Abstract
Lung diseases, including COVID-19 and lung cancers, is a huge threat to human health. However, for the treatment and diagnosis of various lung diseases, such as pneumonia, asthma, cancer, and pulmonary tuberculosis, are becoming increasingly challenging. Currently, several types of treatments and/or diagnostic methods are used to treat lung diseases; however, the occurrence of adverse reactions to chemotherapy, drug-resistant bacteria, side effects that can be significantly toxic, and poor drug delivery necessitates the development of more promising treatments. Nanotechnology, as an emerging technology, has been extensively studied in medicine. Several studies have shown that nano-delivery systems can significantly enhance the targeting of drug delivery. When compared to traditional delivery methods, several nanoparticle delivery strategies are used to improve the detection methods and drug treatment efficacy. Transporting nanoparticles to the lungs, loading appropriate therapeutic drugs, and the incorporation of intelligent functions to overcome various lung barriers have broad prospects as they can aid in locating target tissues and can enhance the therapeutic effect while minimizing systemic side effects. In addition, as a new and highly contagious respiratory infection disease, COVID-19 is spreading worldwide. However, there is no specific drug for COVID-19. Clinical trials are being conducted in several countries to develop antiviral drugs or vaccines. In recent years, nanotechnology has provided a feasible platform for improving the diagnosis and treatment of diseases, nanotechnology-based strategies may have broad prospects in the diagnosis and treatment of COVID-19. This article reviews the latest developments in nanotechnology drug delivery strategies in the lungs in recent years and studies the clinical application value of nanomedicine in the drug delivery strategy pertaining to the lung.
Keywords: lung diseases, drug delivery, nanoparticles
Acknowledgements
This research was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2018ZX10301402), the National Natural Science Foundation of China (No. 51973243), the International Cooperation and Exchange of the National Natural Science Foundation of China (No. 51820105004), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06S029), the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110903), the Sanming Project of Medicine in Shenzhen (No. SZSM201911004) and the Research Start-up Fund of Post-doctoral, of SAHSYSU (No. ZSQYRSFPD0016).
Footnotes
Wenhao Zhong and Xinyu Zhang contributed equally to this work.
Contributor Information
Dongjun Lin, Email: lindongjun0168@163.com.
Jun Wu, Email: wujun29@mail.sysu.edu.cn.
References
- [1].Azarmi S, Roa W H, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. 2008;60:863–875. doi: 10.1016/j.addr.2007.11.006. [DOI] [PubMed] [Google Scholar]
- [2].Newman S P. Drug delivery to the lungs: Challenges and opportunities. Ther. Deliv. 2017;8:647–661. doi: 10.4155/tde-2017-0037. [DOI] [PubMed] [Google Scholar]
- [3].Patton J S, Brain J D, Davies L A, Fiegel J, Gumbleton M, Kim K J, Sakagami M, Vanbever R, Ehrhardt C. The particle has landed—characterizing the fate of inhaled pharmaceuticals. J. Aerosol. Med. Pulm. Drug Deliv. 2010;23Suppl2:S71–S87. doi: 10.1089/jamp.2010.0836. [DOI] [PubMed] [Google Scholar]
- [4].Yu C P. Exact analysis of aerosol deposition during steady breathing. Powder Technol. 1978;27:55–62. doi: 10.1016/0032-5910(78)80107-7. [DOI] [Google Scholar]
- [5].Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. [DOI] [PubMed] [Google Scholar]
- [6].di Sant’Agnese P A, Davis P B. Research in cystic fibrosis (third of three parts) N. Engl. J. Med. 1976;295:597–602. doi: 10.1056/NEJM197609092951105. [DOI] [PubMed] [Google Scholar]
- [7].Siafakas N M, Vermeire P, Pride N B, Paoletti P, Gibson J, Howard P, Yernault J C, Decramer M, Higenbottam T, Postma D S, et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). The European respiratory society task force. Eur. Respir. J. 1995;8:1398–1420. doi: 10.1183/09031936.95.08081398. [DOI] [PubMed] [Google Scholar]
- [8].Sevinç F, Prins J M, Koopmans R P, Langendijk P N J, Bossuyt P M, Dankert J, Speelman P. Early switch from intravenous to oral antibiotics: Guidelines and implementation in a large teaching hospital. J. Antimicrob. Chemoth. 1999;43:601–606. doi: 10.1093/jac/43.4.601. [DOI] [PubMed] [Google Scholar]
- [9].MacGregor R R, Graziani A L. Oral administration of antibiotics: A rational alternative to the parenteral route. Clin. Infect. Dis. 1997;24:457–467. doi: 10.1093/clinids/24.3.457. [DOI] [PubMed] [Google Scholar]
- [10].Patton J S, Byron P R. Inhaling medicines: Delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 2007;6:67–74. doi: 10.1038/nrd2153. [DOI] [PubMed] [Google Scholar]
- [11].Rosen H, Abribat T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 2005;4:381–385. doi: 10.1038/nrd1721. [DOI] [PubMed] [Google Scholar]
- [12].Di Marco M, Shamsuddin S, Razak K A, Aziz A A, Devaux C, Borghi E, Levy L, Sadun C. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation. Int. J. Nanomedicine. 2010;5:37–49. [PMC free article] [PubMed] [Google Scholar]
- [13].Roger E, Lagarce F, Garcion E, Benoit J P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine. 2010;5:287–306. doi: 10.2217/nnm.09.110. [DOI] [PubMed] [Google Scholar]
- [14].Chao P Y, Deshmukh M, Kutscher H L, Gao D Y, Rajan S S, Hu P D, Laskin D L, Stein S, Sinko P J. Pulmonary targeting microparticulate camptothecin delivery system: Anticancer evaluation in a rat orthotopic lung cancer model. Anti-Cancer Drugs. 2010;27:65–76. doi: 10.1097/CAD.0b013e328332a322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Patton J S, Fishburn C S, Weers J G. The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 2004;1:338–344. doi: 10.1513/pats.200409-049TA. [DOI] [PubMed] [Google Scholar]
- [16].Sung J C, Pulliam B L, Edwards D A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–570. doi: 10.1016/j.tibtech.2007.09.005. [DOI] [PubMed] [Google Scholar]
- [17].Dailey L A, Schmehl T, Gessler T, Wittmar M, Grimminger F, Seeger W, Kissel T. Nebulization of biodegradable nanoparticles: Impact of nebulizer technology and nanoparticle characteristics on aerosol features. J. Controlled Release. 2003;86:131–144. doi: 10.1016/S0168-3659(02)00370-X. [DOI] [PubMed] [Google Scholar]
- [18].Geller D E, Pitlick W H, Nardella P A, Tracewell W G, Ramsey B W. Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest. 2002;122:219–226. doi: 10.1378/chest.122.1.219. [DOI] [PubMed] [Google Scholar]
- [19].Flume P A, VanDevanter D R. Clinical applications of pulmonary delivery of antibiotics. Adv. Drug Deliv. Rev. 2015;85:1–6. doi: 10.1016/j.addr.2014.10.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Wenzler E, Fraidenburg D R, Scardina T, Danziger L H. Inhaled antibiotics for gram-negative respiratory infections. Clin. Microbiol. Rev. 2016;29:581–632. doi: 10.1128/CMR.00101-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Langton Hewer S C, Smyth A R. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database. Syst. Rev. 2017;4:CD004197. doi: 10.1002/14651858.CD004197.pub5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Cohen-Cymberknoh M, Shoseyov D, Kerem E. Managing cystic fibrosis: Strategies that increase life expectancy and improve quality of life. Am. J. Respir. Crit. Care Med. 2011;183:1463–1471. doi: 10.1164/rccm.201009-1478CI. [DOI] [PubMed] [Google Scholar]
