin I.A.P., et al. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol. J. 2018;16:1265–1274. doi: 10.1111/pbi.12867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Bayer P., Golicz A., Tirnaz S., Chan C.K.K., Edwards D., Batley J. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol. J. 2019;17 doi: 10.1111/pbi.13015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Golicz A.A., Bayer P.E., Barker G.C., Edger P.P., Kim H., Martinez P.A., Chan C.K.K., Severn-Ellis A., McCombie W.R., Parkin I.A.P., et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 2016;7:13390. doi: 10.1038/ncomms13390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Yang J., Liu D., Wang X., Ji C., Cheng F., Liu B., Hu Z., Chen S., Pental D., Ju Y., et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 2016;48:1225. doi: 10.1038/ng.3657. [DOI] [PubMed] [Google Scholar]
- 75.Zhang L., Cai X., Wu J., Liu M., Grob S., Cheng F., Liang J., Cai C., Liu Z., Liu B., et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic. Res. 2018;5:50. doi: 10.1038/s41438-018-0071-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Larkan N.J., Yu F., Lydiate D.J., Rimmer S.R., Borhan M.H. Single R Gene Introgression Lines for Accurate Dissection of the Brassica—Leptosphaeria Pathosystem. Front. Plant Sci. 2016;7:1771. doi: 10.3389/fpls.2016.01771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Peng G., Yu F. Understanding the Mechanisms for Race-Specific and Non-Specific Resistance for Effective Use of Cultivar Resistance against Blackleg of Canola in Western Canada. Agriculture and Agri-Food Canada; Saskatoon, SK, Canada: 2018. p. 15. [Google Scholar]
- 78.Fu F., Liu X., Wang R., Zhai C., Peng G., Yu F., Fernando W.G.D. Fine mapping of Brassica napus blackleg resistance gene Rlm1 through bulked segregant RNA sequencing. Sci. Rep. 2019;9:14600. doi: 10.1038/s41598-019-51191-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Neik T.X. Ph.D. Thesis. The University of Western Australia; Perth, WA, Australia: 2019. Identification of a Candidate Blackleg Resistance Gene in Brassica napus and a Candidate Avirulence Gene in Leptosphaeria maculans in the B. napus—L. maculans Pathosystem. [Google Scholar]
- 80.Raman R., Diffey S., Barbulescu D.M., Coombes N., Luckett D., Salisbury P., Cowley R., Marcroft S., Raman H. Genetic and physical mapping of loci for resistance to blackleg disease in canola (Brassica napus L.) Sci. Rep. 2020;10:4416. doi: 10.1038/s41598-020-61211-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Raman H., Raman R., Coombes N., Song J., Diffey S., Kilian A., Lindbeck K., Barbulescu D.M., Batley J., Edwards D., et al. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola. Front. Plant Sci. 2016;7:1513. doi: 10.3389/fpls.2016.01513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Stotz H.U., Harvey P.J., Haddadi P., Mashanova A., Kukol A., Larkan N.J., Borhan M.H., Fitt B.D.L. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS ONE. 2018;13:e0198201. doi: 10.1371/journal.pone.0198201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Yu F., Lydiate D.J., Gugel R.K., Sharpe A.G., Rimmer S.R. Introgression of Brassica rapa subsp. sylvestris blackleg resistance into B. napus. Mol. Breed. 2012;30:1495–1506. doi: 10.1007/s11032-012-9735-6. [DOI] [Google Scholar]
- 84.Becker M.G., Zhang X., Walker P.L., Wan J.C., Millar J.L., Khan D., Granger M.J., Cavers J.D., Chan A.C., Fernando D.W.G., et al. Transcriptome analysis of the Brassica napus–Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J. 2017;90:573–586. doi: 10.1111/tpj.13514. [DOI] [PubMed] [Google Scholar]
- 85.Long Y., Wang Z., Sun Z., Fernando D., McVetty P., Li G. Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘Surpass 400’. Theor. Appl. Genet. 2011;122:1223–1231. doi: 10.1007/s00122-010-1526-z. [DOI] [PubMed] [Google Scholar]
- 86.Yu F., Gugel R.K., Kutcher H.R., Peng G., Rimmer S.R. Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris. Theor. Appl. Genet. 2012;126:307–315. doi: 10.1007/s00122-012-1919-2. [DOI] [PubMed] [Google Scholar]
- 87.Ferdous M.J., Hossain M.R., Park J.-I., Robin A.H.K., Jesse D.M.I., Jung H.-J., Kim H.-T., Nou I.-S. Inheritance Pattern and Molecular Markers for Resistance to Blackleg Disease in Cabbage. Plants (Basel) 2019;8:583. doi: 10.3390/plants8120583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Ferdous M.J., Hossain M.R., Park J.-I., Kim H.-T., Robin A.H.K., Natarajan S., Biswas M.K., Jung H.-J., Nou I.-S. In silico characterization and expression of disease-resistance-related genes within the collinear region of Brassica napus blackleg resistant locus LepR1′ in B. oleracea. J. Gen. Plant Pathol. 2020;86:442–456. doi: 10.1007/s10327-020-00946-y. [DOI] [Google Scholar]
- 89.Hossain M.R., Ferdous M.J., Park J.-I., Robin A.H.K., Natarajan S., Jung H.-J., Kim H.-T., Nou I.-S. In-silico identification and differential expression of putative disease resistance-related genes within the collinear region of Brassica napus blackleg resistance locus LepR2′ in Brassica oleracea. Hortic. Environ. Biotechnol. 2020;61:879–890. doi: 10.1007/s13580-020-00271-5. [DOI] [Google Scholar]