- [23].Mei L, Zhu G Z, Qiu L P, Wu C C, Chen H P, Liang H, Cansiz S, Lv Y F, Zhang X B, Tan W H. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 2015;8:3447–3460. doi: 10.1007/s12274-015-0841-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [24].Zhou Q, Leung S S Y, Tang P, Parumasivam T, Loh Z H, Chan H K. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv. Drug Deliv. Rev. 2015;85:83–99. doi: 10.1016/j.addr.2014.10.022. [DOI] [PubMed] [Google Scholar]
- [25].Pérez B F, Méndez G A, Lagos R A, Vargas M S L. Mucociliary clearance system in lung defense. Rev. Med. Chil. 2014;142:606–615. doi: 10.4067/S0034-98872014000500009. [DOI] [PubMed] [Google Scholar]
- [26].Hardy C L, LeMasurier J S, Mohamud R, Yao J, Xiang S D, Rolland J M, O’Hehir R E, Plebanski M. Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. J. Immunol. 2013;191:5278–5290. doi: 10.4049/jimmunol.1203131. [DOI] [PubMed] [Google Scholar]
- [27].d’Angelo I, Conte C, La Rotonda M I, Miro A, Quaglia F, Ungaro F. Improving the efficacy of inhaled drugs in cystic fibrosis: Challenges and emerging drug delivery strategies. Adv. Drug Deliv. Rev. 2014;75:92–111. doi: 10.1016/j.addr.2014.05.008. [DOI] [PubMed] [Google Scholar]
- [28].Hoffmann I M, Rubin B K, Iskandar S S, Schechter M S, Nagaraj S K, Bitzan M M. Acute renal failure in cystic fibrosis: Association with inhaled tobramycin therapy. Pediatr. Pulm. 2002;34:375–377. doi: 10.1002/ppul.10185. [DOI] [PubMed] [Google Scholar]
- [29].Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities. APMIS. 2014;122:1–51. doi: 10.1111/apm.12335. [DOI] [PubMed] [Google Scholar]
- [30].Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream. Science. 2004;303:1818–1822. doi: 10.1126/science.1095833. [DOI] [PubMed] [Google Scholar]
- [31].Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–490. doi: 10.1038/nature09657. [DOI] [PubMed] [Google Scholar]
- [32].Raeburn D, Underwood S L, Villamil M E. Techniques for drug delivery to the airways, and the assessment of lung function in animal models. J. Pharmacol. Toxicol. Methods. 1992;27:143–159. doi: 10.1016/1056-8719(92)90035-Y. [DOI] [PubMed] [Google Scholar]
- [33].Thompson D C J D. Pharmacology of therapeutic aerosols. Science. 1992;54:29–59. [Google Scholar]
- [34].Courrier H M, Butz N, Vandamme T F. Pulmonary drug delivery systems: Recent developments and prospects. Crit. Rev. Ther. Drug Carrier Syst. 2002;19:425–498. doi: 10.1615/CritRevTherDrugCarrierSyst.v19.i45.40. [DOI] [PubMed] [Google Scholar]
- [35].Clark A J D D S. Sciences formulation of proteins and peptides for inhalation. Science. 2002;2:73–77. [Google Scholar]
- [36].Gill S, Löbenberg R, Ku T, Azarmi S, Roa W, Prenner E J. Nanoparticles: Characteristics, mechanisms of action, and toxicity in pulmonary drug delivery—a review. J. Biomed. Nanotechnol. 2007;3:107–119. doi: 10.1166/jbn.2007.015. [DOI] [Google Scholar]
- [37].Ranney D F. Drug targeting to the lungs. Biochem. Pharmacol. 1986;35:1063–1069. doi: 10.1016/0006-2952(86)90140-1. [DOI] [PubMed] [Google Scholar]
- [38].Barnes P J. Nocturnal asthma: Mechanisms and treatment. Br. Med. J. 1984;288:1397–1398. doi: 10.1136/bmj.288.6428.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Surendrakumar K, Martyn G P, Hodgers E C M, Jansen M, Blair J A. Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs. J. Control. Release. 2003;91:385–394. doi: 10.1016/S0168-3659(03)00263-3. [DOI] [PubMed] [Google Scholar]
- [40].Cook R O, Pannu R K, Kellaway I W. Novel sustained release microspheres for pulmonary drug delivery. J. Control. Release. 2005;104:79–90. doi: 10.1016/j.jconrel.2005.01.003. [DOI] [PubMed] [Google Scholar]
- [41].Hardy J G, Chadwick T S. Sustained release drug delivery to the lungs: An option for the future. Clin. Pharmacokinet. 2000;39:1–4. doi: 10.2165/00003088-200039010-00001. [DOI] [PubMed] [Google Scholar]
- [42].Zeng X M, Martin G P, Marriott C. The controlled delivery of drugs to the lung. Int. J. Pharm. 1995;124:149–164. doi: 10.1016/0378-5173(95)00104-Q. [DOI] [Google Scholar]
- [43].Bourzac K. Nanotechnology: Carrying drugs. Nature. 2012;491:S58–S60. doi: 10.1038/491S58a. [DOI] [PubMed] [Google Scholar]
- [44].Pelaz B, Alexiou C, Alvarez-Puebla R A, Alves F, Andrews A M, Ashraf S, Balogh L P, Ballerini L, Bestetti A, Brendel C, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–2381. doi: 10.1021/acsnano.6b06040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [45].Vij N. Nano-based rescue of dysfunctional autophagy in chronic obstructive lung diseases. Expert Opin. Drug Deliv. 2017;14:483–489. doi: 10.1080/17425247.2016.1223040. [DOI] [PubMed] [Google Scholar]
- [46].Zhong W, Zhang X, Zhao M, Wu J, Lin D. Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomater. Sci. 2020;8:4692–4711. doi: 10.1039/D0BM00772B. [DOI] [PubMed] [Google Scholar]
- [47].Chen G Y, Roy I, Yang C H, Prasad P N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016;116:2826–2885. doi: 10.1021/acs.chemrev.5b00148. [DOI] [PubMed] [Google Scholar]
- [48].Singh A P, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019;4:33. doi: 10.1038/s41392-019-0068-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [49].Xu C C, Li H, Zhang K M, Binzel D W, Yin H R, Chiu W, Guo P X. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res. 2019;12:41–48. doi: 10.1007/s12274-018-2174-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [50].Ma Q L, Fan Q, Xu J L, Bai J Y, Han X, Dong Z L, Zhou X Z, Liu Z, Gu Z, Wang C. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles. Matter. 2020;3:287–301. doi: 10.1016/j.matt.2020.05.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [51].Zhang X Y, Zhao M Y, Cao N, Qin W, Zhao M, Wu J, Lin D J. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci. 2020;8:1885–1896. doi: 10.1039/C9BM01927H. [DOI] [PubMed] [Google Scholar]
- [52].Wagner V, Dullaart A, Bock A K, Zweck A. The emerging nanomedicine landscape. Nat. Biotechnol. 2006;24:1211–1217. doi: 10.1038/nbt1006-1211. [DOI] [PubMed] [Google Scholar]
- [53].Stella V J, Nti-Addae K W. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 2007;59:677–694. doi: 10.1016/j.addr.2007.05.013. [DOI] [PubMed] [Google Scholar]
- [54].Savjani K T, Gajjar A K, Savjani J K. Drug solubility: Importance and enhancement techniques. Int. Scholar. Res. Not. 2012;2012:195727. doi: 10.5402/2012/195727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].De Jong W H, Borm P J A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine. 2008;3:133–149. doi: 10.2147/IJN.S596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [56].Zhang L, Pornpattananangkul D, Hu C M J, Huang C M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 2010;17:585–594. doi: 10.2174/092986710790416290. [DOI] [PubMed] [Google Scholar]
- [57].Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr C M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 2018;124:82–97. doi: 10.1016/j.addr.2017.10.009. [DOI] [PubMed] [Google Scholar]
- [58].Murgia X, Pawelzyk P, Schaefer U F, Wagner C, Willenbacher N, Lehr C M. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules. 2016;17:1536–1542. doi: 10.1021/acs.biomac.6b00164. [DOI] [PubMed] [Google Scholar]
- [59].Ho D K, Costa A, De Rossi C, de Souza Carvalho-Wodarz C, Loretz B, Lehr C M. Polysaccharide submicrocarrier for improved pulmonary delivery of poorly soluble anti-infective ciprofloxacin: Preparation, characterization, and influence of size on cellular uptake. Mol. Pharmaceutics. 2018;15:1081–1096. doi: 10.1021/acs.molpharmaceut.7b00967. [DOI] [PubMed] [Google Scholar]
- [60].Markman J L, Rekechenetskiy A, Holler E, Ljubimova J Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 2013;65:1866–1879. doi: 10.1016/j.addr.2013.09.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [61].Zhu X, Radovic-Moreno A F, Wu J, Langer R, Shi J J. Nanomedicine in the management of microbial infection —overview and perspectives. Nano Today. 2014;9:478–498. doi: 10.1016/j.nantod.2014.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [62].Abed N, Couvreur P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int. J. Antimicrob. Agents. 2014;43:485–496. doi: 10.1016/j.ijantimicag.2014.02.009. [DOI] [PubMed] [Google Scholar]
- [63].Champion J A, Katare Y K, Mitragotri S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Controlled Release. 2007;121:3–9. doi: 10.1016/j.jconrel.2007.03.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [64].Gao W W, Thamphiwatana S, Angsantikul P, Zhang L F. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014;6:532–547. doi: 10.1002/wnan.1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [65].Siegel R L, Miller K D, Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. [DOI] [PubMed] [Google Scholar]
- [66].Barenholz Y. Doxil®—the first FDA-approved nano-drug: Lessons learned. J. Control. Release. 2012;160:117–134. doi: 10.1016/j.jconrel.2012.03.020. [DOI] [PubMed] [Google Scholar]
- [67].Numico G, Castiglione F, Granetto C, Garrone O, Mariani G, Di Costanzo G, La Ciura P, Gasco M, Ostellino O, Porcile G, et al. Single-agent pegylated liposomal doxorubicin (Caelix®) in chemotherapy pretreated non-small cell lung cancer patients: A pilot trial. Lung Cancer. 2002;35:59–64. doi: 10.1016/S0169-5002(01)00269-0. [DOI] [PubMed] [Google Scholar]
- [68].Patlakas G, Bouros D, Tsantekidou-Pozova S, Koukourakis M I. Triplet chemotherapy with docetaxel, gemcitabine and liposomal doxorubicin, supported with subcutaneous amifostine and hemopoietic growth factors, in advanced non-small cell lung cancer. Anticancer Res. 2005;25:1427–1431. [PubMed] [Google Scholar]
- [69].Leighl N B, Goss G D, Lopez P G, Burkes R L, Dancey J E, Rahim Y H, Rudinskas L C, Pouliot J F, Rodgers A, Pond G R, et al. Phase II study of pegylated liposomal doxorubicin HCl (Caelyx) in combination with cyclophosphamide and vincristine as second-line treatment of patients with small cell lung cancer. Lung Cancer. 2006;52:327–332. doi: 10.1016/j.lungcan.2006.02.006. [DOI] [PubMed] [Google Scholar]
- [70].Xu C N, Wang Y B, Guo Z P, Chen J, Lin L, Wu J Y, Tian H Y, Chen X S. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J. Control. Release. 2019;295:153–163. doi: 10.1016/j.jconrel.2018.12.013. [DOI] [PubMed] [Google Scholar]
- [71].Hoch U, Staschen C M, Johnson R K, Eldon M A. Nonclinical pharmacokinetics and activity of etirinotecan pegol (NKTR-102), a long-acting topoisomerase 1 inhibitor, in multiple cancer models. Cancer Chemother. Pharm. 2014;74:1125–1137. doi: 10.1007/s00280-014-2577-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [72].Jameson G S, Hamm J T, Weiss G J, Alemany C, Anthony S, Basche M, Ramanathan R K, Borad M J, Tibes R, Cohn A, et al. A multicenter, phase I, dose-escalation study to assess the safety, tolerability, and pharmacokinetics of etirinotecan pegol in patients with refractory solid tumors. Clin. Cancer Res. 2013;19:268–278. doi: 10.1158/1078-0432.CCR-12-1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [73].Aggarwal C, Cohen R B, Yu E, Hwang W T, Bauml J M, Alley E, Evans T L, Langer C J. Etirinotecan pegol (NKTR-102) in third-line treatment of patients with metastatic or recurrent non-small-cell lung cancer: Results of a phase II study. Clin. Lung Cancer. 2018;19:157–162. doi: 10.1016/j.cllc.2017.10.007. [DOI] [PubMed] [Google Scholar]
- [74].Zhang H J. Onivyde for the therapy of multiple solid tumors. OncoTargets Ther. 2016;9:3001–3007. doi: 10.2147/OTT.S105587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [75].Leonard S, Lee H, Klinz S, Paz N, Fitzgerald J, Hendriks B. P1.07-006 Preclinical support for evaluation of irinotecan liposome injection (nal-IRI, MM-398) in small cell lung cancer: Topic: Drug treatment alone and in combination with radiotherapy. J. Thorac. Oncol. 2017;12:S699. doi: 10.1016/j.jtho.2016.11.917. [DOI] [Google Scholar]
- [76].Landesman-Milo D, Ramishetti S, Peer D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev. 2015;34:291–301. doi: 10.1007/s10555-015-9554-4. [DOI] [PubMed] [Google Scholar]
- [77].Zhang Y F, Huang Y X, Li S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15:862–871. doi: 10.1208/s12249-014-0113-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [78].Gupta N, Hatoum H, Dy G K. First line treatment of advanced non-small-cell lung cancer-specific focus on albumin bound paclitaxel. Int. J. Nanomedicine. 2014;9:209–221. doi: 10.2147/IJN.S41770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [79].Pazdur R J N C I a t N I o H R A. FDA approval for paclitaxel albumin-stabilized nanoparticle formulation. National Cancer Institute at the National Institutes of Health. 2012;24:2013. [Google Scholar]
- [80].Jiménez-López J, El-Hammadi M M, Ortiz R, Cayero-Otero M D, Cabeza L, Perazzoli G, Martin-Banderas L, Baeyens J M, Prados J, Melguizo C. A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacol. Res. 2019;141:451–465. doi: 10.1016/j.phrs.2019.01.013. [DOI] [PubMed] [Google Scholar]
- [81].Yang Y, Huang Z W, Li J Y, Mo Z R, Huang Y, Ma C, Wang W H, Pan X, Wu C B. PLGA porous microspheres dry powders for codelivery of afatinib-loaded solid lipid nanoparticles and paclitaxel: Novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer. Adv. Healthc. Mater. 2019;8:1900965. doi: 10.1002/adhm.201900965. [DOI] [PubMed] [Google Scholar]
- [82].Ormerod M G, Orr R M, Peacock J H. The role of apoptosis in cell killing by cisplatin: A flow cytometric study. Br. J. Cancer. 1994;69:93–100. doi: 10.1038/bjc.1994.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [83].Sears C R, Cooney S A, Chin-Sinex H, Mendonca M S, Turchi J J. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Rep. 2016;40:35–46. doi: 10.1016/j.dnarep.2016.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [84].Sun M, He L, Fan Z, Tang R P, Du J Z. Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis. Biomaterials. 2020;257:120252. doi: 10.1016/j.biomaterials.2020.120252. [DOI] [PubMed] [Google Scholar]
- [85].Iyer R, Nguyen T, Padanilam D, Xu C C, Saha D, Nguyen K T, Hong Y. Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment. J. Control. Release. 2020;321:363–371. doi: 10.1016/j.jconrel.2020.02.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [86].Stathopoulos G P, Boulikas T. Lipoplatin formulation review article. J. Drug Deliv. 2012;2012:581363. doi: 10.1155/2012/581363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [87].Kaltsas K, Anevlavis S, Pataka A, Kouliatsis G, Pozova S, Bouros D, Froudarakis M. A phase II trial of lipoplatin and gemcitabine in patients with NSCLC previously treated with platinum-based chemotherapy. Eur. Respir. Soc. 2016;48:OA3344. [Google Scholar]
- [88].Chan M H, Huang W T, Wang J, Liu R S, Hsiao M. Next-generation cancer-specific hybrid theranostic nanomaterials: MAGE-A3 NIR persistent luminescence nanoparticles conjugated to afatinib for in situ suppression of lung adenocarcinoma growth and metastasis. Adv. Sci. 2020;7:1903741. doi: 10.1002/advs.201903741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [89].Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–1846. doi: 10.1016/S0140-6736(16)00587-0. [DOI] [PubMed] [Google Scholar]
- [90].Garon E B, Rizvi N A, Hui R N, Leighl N, Balmanoukian A S, Eder J P, Patnaik A, Aggarwal C, Gubens M, Horn L, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015;372:2018–2028. doi: 10.1056/NEJMoa1501824. [DOI] [PubMed] [Google Scholar]
- [91].Liu B, Cao W, Qiao G L, Yao S Y, Pan S J, Wang L R, Yue C X, Ma L J, Liu Y L, Cui D X. Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer. Acta Biomater. 2019;99:307–319. doi: 10.1016/j.actbio.2019.08.046. [DOI] [PubMed] [Google Scholar]