- 90.Ferdous M.J., Hossain M.R., Park J.-I., Robin A.H.K., Natarajan S., Jesse D.M.I., Jung H.-J., Kim H.-T., Nou I.-S. In-silico identification and differential expressions of LepR4-syntenic disease resistance related domain containing genes against blackleg causal fungus Leptosphaeria maculans in Brassica oleracea. Gene Rep. 2020;19:100598. doi: 10.1016/j.genrep.2020.100598. [DOI] [Google Scholar]
- 91.Yang H. Ph.D. Thesis. The University of Queensland; Brisbane, Australia: 2018. Identification of Candidate Genes for Blackleg Resistance in the New Brassica juncea Canola. [Google Scholar]
- 92.Inturrisi F.C. Ph.D. Thesis. The University of Western Australia; Perth, Australia: 2018. Genome-Wide Analysis of NBS-LRR Genes in Indian Mustard (Brassica juncea) and Prediction of Candidate Disease Resistance Genes. [Google Scholar]
- 93.Flor H.H. Current Status of the Gene-For-Gene Concept. Annu. Rev. Phytopathol. 1971;9:275–296. doi: 10.1146/annurev.py.09.090171.001423. [DOI] [Google Scholar]
- 94.Stakman E. Relation between Puccinia graminis and plants highly resistant to its attack. J. Agric. Res. 1915;4:193–200. [Google Scholar]
- 95.Freeman S. Biological Science. Prentice Hall; Upper Saddle River, NJ, USA: 2003. Chapter 37: Plant Defense Systems. [Google Scholar]
- 96.Ansan-Melayah D., Balesdent M., Rouxel T., Delourme R., Pilet M., Tanguy X., Renard M. Genes for race-specific resistance against blackleg disease in Brassica napus L. Plant Breed. 1998;117:373–378. doi: 10.1111/j.1439-0523.1998.tb01956.x. [DOI] [Google Scholar]
- 97.Larkan N.J., Lydiate D.J., Parkin I.A., Nelson M.N., Epp D.J., Cowling W.A., Rimmer S.R., Borhan M.H. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol. 2013;197:595–605. doi: 10.1111/nph.12043. [DOI] [PubMed] [Google Scholar]
- 98.Chalhoub B., Denoeud F., Liu S., Parkin I.A., Tang H., Wang X., Chiquet J., Belcram H., Tong C., Samans B., et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345:950–953. doi: 10.1126/science.1253435. [DOI] [PubMed] [Google Scholar]
- 99.Johnson R.D., Lewis B.G. Variation in host range, systemic infection and epidemiology of Leptosphaeria maculans. Plant Pathol. 1994;43:269–277. doi: 10.1111/j.1365-3059.1994.tb02685.x. [DOI] [Google Scholar]
- 100.Larkan N.J., Ma L., Borhan M.H. The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol. J. 2015;13:983–992. doi: 10.1111/pbi.12341. [DOI] [PubMed] [Google Scholar]
- 101.Ma L., Borhan M.H. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity. Front. Plant Sci. 2015;6:933. doi: 10.3389/fpls.2015.00933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Neik T.X., Ghanbarnia K., Ollivier B., Scheben A., Severn-Ellis A., Larkan N.J., Haddadi P., Fernando W.G.D., Rouxel T., Batley J., et al. Two independent approaches converge to the cloning of a new Leptosphaeria maculans avirulence effector gene AvrLmS-Lep2. bioRxiv. 2020 doi: 10.1101/2020.10.02.322479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Ghanbarnia K., Ma L., Larkan N.J., Haddadi P., Fernando W.G.D., Borhan M.H. Leptosphaeria maculans AvrLm9: A new player in the game of hide and seek with AvrLm4-7. Mol. Plant Pathol. 2018;19:1754–1764. doi: 10.1111/mpp.12658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Balesdent M.H., Attard A., Kuhn M.L., Rouxel T. New Avirulence Genes in the Phytopathogenic Fungus Leptosphaeria maculans. Phytopathology. 2002;92:1122–1133. doi: 10.1094/PHYTO.2002.92.10.1122. [DOI] [PubMed] [Google Scholar]
- 105.Rimmer S. Resistance genes to Leptosphaeria maculans in Brassica napus. Can. J. Plant Pathol. 2006;28:S288–S297. doi: 10.1080/07060660609507386. [DOI] [Google Scholar]
- 106.Larkan N.J., Ma L., Haddadi P., Buchwaldt M., Parkin I.A.P., Djavaheri M., Borhan M.H. The Brassica napus Wall-Associated Kinase-Like (WAKL) gene Rlm9 provides race-specific blackleg resistance. Plant J. 2020;n/a doi: 10.1111/tpj.14966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Parlange F., Daverdin G., Fudal I., Kuhn M.L., Balesdent M.H., Blaise F., Grezes-Besset B., Rouxel T. Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Mol. Microbiol. 2009;71:851–863. doi: 10.1111/j.1365-2958.2008.06547.x. [DOI] [PubMed] [Google Scholar]
- 108.Delourme R., Pilet-Nayel M.L., Archipiano M., Horvais R., Tanguy X., Rouxel T., Brun H., Renard M., Balesdent M.H. A Cluster of Major Specific Resistance Genes to Leptosphaeria maculans in Brassica napus. Phytopathology. 2004;94:578–583. doi: 10.1094/PHYTO.2004.94.6.578. [DOI] [PubMed] [Google Scholar]
- 109.Van de Wouw A.P., Howlett B.J. Advances in understanding the Leptosphaeria maculans—Brassica pathosystem and their impact on disease management. Can. J. Plant Pathol. 2019:1–15. doi: 10.1080/07060661.2019.1643788. [DOI] [Google Scholar]
- 110.Wang X., Wang H., Wang J., Sun R., Wu J., Liu S., Bai Y., Mun J.H., Bancroft I., Cheng F., et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 2011;43:1035–1039. doi: 10.1038/ng.919. [DOI] [PubMed] [Google Scholar]
- 111.Robin A., Larkan N., Laila R., Park J.-I., Ahmed N., Borhan H., Parkin I., Nou I.-S. Korean Brassica oleracea germplasm offers a novel source of qualitative resistance to blackleg disease. Eur. J. Plant Pathol. 2017;149:611–623. doi: 10.1007/s10658-017-1210-0. [DOI] [Google Scholar]
- 112.Eber F., Lourgant K., Brun H., Lode M., Huteau V., Coriton O., Alix K., Balesdent M., Chevre A.M. Analysis of Brassica nigra Chromosomes Allows Identification of a New Effective Leptosphaeria maculans resistance Gene Introgressed in Brassica napus; Proceedings of the 13th International Rapeseed Congress; Prague, Czech Republic. 5–9 June 2011. [Google Scholar]