- [92].Duman F D, Akkoc Y, Demirci G, Bavili N, Kiraz A, Gozuacik D, Acar H Y. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag2S quantum dots. J. Mater. Chem. B. 2019;7:7363–7376. doi: 10.1039/C9TB01602C. [DOI] [PubMed] [Google Scholar]
- [93].Reda M, Ngamcherdtrakul W, Gu S D, Bejan D S, Siriwon N, Gray J W, Yantasee W. PLK1 and EGFR targeted nanoparticle as a radiation sensitizer for non-small cell lung cancer. Cancer Lett. 2019;467:9–18. doi: 10.1016/j.canlet.2019.09.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [94].Bregoli L, Movia D, Gavigan-Imedio J D, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine. 2016;12:81–103. doi: 10.1016/j.nano.2015.08.006. [DOI] [PubMed] [Google Scholar]
- [95].Seidi K, Neubauer H A, Moriggl R, Jahanban-Esfahlan R, Javaheri T. Tumor target amplification: Implications for nano drug delivery systems. J. Control. Release. 2018;275:142–161. doi: 10.1016/j.jconrel.2018.02.020. [DOI] [PubMed] [Google Scholar]
- [96].Chang S S, O’Keefe D S, Bacich D J, Reuter V E, Heston W D W, Gaudin P B. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 1999;5:2674–2681. [PubMed] [Google Scholar]
- [97].Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 2012;4:128. doi: 10.1126/scitranslmed.3003651. [DOI] [PubMed] [Google Scholar]
- [98].Von Hoff D D, Mita M M, Ramanathan R K, Weiss G J, Mita A C, LoRusso P M, Burris H A, III, Hart L L, Low S C, Parsons D M, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin. Cancer Res. 2016;22:3157–3163. doi: 10.1158/1078-0432.CCR-15-2548. [DOI] [PubMed] [Google Scholar]
- [99].Viteri S, Rosell R. An innovative mesothelioma treatment based on miR-16 mimic loaded EGFR targeted minicells (TargomiRs) Transl. Lung Cancer Res. 2018;7:S1–S4. doi: 10.21037/tlcr.2017.12.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [100].Reid G, Kao S C, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, Boyer M, van Zandwijk N. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 2016;8:1079–1085. doi: 10.2217/epi-2016-0035. [DOI] [PubMed] [Google Scholar]
- [101].Kao S C, Fulham M, Wong K, Cooper W, Brahmbhatt H, MacDiarmid J, Pattison S, Sagong J O, Huynh Y, Leslie F, et al. A significant metabolic and radiological response after a novel targeted MicroRNA-based treatment approach in malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med. 2015;191:1467–1469. doi: 10.1164/rccm.201503-0461LE. [DOI] [PubMed] [Google Scholar]
- [102].Moro M, Di Paolo D, Milione M, Centonze G, Bornaghi V, Borzi C, Gandellini P, Perri P, Pastorino U, Ponzoni M, et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J. Control. Release. 2019;308:44–56. doi: 10.1016/j.jconrel.2019.07.006. [DOI] [PubMed] [Google Scholar]
- [103].Lu C, Stewart D J, Lee J J, Ji L, Ramesh R, Jayachandran G, Nunez M I, Wistuba I I, Erasmus J J, Hicks M E, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One. 2012;7:e34833. doi: 10.1371/journal.pone.0034833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [104].Sharma S, Srivastava M K, Harris-White M, Lee J M, Dubinett S. MUC1 peptide vaccine mediated antitumor activity in non-small cell lung cancer. Expert Opin. Biol. Ther. 2011;11:987–990. doi: 10.1517/14712598.2011.598146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [105].Butts C, Murray N, Maksymiuk A, Goss G, Marshall E, Soulières D, Cormier Y, Ellis P, Price A, Sawhney R, et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol. 2005;23:6674–6681. doi: 10.1200/JCO.2005.13.011. [DOI] [PubMed] [Google Scholar]
- [106].Wu Y L, Park K, Soo R A, Sun Y, Tyroller K, Wages D, Ely G, Yang J C H, Mok T. INSPIRE: A phase III study of the BLP25 liposome vaccine (L-BLP25) in Asian patients with unresectable stage III non-small cell lung cancer. BMC Cancer. 2011;11:430. doi: 10.1186/1471-2407-11-430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [107].Griesenbach U, Pytel K M, Alton E W F W. Cystic fibrosis gene therapy in the UK and elsewhere. Hum. Gene Ther. 2015;26:266–275. doi: 10.1089/hum.2015.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [108].Hardee C L, Arévalo-Soliz L M, Hornstein B D, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes. 2017;8:65. doi: 10.3390/genes8020065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [109].Konstan M W, Davis P B, Wagener J S, Hilliard K A, Stern R C, Milgram L J H, Kowalczyk T H, Hyatt S L, Fink T L, Gedeon C R, et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther. 2004;15:1255–1269. doi: 10.1089/hum.2004.15.1255. [DOI] [PubMed] [Google Scholar]
- [110].McLachlan G, Davidson H, Holder E, Davies L A, Pringle I A, Sumner-Jones S G, Baker A, Tennant P, Gordon C, Vrettou C, et al. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther. 2011;18:996–1005. doi: 10.1038/gt.2011.55. [DOI] [PubMed] [Google Scholar]
- [111].Alton E W F W, Boyd A C, Cheng S H, Davies J C, Davies L A, Dayan A, Gill D R, Griesenbach U, Higgins T, Hyde S C, et al. Toxicology study assessing efficacy and safety of repeated administration of lipid/DNA complexes to mouse lung. Gene Ther. 2014;21:89–95. doi: 10.1038/gt.2013.61. [DOI] [PubMed] [Google Scholar]
- [112].Alton E W F W, Baker A, Baker E, Boyd A C, Cheng S H, Coles R L, Collie D D S, Davidson H, Davies J C, Gill D R, et al. The safety profile of a cationic lipid-mediated cystic fibrosis gene transfer agent following repeated monthly aerosol administration to sheep. Biomaterials. 2013;34:10267–10277. doi: 10.1016/j.biomaterials.2013.09.023. [DOI] [PubMed] [Google Scholar]
- [113].Alton E W F W, Boyd A C, Cheng S H, Cunningham S, Davies J C, Gill D R, Griesenbach U, Higgins T, Hyde S C, Innes J A, et al. A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibrosis. Thorax. 2013;68:1075–1077. doi: 10.1136/thoraxjnl-2013-203309. [DOI] [PubMed] [Google Scholar]
- [114].Alton E W F W, Armstrong D K, Ashby D, Bayfield K J, Bilton D, Bloomfield E V, Boyd A C, Brand J, Buchan R, Calcedo R, et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Res. Med. 2015;3:684–691. doi: 10.1016/S2213-2600(15)00245-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [115].Robinson E, MacDonald K D, Slaughter K, McKinney M, Patel S, Sun C, Sahay G. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol. Ther. 2018;26:2034–2046. doi: 10.1016/j.ymthe.2018.05.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [116].Haque A K M A, Dewerth A, Antony J S, Riethmüller J, Schweizer G R, Weinmann P, Latifi N, Yasar H, Pedemonte N, Sondo E, et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci. Rep. 2018;8:16776. doi: 10.1038/s41598-018-34960-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [117].Tagalakis A D, Munye M M, Ivanova R, Chen H P, Smith C M, Aldossary A M, Rosa L Z, Moulding D, Barnes J L, Kafetzis K N, et al. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung. Thorax. 2018;73:847–856. doi: 10.1136/thoraxjnl-2017-210670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [118].Osman G, Rodriguez J, Chan S Y, Chisholm J, Duncan G, Kim N, Tatler A L, Shakesheff K M, Hanes J, Suk J S, et al. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J. Control. Release. 2018;285:35–45. doi: 10.1016/j.jconrel.2018.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [119].Leal J, Peng X J, Liu X Q, Arasappan D, Wylie D C, Schwartz S H, Fullmer J J, McWilliams B C, Smyth H D C, Ghosh D. Peptides as surface coatings of nanoparticles that penetrate human cystic fibrosis sputum and uniformly distribute in vivo following pulmonary delivery. J. Control. Release. 2020;322:457–469. doi: 10.1016/j.jconrel.2020.03.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [120].Garbuzenko O B, Kbah N, Kuzmov A, Pogrebnyak N, Pozharov V, Minko T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J. Control. Release. 2019;296:225–231. doi: 10.1016/j.jconrel.2019.01.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [121].Paranjpe M, Müller-Goymann C C. Nanoparticle-mediated pulmonary drug delivery: A review. Int. J. Mol. Sci. 2014;15:5852–5873. doi: 10.3390/ijms15045852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [122].Moreno-Sastre M, Pastor M, Salomon C J, Esquisabel A, Pedraz J L. Pulmonary drug delivery: A review on nanocarriers for antibacterial chemotherapy. J. Antimicrob. Chemother. 2015;70:2945–2955. doi: 10.1093/jac/dkv192. [DOI] [PubMed] [Google Scholar]
- [123].Günday Türeli N, Torge A, Juntke J, Schwarz B C, Schneider-Daum N, Türeli A E, Lehr C M, Schneider M. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur. J. Pharm. Biopharm. 2017;117:363–371. doi: 10.1016/j.ejpb.2017.04.032. [DOI] [PubMed] [Google Scholar]
- [124].Ernst J, Klinger-Strobel M, Arnold K, Thamm J, Hartung A, Pletz M W, Makarewicz O, Fischer D. Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions. Eur. J. Pharm. Biopharm. 2018;131:120–129. doi: 10.1016/j.ejpb.2018.07.025. [DOI] [PubMed] [Google Scholar]
- [125].Mirza S, Clay R D, Koslow M A, Scanlon P D. COPD guidelines: A Review of the 2018 GOLD Report. Mayo Clin. Proc. 2018;93:1488–1502. doi: 10.1016/j.mayocp.2018.05.026. [DOI] [PubMed] [Google Scholar]
- [126].da Silva A L, Cruz F F, Rocco P R M, Morales M M. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys. Rev. 2017;9:793–803. doi: 10.1007/s12551-017-0319-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [127].Wu L, Shan W, Zhang Z R, Huang Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev. 2018;124:150–163. doi: 10.1016/j.addr.2017.10.001. [DOI] [PubMed] [Google Scholar]
- [128].Ramos F L, Krahnke J S, Kim V. Clinical issues of mucus accumulation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2014;9:139–150. doi: 10.2147/COPD.S38938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [129].Zhang X, Zhang W T, Liu L Z, Yang M, Huang L J, Chen K, Wang R, Yang B W, Zhang D D, Wang J L. Antibiotic-loaded MoS2 nanosheets to combat bacterial resistance via biofilm inhibition. Nanotechnology. 2017;28:225101. doi: 10.1088/1361-6528/aa6c9b. [DOI] [PubMed] [Google Scholar]
- [130].Dua K, Shukla S D, Tekade R K, Hansbro P M. Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases? Drug Deliv. Transl. Res. 2017;7:179–187. doi: 10.1007/s13346-016-0349-0. [DOI] [PubMed] [Google Scholar]
- [131].Dua K, de Jesus Andreoli Pinto T, Chellappan D K, Gupta G, Bebawy M, Hansbro P M. Advancements in nano drug delivery systems: A challenge for biofilms in respiratory diseases. Panminerva Med. 2018;60:35–36. doi: 10.23736/S0031-0808.18.03402-X. [DOI] [PubMed] [Google Scholar]
- [132].Mamary A J, Criner G J. Tiotropium bromide for chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 2009;3:211–220. doi: 10.1586/ers.09.19. [DOI] [PubMed] [Google Scholar]
- [133].Quon B S, Goss C H, Ramsey B W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014;11:425–434. doi: 10.1513/AnnalsATS.201311-395FR. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [134].Varshosaz J, Ghaffari S, Mirshojaei S F, Jafarian A, Atyabi F, Kobarfard F, Azarmi S. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. BioMed Res. Int. 2013;2013:136859. doi: 10.1155/2013/136859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [135].Kato H, Hagihara M, Hirai J, Sakanashi D, Suematsu H, Nishiyama N, Koizumi Y, Yamagishi Y, Matsuura K, Mikamo H. Evaluation of amikacin pharmacokinetics and pharmacodynamics for optimal initial dosing regimen. Drugs R&D. 2017;17:177–187. doi: 10.1007/s40268-016-0165-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [136].Li, Z. B.; Luo, G. H.; Hu, W. P.; Hua, J. L.; Geng, S. Y.; Chu, P. K.; Zhang, J.; Wang, H. Y.; Yu, X. F. Mediated drug release from nanovehicles by black phosphorus quantum dots for efficient therapy of chronic obstructive pulmonary disease. Angew. Chem., Int. Ed.2020, doi: 10.1002/anie.202008379. [DOI] [PubMed]
- [137].Chikuma, K.; Arima, K.; Asaba, Y.; Kubota, R.; Asayama, S.; Sato, K.; Kawakami, H. The potential of lipid-polymer nanoparticles as epigenetic and ROS control approaches for COPD. Free Radical Res.2019, doi: 10.1080/10715762.2019.1696965. [DOI] [PubMed]
- [138].Mohamed A, Kunda N K, Ross K, Hutcheon G A, Saleem I Y. Polymeric nanoparticles for the delivery of miRNA to treat chronic obstructive pulmonary disease (COPD) Eur. J. Pharm. Biopharm. 2019;136:1–8. doi: 10.1016/j.ejpb.2019.01.002. [DOI] [PubMed] [Google Scholar]
- [139].Vij N, Min T, Marasigan R, Belcher C N, Mazur S, Ding H, Yong K T, Roy I. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J. Nanobiotechnol. 2010;8:22. doi: 10.1186/1477-3155-8-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [140].Roy I, Vij N. Nanodelivery in airway diseases: Challenges and therapeutic applications. Nanomedicine. 2010;6:237–244. doi: 10.1016/j.nano.2009.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [141].Vij N. Nano-based theranostics for chronic obstructive lung diseases: Challenges and therapeutic potential. Expert. Opin. Drug Deliv. 2011;8:1105–1109. doi: 10.1517/17425247.2011.597381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [142].Vij N, Min T, Bodas M, Gorde A, Roy I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. Nanomedicine. 2016;12:2415–2427. doi: 10.1016/j.nano.2016.06.008. [DOI] [PubMed] [Google Scholar]
- [143].Barnes P J, Burney P G J, Silverman E K, Celli B R, Vestbo J, Wedzicha J A, Wouters E F. Chronic obstructive pulmonary disease. Nat. Rev. Dis. Primers. 2015;1:15076. doi: 10.1038/nrdp.2015.76. [DOI] [PubMed] [Google Scholar]
- [144].Andreeva E, Pokhaznikova M, Lebedev A, Moiseeva I, Kuznetsova O, Degryse J M. Spirometry is not enough to diagnose COPD in epidemiological studies: A follow-up study. Npj Prim. Care Respir. Med. 2017;27:62. doi: 10.1038/s41533-017-0062-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [145].Fens N, Zwinderman A H, van der Schee M P, de Nijs S B, Dijkers E, Roldaan A C, Cheung D, Bel E H, Sterk P J. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am. J. Respir. Crit. Care Med. 2009;180:1076–1082. doi: 10.1164/rccm.200906-0939OC. [DOI] [PubMed] [Google Scholar]
- [146].Dragonieri S, Annema J T, Schot R, van der Schee M P C, Spanevello A, Carratú P, Resta O, Rabe K F, Sterk P J. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer. 2009;64:166–170. doi: 10.1016/j.lungcan.2008.08.008. [DOI] [PubMed] [Google Scholar]
- [147].Sibila O, Garcia-Bellmunt L, Giner J, Merino J L, Suarez-Cuartin G, Torrego A, Solanes I, Castillo D, Valera J L, Cosio B G, et al. Identification of airway bacterial colonization by an electronic nose in chronic obstructive pulmonary disease. Respir. Med. 2014;108:1608–1614. doi: 10.1016/j.rmed.2014.09.008. [DOI] [PubMed] [Google Scholar]
- [148].Anusha S C B, Mohan C D, Mathai J, Rangappa S, Mohan S, Chandra, Paricharak S, Mervin L, Fuchs J E, et al. A nano-MgO and ionic liquid-catalyzed ‘green’ synthesis protocol for the development of adamantyl-imidazolo-thiadiazoles as anti-tuberculosis agents targeting sterol 14α-demethylase (CYP51) PLoS One. 2015;10:e0139798. doi: 10.1371/journal.pone.0139798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [149].Sharma R, Kaur A, Sharma A K, Dilbaghi N, Sharma A K. Nano-based anti-tubercular drug delivery and therapeutic interventions in tuberculosis. Curr. Drug Targets. 2017;18:72–86. doi: 10.2174/1389450116666150804110238. [DOI] [PubMed] [Google Scholar]