- 113.Petit-Houdenot Y., Degrave A., Meyer M., Blaise F., Ollivier B., Marais C.-L., Jauneau A., Audran C., Rivas S., Veneault-Fourrey C., et al. A two genes—for—one gene interaction between Leptosphaeria maculans and Brassica napus. New Phytol. 2019;223:397–411. doi: 10.1111/nph.15762. [DOI] [PubMed] [Google Scholar]
- 114.Balesdent M.H., Fudal I., Ollivier B., Bally P., Grandaubert J., Eber F., Chevre A.M., Leflon M., Rouxel T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol. 2013;198:887–898. doi: 10.1111/nph.12178. [DOI] [PubMed] [Google Scholar]
- 115.Yu F., Lydiate D.J., Rimmer S.R. Identification of two novel genes for blackleg resistance in Brassica napus. Theor. Appl. Genet. 2005;110:969–979. doi: 10.1007/s00122-004-1919-y. [DOI] [PubMed] [Google Scholar]
- 116.Zhou T., Xu W., Hirani A.H., Liu Z., Tuan P.A., Ayele B.T., Daayf F., McVetty P.B.E., Duncan R.W., Li G. Transcriptional Insight Into Brassica napus Resistance Genes LepR3 and Rlm2-Mediated Defense Response Against the Leptosphaeria maculans Infection. Front. Plant Sci. 2019;10:823. doi: 10.3389/fpls.2019.00823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Dusabenyagasani M., Fernando D. Development of a SCAR Marker to Track Canola Resistance against Blackleg Caused by Leptosphaeria maculans Pathogenicity Group 3. Plant Dis. 2008;92:903–908. doi: 10.1094/PDIS-92-6-0903. [DOI] [PubMed] [Google Scholar]
- 118.Larkan N., Lydiate D., Yu F., Rimmer S., Borhan H. Co-localisation of the blackleg resistance genes Rlm2 and LepR3 on Brassica napus chromosome A10. BMC Plant Biol. 2014;14:1595. doi: 10.1186/s12870-014-0387-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Raman R., Taylor B., Marcroft S., Stiller J., Eckermann P., Coombes N., Rehman A., Lindbeck K., Luckett D., Wratten N., et al. Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.) Theor. Appl. Genet. 2012;125:405–418. doi: 10.1007/s00122-012-1842-6. [DOI] [PubMed] [Google Scholar]
- 120.Rahman H. Review: Breeding spring canola (Brassica napus L.) by the use of exotic germplasm. Can. J. Plant Sci. 2013;93:363–373. doi: 10.4141/cjps2012-074. [DOI] [Google Scholar]
- 121.Li C.X., Cowling W.A. Identification of a single dominant allele for resistance to blackleg in Brassica napus ’Surpass 400’. Plant Breed. 2003;122:485–488. doi: 10.1111/j.1439-0523.2003.00863.x. [DOI] [Google Scholar]
- 122.Chen C.Y., Séguin-Swartz G. A comparative study of the response of wild crucifers to the blackleg fungus, Phoma lingam. Can. J. Plant Pathol. 1997;19:107. [Google Scholar]
- 123.Chen C.Y., Séguin-Swartz G. Reaction of wild crucifers to Leptosphaeria maculans, the causal agent of blackleg of crucifers. Can. J. Plant Pathol. 1999;21:361–367. doi: 10.1080/07060669909501172. [DOI] [Google Scholar]
- 124.Gugel R., Séguin-Swartz G., Warwick S.I. Transfer of blackleg resistance from Erucastrum gallicum to Brassica rapa; Proceedings of the 67th Annual Meetings of Canadian Phytopathological Society; Saskatoon, SK, Canada. 23–26 June 1996. [Google Scholar]
- 125.Gugel R.K., Séguin-Swartz G. Introgression of blackleg resistance from Sinapis alba into Brassica napus; Proceedings of the Brassica 97, Int Soc Hortic Sci Symp Brassicas/10th Crucifer Genetics Workshop; Rennes, France. 23–27 September 1997; p. 222. [Google Scholar]
- 126.Li H., Barbetti M.J., Sivasithamparam K. Hazard from reliance on cruciferous hosts as sources of major gene-based resistance for managing blackleg (Leptosphaeria maculans) disease. Field Crops Res. 2005;91:185–198. doi: 10.1016/j.fcr.2004.06.006. [DOI] [Google Scholar]
- 127.Mithen R.F., Lewis B.G., Heaney R.K., Fenwick G.R. Resistance of leaves of Brassica species to Leptosphaeria maculans. Trans. Br. Mycol. Soc. 1987;88:525–531. doi: 10.1016/S0007-1536(87)80036-0. [DOI] [Google Scholar]
- 128.Mithen R.F., Magrath R. Glucosinolates and Resistance to Leptosphaeria maculans in Wild and Cultivated Brassica Species. Plant Breed. 1992;108:60–68. doi: 10.1111/j.1439-0523.1992.tb00100.x. [DOI] [Google Scholar]
- 129.Pedras M.S., Chumala P.B., Suchy M. Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: Structures, syntheses and antifungal activity. Phytochemistry. 2003;64:949–956. doi: 10.1016/S0031-9422(03)00441-2. [DOI] [PubMed] [Google Scholar]
- 130.Plümper B. Ph.D. Thesis. Free University of Berlin; Berlin, Germany: 1995. Somatische und sexuelle Hybridisierung für den Transfer von Krankheitsresistenzen auf Brassica napus L. [Google Scholar]
- 131.Tewari J.P., Bansal V.K., Tewari I., Gómez-Campo C., Stringam G.R., Thiagarajah M.R. Reactions of some wild and cultivated accessions of Eruca against Leptosphaeria maculans. Crucif. Newsl. Eucarpia. 1996;18:130–131. [Google Scholar]
- 132.Winter H. Ph.D. Thesis. Freie Universität Berlin Universitätsbibliothek; Berlin, Germany: 2004. Untersuchungen zur Introgression von Resistenzen gegen die Wurzelhals- und Stengelfäule [Leptosphaeria maculans (Desm.) Ces. et De Not.] aus Verwandten Arten in den Raps (Brassica napus L.): Examinations on the Introgression of Resistances to Blackleg [Leptosphaeria maculans (Desm.) Ces. et De Not.] into oilseed rape (Brassica napus L.) from Related Species. [Google Scholar]
- 133.Winter H., Diestel A., Gärtig S., Krone N., Sterenberg K., Sacristán M.D. Transfer of new blackleg resistances into oilseed rape; Proceedings of the GCIRC 11th Int. Rapeseed Congress; Copenhagen, Denmark. 6–10 July 2003; pp. 19–21. [Google Scholar]
- 134.Winter H., Gaertig S., Diestel A., Sacristán M.D. Blackleg resistance of different origin transferred into Brassica napus; Proceedings of the GCIRC 10th Int Rapeseed Congress; Canberra, Australia. 26–29 September 1999. [Google Scholar]
- 135.Alamery S., Tirnaz S., Bayer P., Tollenaere R., Chaloub B., Edwards D., Batley J. Genome-wide identification and comparative analysis of NBS-LRR resistance genes in Brassica napus. Crop Pasture Sci. 2017;69:79–93. doi: 10.1071/CP17214. [DOI] [Google Scholar]
- 136.Fu Y., Zhang Y., Mason A.S., Lin B., Zhang D., Yu H., Fu D. NBS-Encoding Genes in Brassica napus Evolved Rapidly After Allopolyploidization and Co-localize With Known Disease Resistance Loci. Front. Plant Sci. 2019;10:26. doi: 10.3389/fpls.2019.00026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Hofberger J.A., Zhou B., Tang H., Jones J.D.G., Schranz M.E. A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants. BMC Genom. 2014;15:966. doi: 10.1186/1471-2164-15-966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Li P., Quan X., Jia G., Xiao J., Cloutier S., You F.M. RGAugury: A pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genom. 2016;17:852. doi: 10.1186/s12864-016-3197-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Liu Z., Xie J., Wang H., Zhong X., Li H., Yu J., Kang J. Identification and expression profiling analysis of NBS–LRR genes involved in Fusarium oxysporum f.sp. conglutinans resistance in cabbage. 3 Biotech. 2019;9:202. doi: 10.1007/s13205-019-1714-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Tirnaz S., Bayer P., Inturrisi F., Neik T., Yang H., Dolatabadian A., Zhang F., Severn-Ellis A., Patel D., Pradhan A., et al. Resistance gene analogs in the Brassicaceae: Identification, characterization, distribution and evolution. Plant Physiol. 2020;184:909–922. doi: 10.1104/pp.20.00835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Toda N., Rustenholz C., Baud A., Le Paslier M.-C., Amselem J., Merdinoglu D., Faivre-Rampant P. NLGenomeSweeper: A Tool for Genome-Wide NBS-LRR Resistance Gene Identification. Genes. 2020;11:333. doi: 10.3390/genes11030333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Yu J., Tehrim S., Zhang F., Tong C., Huang J., Cheng X., Dong C., Zhou Y., Qin R., Hua W., et al. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genom. 2014;15:3. doi: 10.1186/1471-2164-15-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Zhang Y.-M., Shao Z.-Q., Wang Q., Hang Y.-Y., Xue J.-Y., Wang B., Chen J.-Q. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J. Integr. Plant Biol. 2015 doi: 10.1111/jipb.12365. [DOI] [PubMed] [Google Scholar]
- 144.Chëvre A.M., dePonce Leon A., Jenczewski E., Eber F., Delourme R., Renard M., Brun H. Introduction of blackleg resistance from Brassica rapa into Brassica napus; Proceedings of the 11th International Rapeseed Congress; Copenhagen, Denmark. 6–10 July 2003; pp. 32–35. [Google Scholar]
- 145.Fredua-Agyeman R., Coriton O., Huteau V., Parkin I.A.P., Chèvre A.-M., Rahman H. Molecular cytogenetic identification of B genome chromosomes linked to blackleg disease resistance in Brassica napus × B. carinata interspecific hybrids. Theor. Appl. Genet. 2014;127:1305–1318. doi: 10.1007/s00122-014-2298-7. [DOI] [PubMed] [Google Scholar]
- 146.Navabi Z.K., Parkin I.A., Pires J.C., Xiong Z., Thiagarajah M.R., Good A.G., Rahman M.H. Introgression of B-genome chromosomes in a doubled haploid population of Brassica napus × B-carinata. Genome. 2010;53:619–629. doi: 10.1139/G10-039. [DOI] [PubMed] [Google Scholar]
- 147.Navabi Z.K., Stead K.E., Pires J.C., Xiong Z., Sharpe A.G., Parkin I.A.P., Rahman M.H., Good A.G. Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus × B. carinata. Genetics. 2011;187:659–673. doi: 10.1534/genetics.110.124925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Chèvre A.M., Brun H., Eber F., Letanneur J.C., Vallee P., Ermel M., Glais I., Hua L., Sivasithamparam K., Barbetti M.J. Stabilization of Resistance to Leptosphaeria maculans in Brassica napus—B. juncea Recombinant Lines and Its Introgression into Spring-Type Brassica napus. Plant Dis. 2008;92:1208–1214. doi: 10.1094/PDIS-92-8-1208. [DOI] [PubMed] [Google Scholar]
- 149.Eber F., Delourme R., Barret P., Lourgant K., Brun H., Renard M., Chevre A.M. Characterisation and efficiency of mustard blackleg resistance genes introgressed into oilseed rape; Proceedings of the 10th International Rapeseed Congress; Canberra, Australia. 26–29 September 1999. [Google Scholar]
- 150.Saal B., Brun H., Glais I., Struss D. Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape. Plant Breed. 2004;123:505–511. doi: 10.1111/j.1439-0523.2004.01052.x. [DOI] [Google Scholar]
- 151.Gaebelein R., Alnajar D., Koopmann B., Mason A.S. Hybrids between Brassica napus and B. nigra show frequent pairing between the B and A/C genomes and resistance to blackleg. Chromosome Res. 2019;27:221–236. doi: 10.1007/s10577-019-09612-2. [DOI] [PubMed] [Google Scholar]
- 152.Gaebelein R., Alnajar D., Mason A. Brassica napus × Brassica nigra hybrids for blackleg resistance introgression in rapeseed breeding; Proceedings of the German Plant Breeding Conference; Wernigerode, Deutschland. 28 February–2 March 2018. [Google Scholar]