- [150].Nasiruddin M, Neyaz M K, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res Treat. 2017;2017:4920209. doi: 10.1155/2017/4920209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [151].Shojaei T R, Mohd Salleh M A, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, Hajalilou A, Jorfi R. Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens. Braz. J. Infect. Dis. 2014;18:600–608. doi: 10.1016/j.bjid.2014.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [152].Wang S Q, Inci F, De Libero G, Singhal A, Demirci U. Point-of-care assays for tuberculosis: Role of nanotechnology/microfluidics. Biotechnol. Adv. 2013;31:438–449. doi: 10.1016/j.biotechadv.2013.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [153].Yang H, Qin L H, Wang Y L, Zhang B B, Liu Z H, Ma H, Lu J M, Huang X C, Shi D L, Hu Z Y. Detection of Mycobacterium tuberculosis based on H37Rv binding peptides using surface functionalized magnetic microspheres coupled with quantum dots—a nano detection method for Mycobacterium tuberculosis. Int. J. Nanomed. 2015;10:77–88. doi: 10.2147/IJN.S71700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [154].Cadena A M, Fortune S M, Flynn J A L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 2017;17:691–702. doi: 10.1038/nri.2017.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [155].Ellis T, Chiappi M, García-Trenco A, Al-Ejji M, Sarkar S, Georgiou T K, Shaffer M S P, Tetley T D, Schwander S, Ryan M P, et al. Multimetallic microparticles increase the potency of rifampicin against intracellular Mycobacterium tuberculosis. ACS Nano. 2018;12:5228–5240. doi: 10.1021/acsnano.7b08264. [DOI] [PubMed] [Google Scholar]
- [156].Hwang A A, Lee B Y, Clemens D L, Dillon B J, Zink J I, Horwitz M A. pH-responsive isoniazid-loaded nanoparticles markedly improve tuberculosis treatment in Mice. Small. 2015;11:5066–5078. doi: 10.1002/smll.201500937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [157].Machelart A, Salzano G, Li X, Demars A, Debrie A S, Menendez-Miranda M, Pancani E, Jouny S, Hoffmann E, Deboosere N, et al. Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano. 2019;13:3992–4007. doi: 10.1021/acsnano.8b07902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [158].Pi J, Shen L, Yang E Z, Shen H B, Huang D, Wang R, Hu C M, Jin H, Cai H H, Cai J Y, et al. Macrophage-targeted isoniazid-selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli. Angew. Chem., Int. Ed. 2020;59:3226–3234. doi: 10.1002/anie.201912122. [DOI] [PubMed] [Google Scholar]
- [159].Welin A, Björnsdottir H, Winther M, Christenson K, Oprea T, Karlsson A, Forsman H, Dahlgren C, Bylund J. CFP-10 from Mycobacterium tuberculosis selectively activates human neutrophils through a pertussis toxin-sensitive chemotactic receptor. Infect. Immun. 2015;83:205–213. doi: 10.1128/IAI.02493-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [160].Feng T T, Shou C M, Shen L, Qian Y, Wu Z G, Fan J, Zhang Y Z, Tang Y W, Wu N P, Lu H Z, et al. Novel monoclonal antibodies to ESAT-6 and CFP-10 antigens for ELISA-based diagnosis of pleural tuberculosis. Int. J. Tuberc. Lung Dis. 2011;15:804–810. doi: 10.5588/ijtld.10.0393. [DOI] [PubMed] [Google Scholar]
- [161].Liu C, Lyon C J, Bu Y, Deng Z A, Walters E, Li Y, Zhang L Q, Hesseling A C, Graviss E A, Hu Y. Clinical evaluation of a blood assay to diagnose paucibacillary tuberculosis via bacterial antigens. Clin. Chem. 2018;64:791–800. doi: 10.1373/clinchem.2017.273698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [162].Liu C, Zhao Z, Fan J, Lyon C J, Wu H J, Nedelkov D, Zelazny A M, Olivier K N, Cazares L H, Holland S M, et al. Quantification of circulating Mycobacterium tuberculosis antigen peptides allows rapid diagnosis of active disease and treatment monitoring. Prac. Natl. Acad. Sci. USA. 2017;114:3969–3974. doi: 10.1073/pnas.1621360114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [163].Phan L M T, Rafique R, Baek S H, Nguyen T P, Park K Y, Kim E B, Kim J G, Park J P, Kailasa S K, Kim H J, et al. Gold-copper nanoshell dot-blot immunoassay for naked-eye sensitive detection of tuberculosis specific CFP-10 antigen. Biosens. Bioelectron. 2018;121:111–117. doi: 10.1016/j.bios.2018.08.068. [DOI] [PubMed] [Google Scholar]
- [164].Meers P, Neville M, Malinin V, Scotto A W, Sardaryan G, Kurumunda R, Mackinson C, James G, Fisher S, Perkins W R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008;61:859–868. doi: 10.1093/jac/dkn059. [DOI] [PubMed] [Google Scholar]
- [165].Ehsan Z, Clancy J P. Management of Pseudomonas aeruginosa infection in cystic fibrosis patients using inhaled antibiotics with a focus on nebulized liposomal amikacin. Future Microbiol. 2015;10:1901–1912. doi: 10.2217/fmb.15.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [166].Waters V, Ratjen F. Inhaled liposomal amikacin. Expert Rev. Respir. Med. 2014;8:401–409. doi: 10.1586/17476348.2014.918507. [DOI] [PubMed] [Google Scholar]
- [167].Costa-Gouveia J, Pancani E, Jouny S, Machelart A, Delorme V, Salzano G, Iantomasi R, Piveteau C, Queval C J, Song O R, et al. Combination therapy for tuberculosis treatment: Pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci. Rep. 2017;7:5390. doi: 10.1038/s41598-017-05453-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [168].Serisier D J, Bilton D, De Soyza A, Thompson P J, Kolbe J, Greville H W, Cipolla D, Bruinenberg P, Gonda I. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): A randomised, double-blind, placebo-controlled trial. Thorax. 2013;68:812–817. doi: 10.1136/thoraxjnl-2013-203207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [169].Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly S C. Nanotechnology based therapeutics for lung disease. Thorax. 2019;74:965–976. doi: 10.1136/thoraxjnl-2019-213037. [DOI] [PubMed] [Google Scholar]
- [170].Hamblin K A, Wong J P, Blanchard J D, Atkins H S. The potential of liposome-encapsulated ciprofloxacin as a tularemia therapy. Front. Cell. Infect. Microbiol. 2014;4:79. doi: 10.3389/fcimb.2014.00079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [171].Wong J P, Yang H M, Blasetti K L, Schnell G, Conley J, Schofield L N. Liposome delivery of ciprofloxacin against intracellular Francisella tularensis infection. J. Control. Release. 2003;92:265–273. doi: 10.1016/S0168-3659(03)00358-4. [DOI] [PubMed] [Google Scholar]
- [172].Haworth C, Wanner A, Froehlich J, O’Neal T, Davis A, Gonda I, O’Donnell A. Inhaled liposomal ciprofloxacin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection: Results from two parallel phase III trials (ORBIT-3 and-4) Am. J. Respir. Crit. Care Med. 2017;195:A7604. [Google Scholar]
- [173].Ho D K, Murgia X, De Rossi C, Christmann R, Hüfner de Mello Martins A G, Koch M, Andreas A, Herrmann J, Müller R, Empting M, et al. Squalenyl hydrogen sulfate nanoparticles for simultaneous delivery of tobramycin and an alkylquinolone quorum sensing inhibitor enable the eradication of P. aeruginosa biofilm infections. Angew. Chem., Int. Ed. 2020;59:10292–10296. doi: 10.1002/anie.202001407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [174].Gao Y F, Wang J, Chai M Y, Li X, Deng Y Y, Jin Q, Ji J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano. 2020;14:5686–5699. doi: 10.1021/acsnano.0c00269. [DOI] [PubMed] [Google Scholar]
- [175].Wang Y, Yuan Q, Feng W, Pu W D, Ding J, Zhang H J, Li X Y, Yang B, Dai Q, Cheng L, et al. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J. Nanobiotechnol. 2019;17:103. doi: 10.1186/s12951-019-0537-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [176].Zhang C Y, Lin W J, Gao J, Shi X T, Davaritouchaee M, Nielsen A E, Mancini R J, Wang Z J. pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Appl. Mater. Interfaces. 2019;11:16380–16390. doi: 10.1021/acsami.9b04051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [177].Shirkhani K, Teo I, Armstrong-James D, Shaunak S. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis. Nanomedicine. 2015;11:1217–1226. doi: 10.1016/j.nano.2015.02.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [178].Tang Y X, Wu S, Lin J Q, Cheng L T, Zhou J, Xie J, Huang K X, Wang X Y, Yu Y, Chen Z B, et al. Nanoparticles targeted against cryptococcal pneumonia by interactions between chitosan and its peptide ligand. Nano Lett. 2018;18:6207–6213. doi: 10.1021/acs.nanolett.8b02229. [DOI] [PubMed] [Google Scholar]