- 153.Hu Q., Andersen S., Dixelius C., Hansen L. Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep. 2002;21:147–152. doi: 10.1007/s00299-002-0491-7. [DOI] [Google Scholar]
- 154.Snowdon R., Winter H., Diestel A., Sacristán M. Development and characterisation of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor. Appl. Genet. 2000;101:1008–1014. doi: 10.1007/s001220051574. [DOI] [Google Scholar]
- 155.Liu J.-H., Landgren M., Glimelius K. Transfer of the Brassica tournefortii cytoplasm to B. napus for the production of cytoplasmic male sterile B. napus. Physiol. Plant. 1996;96:123–129. doi: 10.1111/j.1399-3054.1996.tb00192.x. [DOI] [Google Scholar]
- 156.Goff K.E., Ramonell K.M. The role and regulation of receptor-like kinases in plant defense. Gene Regul. Syst. Biol. 2007;1:167–175. doi: 10.1177/117762500700100015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Belkhadir Y., Chory J. Brassinosteroid Signaling: A Paradigm for Steroid Hormone Signaling from the Cell Surface. Science. 2006;314:1410. doi: 10.1126/science.1134040. [DOI] [PubMed] [Google Scholar]
- 158.Ogawa M., Shinohara H., Sakagami Y., Matsubayashi Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science. 2008;319:294. doi: 10.1126/science.1150083. [DOI] [PubMed] [Google Scholar]
- 159.Torii K.U. Mix-and-match: Ligand–receptor pairs in stomatal development and beyond. Trends Plant Sci. 2012;17:711–719. doi: 10.1016/j.tplants.2012.06.013. [DOI] [PubMed] [Google Scholar]
- 160.Ade J., DeYoung B.J., Golstein C., Innes R.W. Indirect activation of a plant nucleotide binding site–leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. USA. 2007;104:2531. doi: 10.1073/pnas.0608779104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Albert I., Böhm H., Albert M., Feiler C.E., Imkampe J., Wallmeroth N., Brancato C., Raaymakers T.M., Oome S., Zhang H., et al. An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nat. Plants. 2015;1:15140. doi: 10.1038/nplants.2015.140. [DOI] [PubMed] [Google Scholar]
- 162.Albert I., Zhang L., Bemm H., Nürnberger T. Structure-Function Analysis of Immune Receptor AtRLP23 with Its Ligand nlp20 and Coreceptors AtSOBIR1 and AtBAK1. Mol. Plant Microbe Interact. 2019;32:1038–1046. doi: 10.1094/MPMI-09-18-0263-R. [DOI] [PubMed] [Google Scholar]
- 163.Liu J., Elmore J.M., Lin Z.-J.D., Coaker G. A Receptor-like Cytoplasmic Kinase Phosphorylates the Host Target RIN4, Leading to the Activation of a Plant Innate Immune Receptor. Cell Host Microbe. 2011;9:137–146. doi: 10.1016/j.chom.2011.01.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Mackey D., Holt B.F., Wiig A., Dangl J.L. RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis. Cell. 2002;108:743–754. doi: 10.1016/S0092-8674(02)00661-X. [DOI] [PubMed] [Google Scholar]
- 165.Shao F., Golstein C., Ade J., Stoutemyer M., Dixon J.E., Innes R.W. Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector. Science. 2003;301:1230. doi: 10.1126/science.1085671. [DOI] [PubMed] [Google Scholar]
- 166.Swiderski M.R., Innes R.W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 2001;26:101–112. doi: 10.1046/j.1365-313x.2001.01014.x. [DOI] [PubMed] [Google Scholar]
- 167.van der Burgh A.M., Postma J., Robatzek S., Joosten M.H.A.J. Kinase activity of SOBIR1 and BAK1 is required for immune signalling. Mol. Plant Pathol. 2019;20:410–422. doi: 10.1111/mpp.12767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Shiu S.-H., Bleecker A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA. 2001;98:10763. doi: 10.1073/pnas.181141598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Kourelis J., van der Hoorn R.A.L. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. Plant Cell. 2018;30:285. doi: 10.1105/tpc.17.00579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170.Caplan J.L., Mamillapalli P., Burch-Smith T.M., Czymmek K., Dinesh-Kumar S.P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell. 2008;132:449–462. doi: 10.1016/j.cell.2007.12.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Lewis J.D., Lee A.H., Hassan J.A., Wan J., Hurley B., Jhingree J.R., Wang P.W., Lo T., Youn J.Y., Guttman D.S., et al. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc. Natl. Acad. Sci. USA. 2013;110:18722–18727. doi: 10.1073/pnas.1315520110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Bernoux M., Ellis J.G., Dodds P.N. New insights in plant immunity signaling activation. Curr. Opin. Plant Biol. 2011;14:512–518. doi: 10.1016/j.pbi.2011.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Hatakeyama K., Suwabe K., Tomita R.N., Kato T., Nunome T., Fukuoka H., Matsumoto S. Identification and Characterization of Crr1a, a Gene for Resistance to Clubroot Disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS ONE. 2013;8:e54745. doi: 10.1371/journal.pone.0054745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Ueno H., Matsumoto E., Aruga D., Kitagawa S., Matsumura H., Hayashida N. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol. Biol. 2012;80:621–629. doi: 10.1007/s11103-012-9971-5. [DOI] [PubMed] [Google Scholar]
- 175.Zipfel C., Oldroyd G.E. Plant signalling in symbiosis and immunity. Nature. 2017;543:328–336. doi: 10.1038/nature22009. [DOI] [PubMed] [Google Scholar]
- 176.Roy N.N. Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica. 1984;33:295–303. doi: 10.1007/BF00021125. [DOI] [Google Scholar]
- 177.Schelfhout C.J., Snowdon R., Cowling W.A., Wroth J.M. Tracing B-genome chromatin in Brassica napus × B. juncea interspecific progeny. Genome. 2006;49:1490–1497. doi: 10.1139/g06-103. [DOI] [PubMed] [Google Scholar]
- 178.Perumal S., Koh C.S., Jin L., Buchwaldt M., Higgins E.E., Zheng C., Sankoff D., Robinson S.J., Kagale S., Navabi Z.-K., et al. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat. Plants. 2020;6:929–941. doi: 10.1038/s41477-020-0735-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Khedikar Y., Clarke W.E., Chen L., Higgins E.E., Kagale S., Koh C.S., Bennett R., Parkin I.A.P. Narrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed crop, Brassica carinata A. Braun. Sci. Rep. 2020;10:12629. doi: 10.1038/s41598-020-69255-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Cheng C.Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S., Town C.D. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89:789–804. doi: 10.1111/tpj.13415. [DOI] [PubMed] [Google Scholar]
- 181.Peele H.M., Guan N., Fogelqvist J., Dixelius C. Loss and retention of resistance genes in five species of the Brassicaceae family. BMC Plant Biol. 2014;14:298. doi: 10.1186/s12870-014-0298-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Staal J., Kaliff M., Bohman S., Dixelius C. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 2006;46:218–230. doi: 10.1111/j.1365-313X.2006.02688.x. [DOI] [PubMed] [Google Scholar]
- 183.Bohman S., Staal J., Thomma B.P., Wang M., Dixelius C. Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: Resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 2004;37:9–20. doi: 10.1046/j.1365-313X.2003.01927.x. [DOI] [PubMed] [Google Scholar]
- 184.Persson M., Staal J., Oide S., Dixelius C. Layers of Defense Responses to Leptosphaeria maculans below the RLM1- and Camalexin-Dependent Resistances. New Phytol. 2009;182:470–482. doi: 10.1111/j.1469-8137.2009.02763.x. [DOI] [PubMed] [Google Scholar]
- 185.Staal J., Kaliff M., Dewaele E., Persson M., Dixelius C. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J. 2008;55:188–200. doi: 10.1111/j.1365-313X.2008.03503.x. [DOI] [PubMed] [Google Scholar]
- 186.Peele H.M. Defense Gene Responses toward Necrotrophic Fungi in Arabidopsis Thaliana. Swedish University of Agricultural Sciences; Uppsala, Sweden: 2015. [Google Scholar]
- 187.Cavaiuolo M., Cocetta G., Spadafora N.D., Müller C.T., Rogers H.J., Ferrante A. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia. PLoS ONE. 2017;12:e0178119. doi: 10.1371/journal.pone.0178119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 188.Kumari P., Singh K.P., Rai P.K. Draft genome of multiple resistance donor plant Sinapis alba: An insight into SSRs, annotations and phylogenetics. PLoS ONE. 2020;15:e0231002. doi: 10.1371/journal.pone.0231002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Liu J., Mei D., Li Y., Huang S., Hu Q. Deep RNA-Seq to unlock the gene bank of floral development in Sinapis arvensis. PLoS ONE. 2014;9:e105775. doi: 10.1371/journal.pone.0105775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Cai C., Wang X., Liu B., Wu J., Liang J., Cui Y., Cheng F., Wang X. Brassica rapa Genome 2.0: A Reference Upgrade through Sequence Re-assembly and Gene Re-annotation. Mol. Plant. 2017;10:649–651. doi: 10.1016/j.molp.2016.11.008. [DOI] [PubMed] [Google Scholar]
- 191.Parkin I.A.P., Koh C., Tang H., Robinson S.J., Kagale S., Clarke W.E., Town C.D., Nixon J., Krishnakumar V., Bidwell S.L., et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014;15:R77. doi: 10.1186/gb-2014-15-6-r77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 192.Bayer P.E., Golicz A.A., Scheben A., Batley J., Edwards D. Plant pan-genomes are the new reference. Nat. Plants. 2020;6:914–920. doi: 10.1038/s41477-020-0733-0. [DOI] [PubMed] [Google Scholar]
- 193.Danilevicz M.F., Tay Fernandez C.G., Marsh J.I., Bayer P.E., Edwards D. Plant pangenomics: Approaches, applications and advancements. Curr. Opin. Plant Biol. 2020;54:18–25. doi: 10.1016/j.pbi.2019.12.005. [DOI] [PubMed] [Google Scholar]
- 194.Golicz A.A., Bayer P.E., Bhalla P.L., Batley J., Edwards D. Pangenomics Comes of Age: From Bacteria to Plant and Animal Applications. Trends Genet. 2020;36:132–145. doi: 10.1016/j.tig.2019.11.006. [DOI] [PubMed] [Google Scholar]
- 195.Montenegro J.D., Golicz A.A., Bayer P.E., Hurgobin B., Lee H., Chan C.-K.K., Visendi P., Lai K., Doležel J., Batley J., et al. The pangenome of hexaploid bread wheat. Plant J. 2017;90:1007–1013. doi: 10.1111/tpj.13515. [DOI] [PubMed] [Google Scholar]
- 196.Yu J., Golicz A.A., Lu K., Dossa K., Zhang Y., Chen J., Wang L., You J., Fan D., Edwards D., et al. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnol. J. 2019;17:881–892. doi: 10.1111/pbi.13022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Song J.-M., Guan Z., Hu J., Guo C., Yang Z., Wang S., Liu D., Wang B., Lu S., Zhou R., et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants. 2020;6:34–45. doi: 10.1038/s41477-019-0577-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Aylward J., Steenkamp E.T., Dreyer L.L., Roets F., Wingfield B.D., Wingfield M.J. A plant pathology perspective of fungal genome sequencing. IMA Fungus. 2017;8:1–15. doi: 10.5598/imafungus.2017.08.01.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 199.Fudal I., Ross S., Gout L., Blaise F., Kuhn M.L., Eckert M.R., Cattolico L., Bernard-Samain S., Balesdent M.H., Rouxel T. Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: Map-based cloning of AvrLm6. Mol. Plant Microbe Interact. 2007;20:459–470. doi: 10.1094/MPMI-20-4-0459. [DOI] [PubMed] [Google Scholar]