- [179].Qiu L X, Hu B C, Chen H B, Li S S, Hu Y Q, Zheng Y, Wu X X. Antifungal efficacy of itraconazole-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int. J. Nanomedicine. 2015;10:1415–1423. doi: 10.2147/IJN.S71616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [180].Wang J, Li P Y, Yu Y, Fu Y H, Jiang H Y, Lu M, Sun Z P, Jiang S B, Lu L, Wu M X. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367:eaau0810. doi: 10.1126/science.aau0810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [181].Sanchez-Guzman D, Le Guen P, Villeret B, Sola N, Le Borgne R, Guyard A, Kemmel A, Crestani B, Sallenave J M, Garcia-Verdugo I. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials. 2019;217:119308. doi: 10.1016/j.biomaterials.2019.119308. [DOI] [PubMed] [Google Scholar]
- [182].Kim H, Park M, Hwang J, Kim J H, Chung D R, Lee K S, Kang M. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sens. 2019;4:1306–1312. doi: 10.1021/acssensors.9b00175. [DOI] [PubMed] [Google Scholar]
- [183].Layqah L A, Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta. 2019;186:224. doi: 10.1007/s00604-019-3345-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [184].Holgate S T, Wenzel S, Postma D S, Weiss S T, Renz H, Sly P D. Asthma. Nat. Rev. Dis. Primers. 2015;1:15025. doi: 10.1038/nrdp.2015.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [185].Huang C L, Wang Y M, Li X W, Ren L L, Zhao J P, Hu Y, Zhang L, Fan G H, Xu J Y, Gu X Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [186].Wang D W, Hu B, Hu C, Zhu F F, Liu X, Zhang J, Wang B B, Xiang H, Cheng Z S, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [187].Zhou P, Yang X L, Wang X G, Hu B, Zhang L, Zhang W, Si H R, Zhu Y, Li B, Huang C L, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [188].Zhu N, Zhang D Y, Wang W L, Li X W, Yang B, Song J D, Zhao X, Huang B Y, Shi W F, Lu R J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [189].Wu F, Zhao S, Yu B, Chen Y M, Wang W, Song Z G, Hu Y, Tao Z W, Tian J H, Pei Y Y, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [190].Udugama B, Kadhiresan P, Kozlowski H N, Malekjahani A, Osborne M, Li V Y C, Chen H M, Mubareka S, Gubbay J B, Chan W C W. Diagnosing COVID-19: The disease and tools for detection. ACS nano. 2020;14:3822–3835. doi: 10.1021/acsnano.0c02624. [DOI] [PubMed] [Google Scholar]
- [191].Moitra P, Alafeef M, Dighe K, Frieman M B, Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by n gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14:7617–7627. doi: 10.1021/acsnano.0c03822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [192].Chen Z H, Zhang Z G, Zhai X M, Li Y Y, Lin L, Zhao H, Bian L, Li P, Yu L, Wu Y S, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem. 2020;92:7226–7231. doi: 10.1021/acs.analchem.0c00784. [DOI] [PubMed] [Google Scholar]
- [193].Yadavalli T, Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine. 2017;13:219–230. doi: 10.1016/j.nano.2016.08.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [194].Quesada-González D, Merkoçi A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev. 2018;47:4697–4709. doi: 10.1039/C7CS00837F. [DOI] [PubMed] [Google Scholar]
- [195].Maltez-da Costa M, de la Escosura-Muñiz A, Nogués C, Barrios L, Ibáñez E, Merkoçi A. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 2012;12:4164–4171. doi: 10.1021/nl301726g. [DOI] [PubMed] [Google Scholar]
- [196].Seo G, Lee G, Kim M J, Baek S H, Choi M, Ku K B, Lee C S, Jun S, Park D, Kim H G, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–5142. doi: 10.1021/acsnano.0c02823. [DOI] [PubMed] [Google Scholar]
- [197].Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the inhibition of viral infections. Molecules. 2015;20:14051–14081. doi: 10.3390/molecules200814051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [198].Fahmi M Z, Sukmayani W, Khairunisa S Q, Witaningrum A M, Indriati D W, Matondang M Q Y, Chang J Y, Kotaki T, Kameoka M. Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv. 2016;6:92996–93002. doi: 10.1039/C6RA21062G. [DOI] [Google Scholar]
- [199].Łoczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen Y T, Metzler-Nolte N, Boukherroub R, Dubuisson J, Szunerits S. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl. Mater. Interfaces. 2019;11:42964–42974. doi: 10.1021/acsami.9b15032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [200].Yuan Y, Cao D F, Zhang Y F, Ma J, Qi J X, Wang Q H, Lu G W, Wu Y, Yan J H, Shi Y, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 2017;8:15092. doi: 10.1038/ncomms15092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [201].Raj V S, Mou H, Smits S L, Dekkers D H W, Müller M A, Dijkman R, Muth D, Demmers J A A, Zaki A, Fouchier R A M, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251–254. doi: 10.1038/nature12005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [202].Coleman C M, Venkataraman T, Liu Y V, Glenn G M, Smith G E, Flyer D C, Frieman M B. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine. 2017;35:1586–1589. doi: 10.1016/j.vaccine.2017.02.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [203].Shereen M A, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020;24:91–98. doi: 10.1016/j.jare.2020.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [204].Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer R A, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181:905–913. doi: 10.1016/j.cell.2020.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [205].Zhang H B, Penninger J M, Li Y M, Zhong N S, Slutsky A S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intens. Care Med. 2020;46:586–590. doi: 10.1007/s00134-020-05985-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [206].Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens T S, Herrler G, Wu N H, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [207].Singh L, Kruger H G, Maguire G E M, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017;4:105–131. doi: 10.1177/2049936117713593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [208].Jackman J A, Lee J, Cho N J. Nanomedicine for infectious disease applications: Innovation towards broad-spectrum treatment of viral infections. Small. 2016;12:1133–1139. doi: 10.1002/smll.201500854. [DOI] [PubMed] [Google Scholar]
- [209].Adesina S K, Akala E O. Nanotechnology approaches for the delivery of exogenous siRNA for HIV therapy. Mol. Pharmaceutics. 2015;12:4175–4187. doi: 10.1021/acs.molpharmaceut.5b00335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [210].Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Rawling M, Savory E, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–e31. doi: 10.1016/S0140-6736(20)30304-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [211].Pu S Y, Xiao F, Schor S, Bekerman E, Zanini F, Barouch-Bentov R, Nagamine C M, Einav S. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral. Res. 2018;155:67–75. doi: 10.1016/j.antiviral.2018.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [212].Chen N S, Zhou M, Dong X, Qu J M, Gong F Y, Han Y, Qiu Y, Wang J L, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [213].Xu H P, He C Y, Liu Y, Jiang J L, Ma T. Novel therapeutic modalities and drug delivery-erlotinib liposomes modified with galactosylated lipid: In vitro and in vivo investigations. Artif. Cells Nanomed. Biotechnol. 2018;46:1902–1907. doi: 10.1080/21691401.2017.1396222. [DOI] [PubMed] [Google Scholar]