- 200.Ghanbarnia K., Fudal I., Larkan N.J., Links M.G., Balesdent M.H., Profotova B., Fernando W.G., Rouxel T., Borhan M.H. Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Mol. Plant Pathol. 2015;16:699–709. doi: 10.1111/mpp.12228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Plissonneau C., Daverdin G., Ollivier B., Blaise F., Degrave A., Fudal I., Rouxel T., Balesdent M.H. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytol. 2016;209:1613–1624. doi: 10.1111/nph.13736. [DOI] [PubMed] [Google Scholar]
- 202.Van de Wouw A.P., Lowe R.G., Elliott C.E., Dubois D.J., Howlett B.J. An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. Mol. Plant Pathol. 2014;15:523–530. doi: 10.1111/mpp.12105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Plissonneau C., Rouxel T., Chevre A.M., Van De Wouw A.P., Balesdent M.H. One gene-one name: The AvrLmJ1 avirulence gene of Leptosphaeria maculans is AvrLm5. Mol. Plant Pathol. 2018;19:1012–1016. doi: 10.1111/mpp.12574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Gout L., Fudal I., Kuhn M.L., Blaise F., Eckert M., Cattolico L., Balesdent M.H., Rouxel T. Lost in the middle of nowhere: The AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol. Microbiol. 2006;60:67–80. doi: 10.1111/j.1365-2958.2006.05076.x. [DOI] [PubMed] [Google Scholar]
- 205.Rouxel T., Grandaubert J., James K.H., Claire H., Angela P.V.D.W., Arnaud C., Victoria D., Véronique A., Pascal B., Salim B., et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat. Commun. 2011;2:202. doi: 10.1038/ncomms1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Daverdin G., Rouxel T., Gout L., Aubertot J.-N., Fudal I., Meyer M., Parlange F., Carpezat J., Balesdent M.-H. Genome Structure and Reproductive Behaviour Influence the Evolutionary Potential of a Fungal Phytopathogen. PLoS Pathog. 2012;8:e1003020. doi: 10.1371/journal.ppat.1003020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207.Fudal I., Ross S., Brun H., Besnard A.L., Ermel M., Kuhn M.L., Balesdent M.H., Rouxel T. Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Mol. Plant Microbe Interact. 2009;22:932–941. doi: 10.1094/MPMI-22-8-0932. [DOI] [PubMed] [Google Scholar]
- 208.Gout L., Kuhn M.L., Vincenot L., Bernard-Samain S., Cattolico L., Barbetti M., Moreno-Rico O., Balesdent M.-H., Rouxel T. Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans. Environ. Microbiol. 2007;9:2978–2992. doi: 10.1111/j.1462-2920.2007.01408.x. [DOI] [PubMed] [Google Scholar]
- 209.Novakova M., Sasek V., Trda L., Krutinova H., Mongin T., Valentova O., Balesdent M.H., Rouxel T., Burketova L. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2O2) accumulation in Brassica napus. Mol. Plant Pathol. 2016;17:818–831. doi: 10.1111/mpp.12332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Ma L., Djavaheri M., Wang H., Larkan N.J., Haddadi P., Beynon E., Gropp G., Borhan M.H. Leptosphaeria maculans Effector Protein AvrLm1 Modulates Plant Immunity by Enhancing MAP Kinase 9 Phosphorylation. iScience. 2018;3:177–191. doi: 10.1016/j.isci.2018.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211.Becker M.G., Haddadi P., Wan J., Adam L., Walker P., Larkan N.J., Daayf F., Borhan M.H., Belmonte M.F. Transcriptome Analysis of Rlm2-Mediated Host Immunity in the Brassica napus-Leptosphaeria maculans Pathosystem. Mol. Plant Microbe Interact. 2019;32:1001–1012. doi: 10.1094/MPMI-01-19-0028-R. [DOI] [PubMed] [Google Scholar]
- 212.Schweighofer A., Kazanaviciute V., Scheikl E., Teige M., Doczi R., Hirt H., Schwanninger M., Kant M., Schuurink R., Mauch F., et al. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell. 2007;19:2213–2224. doi: 10.1105/tpc.106.049585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Teper D., Sunitha S., Martin G.B., Sessa G. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 2015;10:e1064573. doi: 10.1080/15592324.2015.1064573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Trdá L., Barešová M., Šašek V., Nováková M., Zahajská L., Dobrev P.I., Motyka V., Burketová L. Cytokinin Metabolism of Pathogenic Fungus Leptosphaeria maculans Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase. Front. Microbiol. 2017;8:1374. doi: 10.3389/fmicb.2017.01374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 215.Feng J., Zhang H., Strelkov S.E., Hwang S.-F. The LmSNF1 Gene Is Required for Pathogenicity in the Canola Blackleg Pathogen Leptosphaeria maculans. PLoS ONE. 2014;9:e92503. doi: 10.1371/journal.pone.0092503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 216.Haddadi P., Ma L., Wang H., Borhan M.H. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Mol. Plant Pathol. 2016;17:1196–1210. doi: 10.1111/mpp.12356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Lowe R.G., Cassin A., Grandaubert J., Clark B.L., Van de Wouw A.P., Rouxel T., Howlett B.J. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species. PLoS ONE. 2014;9:e103098. doi: 10.1371/journal.pone.0103098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Sonah H., Zhang X., Deshmukh R.K., Borhan M.H., Fernando W.G.D., Bélanger R.R. Comparative Transcriptomic Analysis of Virulence Factors in Leptosphaeria maculans during Compatible and Incompatible Interactions with Canola. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.01784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Soyer J.L., Hamiot A., Ollivier B., Balesdent M.H., Rouxel T., Fudal I. The APSES transcription factor LmStuA is required for sporulation, pathogenic development and effector gene expression in Leptosphaeria maculans. Mol. Plant Pathol. 2015;16:1000–1005. doi: 10.1111/mpp.12249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 220.Idnurm A., Howlett B.J. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus) Eukaryot. Cell. 2002;1:719–724. doi: 10.1128/EC.1.5.719-724.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 221.Kaczmarek J., Latunde-Dada A.O., Irzykowski W., Cools H.J., Stonard J.F., Brachaczek A., Jedryczka M. Molecular screening for avirulence alleles AvrLm1 and AvrLm6 in airborne inoculum of Leptosphaeria maculans and winter oilseed rape (Brassica napus) plants from Poland and the UK. J. Appl. Genet. 2014;55:529–539. doi: 10.1007/s13353-014-0235-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Singh K., Zouhar M., Mazakova J., Rysanek P. Genome wide identification of the immunophilin gene family in Leptosphaeria maculans: A causal agent of Blackleg disease in Oilseed Rape (Brassica napus) OMICS. 2014;18:645–657. doi: 10.1089/omi.2014.0081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 223.Gervais J., Plissonneau C., Linglin J., Meyer M., Labadie K., Cruaud C., Fudal I., Rouxel T., Balesdent M.H. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. Mol. Plant Pathol. 2017;18:1113–1126. doi: 10.1111/mpp.12464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 224.Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005;43:205–227. doi: 10.1146/annurev.phyto.43.040204.135923. [DOI] [PubMed] [Google Scholar]
- 225.Sasek V., Novakova M., Jindrichova B., Boka K., Valentova O., Burketova L. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Mol. Plant Microbe Interact. 2012;25:1238–1250. doi: 10.1094/MPMI-02-12-0033-R. [DOI] [PubMed] [Google Scholar]
- 226.Dubiella U., Seybold H., Durian G., Komander E., Lassig R., Witte C.P., Schulze W.X., Romeis T. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc. Natl. Acad. Sci. USA. 2013;110:8744–8749. doi: 10.1073/pnas.1221294110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Gravino M., Savatin D.V., Macone A., De Lorenzo G. Ethylene production in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. Plant J. 2015;84:1073–1086. doi: 10.1111/tpj.13057. [DOI] [PubMed] [Google Scholar]
- 228.Noman A., Liu Z., Aqeel M., Zainab M., Khan M.I., Hussain A., Ashraf M.F., Li X., Weng Y., He S. Basic leucine zipper domain transcription factors: The vanguards in plant immunity. Biotechnol. Lett. 2017;39:1779–1791. doi: 10.1007/s10529-017-2431-1. [DOI] [PubMed] [Google Scholar]
- 229.Xu F., Kapos P., Cheng Y.T., Li M., Zhang Y., Li X. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog. 2014;10:e1004312. doi: 10.1371/journal.ppat.1004312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Zhou Y., Sun L., Wassan G.M., He X., Shaban M., Zhang L., Zhu L., Zhang X. GbSOBIR1 confers Verticillium wilt resistance by phosphorylating the transcriptional factor GbbHLH171 in Gossypium barbadense. Plant Biotechnol. J. 2019;17:152–163. doi: 10.1111/pbi.12954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 231.Pedras M.S., Yaya E.E., Glawischnig E. The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Nat. Prod. Rep. 2011;28:1381–1405. doi: 10.1039/c1np00020a. [DOI] [PubMed] [Google Scholar]
- 232.Ebeed H.T. Bioinformatics Studies on the Identification of New Players and Candidate Genes to Improve Brassica Response to Abiotic Stress. In: Hasanuzzaman M., editor. The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses. Springer; Singapore: 2020. pp. 483–496. [DOI] [Google Scholar]
- 233.Khan A.W., Garg V., Roorkiwal M., Golicz A.A., Edwards D., Varshney R.K. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends Plant Sci. 2020;25:148–158. doi: 10.1016/j.tplants.2019.10.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 234.Scheben A., Edwards D. Genome editors take on crops. Science. 2017;355:1122–1123. doi: 10.1126/science.aal4680. [DOI] [PubMed] [Google Scholar]
- 235.Scheben A., Edwards D. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol. 2018;19:178. doi: 10.1186/s13059-018-1555-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Scheben A., Edwards D. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr. Opin. Plant Biol. 2018;45:218–225. doi: 10.1016/j.pbi.2018.04.013. [DOI] [PubMed] [Google Scholar]
- 237.Scheben A., Wolter F., Batley J., Puchta H., Edwards D. Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol. 2017;216:682–698. doi: 10.1111/nph.14702. [DOI] [PubMed] [Google Scholar]
- 238.Hasanuzzaman M. The Plant Family Brassicaceae. 1st ed. Springer; Singapore: 2020. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
No new data were created or analyzed in this study. Data sharing is not applicable to this article.