- [214].Zeng, C. X.; Hou, X. C.; Yan, J. Y.; Zhang, C. X.; Li, W. Q.; Zhao, W. Y.; Du, S.; Dong, Y. Z. Leveraging mRNAs sequences to express SARS-CoV-2 antigens in vivo. bioRxiv2020, doi: 10.1101/2020.04.01.019877. [DOI] [PMC free article] [PubMed]
- [215].Broza Y Y, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine. 2013;8:785–806. doi: 10.2217/nnm.13.64. [DOI] [PubMed] [Google Scholar]
- [216].Dragonieri S, Schot R, Mertens B J A, Le Cessie S, Gauw S A, Spanevello A, Resta O, Willard N P, Vink T J, Rabe K F, et al. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol. 2007;120:856–862. doi: 10.1016/j.jaci.2007.05.043. [DOI] [PubMed] [Google Scholar]
- [217].Taylor S L, Leong L E X, Choo J M, Wesselingh S, Yang I A, Upham J W, Reynolds P N, Hodge S, James A L, Jenkins C, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J. Allergy Clin. Immunol. 2018;141:94–103. doi: 10.1016/j.jaci.2017.03.044. [DOI] [PubMed] [Google Scholar]
- [218].Plaza V, Crespo A, Giner J, Merino J L, Ramos-Barbón D, Mateus E F, Torrego A, Cosio B G, Agustí A, Sibila O. Inflammatory asthma phenotype discrimination using an electronic nose breath analyzer. J. Investig. Allergol. Clin. Immunol. 2015;25:431–437. [PubMed] [Google Scholar]
- [219].Keil T W M, Feldmann D P, Costabile G, Zhong Q, da Rocha S, Merkel O M. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. Eur. J. Pharm. Biopharm. 2019;143:61–69. doi: 10.1016/j.ejpb.2019.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [220].Bhavna, Ahmad F J, Mittal G, Jain G K, Malhotra G, Khar R K, Bhatnagar A. Nano-salbutamol dry powder inhalation: A new approach for treating broncho-constrictive conditions. Eur. J. Pharm. Biopharm. 2009;71:282–291. doi: 10.1016/j.ejpb.2008.09.018. [DOI] [PubMed] [Google Scholar]
- [221].Matsuo Y, Ishihara T, Ishizaki J, Miyamoto K I, Higaki M, Yamashita N. Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell. Immunol. 2009;260:33–38. doi: 10.1016/j.cellimm.2009.07.004. [DOI] [PubMed] [Google Scholar]
- [222].Nasr M, Najlah M, D’Emanuele A, Elhissi A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int. J. Pharmaceut. 2014;461:242–250. doi: 10.1016/j.ijpharm.2013.11.023. [DOI] [PubMed] [Google Scholar]
- [223].Kenyon N J, Bratt J M, Lee J, Luo J T, Franzi L M, Zeki A A, Lam K S. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One. 2013;8:e77730. doi: 10.1371/journal.pone.0077730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [224].Chen X Y, Huang W H, Wong B C, Yin L L, Wong Y F, Xu M, Yang Z J. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int. J. Nanomedicine. 2012;7:1139–1148. doi: 10.2147/IJN.S28011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [225].Arafa M G, Ayoub B M. Nano-vesicles of salbutamol sulphate in metered dose inhalers: Formulation, characterization and in vitro evaluation. Int. J. Appl. Pharmaceut. 2017;9:100–105. doi: 10.22159/ijap.2017v9i6.22448. [DOI] [Google Scholar]
- [226].Wang K, Feng Y P, Li S, Li W J, Chen X, Yi R, Zhang H R, Hong Z Y. Oral delivery of bavachinin-loaded PEG-PLGA nanoparticles for asthma treatment in a murine model. J. Biomed. Nanotechnol. 2018;14:1806–1815. doi: 10.1166/jbn.2018.2618. [DOI] [PubMed] [Google Scholar]
- [227].Chakraborty S, Ehsan I, Mukherjee B, Mondal L, Roy S, Saha K D, Paul B, Debnath M C, Bera T. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine. 2019;20:102006. doi: 10.1016/j.nano.2019.04.009. [DOI] [PubMed] [Google Scholar]
- [228].Joshi V B, Adamcakova-Dodd A, Jing X F, Wongrakpanich A, Gibson-Corley K N, Thorne P S, Salem A K. Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy. AAPS J. 2014;16:975–985. doi: 10.1208/s12248-014-9624-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [229].Salem A K. A promising CpG adjuvant-loaded nanoparticle-based vaccine for treatment of dust mite allergies. Immunotherapy. 2014;6:1161–1163. doi: 10.2217/imt.14.97. [DOI] [PubMed] [Google Scholar]
- [230].Grozdanovic M, Laffey K G, Abdelkarim H, Hitchinson B, Harijith A, Moon H G, Park G Y, Rousslang L K, Masterson J C, Furuta G T, et al. Novel peptide nanoparticle-biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J. Allergy Clin. Immunol. 2019;143:669–680. doi: 10.1016/j.jaci.2018.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [231].Kumar M, Kong X Y, Behera A K, Hellermann G R, Lockey R F, Mohapatra S S. Chitosan IFN- γ -pDNA nanoparticle (CIN) therapy for allergic asthma. Genet. Vaccines Ther. 2003;1:3. doi: 10.1186/1479-0556-1-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [232].Kong X Y, Hellermann G R, Zhang W D, Jena P, Kumar M, Behera A, Behera S, Lockey R, Mohapatra S S. Chitosan interferon-γ nanogene therapy for lung disease: Modulation of T-cell and dendritic cell immune responses. Allergy Asthma Clin. Immnuol. 2008;4:95–105. doi: 10.1186/1710-1492-4-3-95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [233].Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. doi: 10.1021/nn900002m. [DOI] [PubMed] [Google Scholar]
- [234].Shi J J, Votruba A R, Farokhzad O C, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010;10:3223–3230. doi: 10.1021/nl102184c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [235].Sanhai W R, Sakamoto J H, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat. Nanotechnol. 2008;3:242–244. doi: 10.1038/nnano.2008.114. [DOI] [PubMed] [Google Scholar]
- [236].Sanders N, Rudolph C, Braeckmans K, De Smedt S C, Demeester J. Extracellular barriers in respiratory gene therapy. Adv. Drug Deliv. Rev. 2009;61:115–127. doi: 10.1016/j.addr.2008.09.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [237].Lai S K, Wang Y Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009;61:158–171. doi: 10.1016/j.addr.2008.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [238].Lai S K, Wang Y Y, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 2009;61:86–100. doi: 10.1016/j.addr.2008.09.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [239].Petros R A, DeSimone J M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010;9:615–627. doi: 10.1038/nrd2591. [DOI] [PubMed] [Google Scholar]
- [240].Dobrovolskaia M A, McNeil S E. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2:469–478. doi: 10.1038/nnano.2007.223. [DOI] [PubMed] [Google Scholar]
- [241].Schuster B S, Suk J S, Woodworth G F, Hanes J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 2013;34:3439–3446. doi: 10.1016/j.biomaterials.2013.01.064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [242].Huckaby J T, Lai S K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. 2018;124:125–139. doi: 10.1016/j.addr.2017.08.010. [DOI] [PubMed] [Google Scholar]
- [243].Shi J J, Kantoff P W, Wooster R, Farokhzad O C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [244].Hare J I, Lammers T, Ashford M B, Puri S, Storm G, Barry S T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017;108:25–38. doi: 10.1016/j.addr.2016.04.025. [DOI] [PubMed] [Google Scholar]
- [245].Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release. 2015;219:500–518. doi: 10.1016/j.jconrel.2015.07.024. [DOI] [PubMed] [Google Scholar]
- [246].Hossen S, Hossain M K, Basher M K, Mia M N H, Rahman M T, Uddin M J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [247].Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:16014. doi: 10.1038/natrevmats.2016.14. [DOI] [Google Scholar]
- [248].Genchi G G, Marino A, Tapeinos C, Ciofani G. Smart materials meet multifunctional biomedical devices: Current and prospective implications for nanomedicine. Front. Bioeng. Biotechnol. 2017;5:80. doi: 10.3389/fbioe.2017.00080. [DOI] [PMC free article] [PubMed] [Google Scholar]