Skip to main content
Mitochondrial DNA. Part B, Resources logoLink to Mitochondrial DNA. Part B, Resources
. 2016 Oct 29;1(1):783–786. doi: 10.1080/23802359.2016.1186523

The complete mitochondrial genome of the emperor dragonfly Anax imperator LEACH, 1815 (Odonata : Aeshnidae) via NGS sequencing

Rebecca Herzog a,, Hans − Jürgen Osigus a, Wiebke Feindt a, Bernd Schierwater a,b, Heike Hadrys a,b
PMCID: PMC7799497  PMID: 33473626

Abstract

Here we report the complete mitochondrial genome of the emperor dragonfly, Anax imperator (Odonata: Aeshnidae) as the first of its genus. Data were generated via next generation sequencing (NGS) and assembled using an iterative approach. The typical metazoan set of 37 genes (13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes) was detected in the same gene order as in other odonate mitogenomes. However, only three intergenic spacer regions are present in A. imperator lacking the distinct s5 spacer, which was regarded as informative feature of the odonate suborder Anisoptera (dragonflies) but absent in Zygoptera (damselflies). With 16,087 bp, it is the longest anisopteran mitogenome to date, mainly due to the long A + T-rich control region of 1291 bp.

Keywords: Mitochondrial genome, odonata, Anax imperator, aeshnidae, anisoptera, s5 intergenic spacer


The emperor dragonfly, Anax imperator, is a widespread and common species in the old world inhabiting all types of standing- and slow-running freshwater ecosystems. It was one of the first odonate species for which a recent range shift northwards (e.g. Parr 2010) and towards higher altitudes (Westermann 2003; Hunger et al. 2006) was noticed due to global climate change. The first records of this species in Sweden were 2002 (Ott 2010). In only 11 years A. imperator crossed a distance of 970 km northwards through Scandinavia (Nielsen 1998; Lejfelt-Sahlén 2007). The larvae of this large dragonfly species are known to be very aggressive (e.g. Beutler 1985) and will invade and significantly influence the native species composition of freshwater ecosystems. Genetic and comparative genomic studies on range shift, expansion, and adaptive potential of this species are of great interest to further elucidate the impact of global change on flying insects. To date for A. imperator, a panel of 10 nuclear microsatellite loci and partial mitochondrial genes (cox1, nad1, and both rRNAs) were established so far to serve in various phylogenetic studies (Misof et al. 2001; Hadrys et al. 2007; Fleck et al. 2008; Rach et al. 2008; Bergmann et al. 2013). To consequently proceed towards a comparative genomic approach one first step is the unravelling and comparison of mitogenomes, e.g. their gene content, arrangements, and genealogical relationships.

As for the A. imperator mitogenome, a standard phenol–chloroform protocol by Hadrys et al. (1992) was used to extract total genomic DNA from flight muscles of a single individual collected in Southern France (43°36′17.7″N 4°48′34.4″E). DNA was submitted for library preparation and whole genome sequencing on an llumina HiSeq2000 (75 bp paired-end reads) to the Yale Center for Genome Analyses (YCGA, http://www.ycga.yale.edu). Different mitochondrial gene sequences containing partial nad1, cox1, 12S rRNA, and 16S rRNA genes (accession numbers: KC912228.1, KF584974.1, EU477652.1 and EU183256.1) were used as reference seeds for a subsequent assembly employing Genious v.8.1.5 (http://www.geneious.com/). For mitochondrial genome annotation, the MITOS WebServer (mitos.bioinf.uni-leipzig.de/index.py) was applied and results were checked manually using BLAST (Altschul et al. 1990) and available odonate mitochondrial genomes (e.g. Yu et al. 2014; Chen et al. 2015). Transfer RNA genes were predicted using both, the tRNAscan-SE v.1.21 Search Server (Lowe & Eddy 1997) and ARWEN v.1.2 (Laslett & Canbäck 2008).

The complete circular mitochondrial genome sequence of A. imperator (GenBank accession number #KX161814) with the length of 16,087 bp is the largest known mitogenome among Anisoptera. It exhibits the standard metazoan gene content of 37 genes, comprising 13 protein-coding genes, 22 tRNA genes, and two rRNA genes which are identically arranged as in the few other odonate mitochondrial genomes (e.g. Simon & Hadrys 2013; Lorenzo-Carballa et al. 2014; Chen et al. 2015; Yu et al. 2014; Feindt et al. 2016). Overall base frequency is 76.0% AT-biased, for the 1291 bp long control (A + T rich) region even 93.5%. All standard mitochondrial invertebrate start codons are found, in detail ATT (nad5), ATA (nad2, nad3), TTG (cox1, nad1), ATC (atp8, nad6), and ATG (cox2, atp6, cox3, nad4, nad4l, cob). Two proteins (cox2, nad5) possess a single T as an incomplete stop codon, requiring post-transcriptional polyadenylation whereas all others protein-coding genes use TAA as stop codon (Table 1). The gene length of tRNA genes ranges from 65 bp to 73 bp and all tRNAs can be folded in the typical cloverleaf structure, except the D-replacement tRNA trnS1. Further, two pseudo-tRNA genes were detected by the tRNA prediction software ARWEN v.1.2 (Laslett & Canbäck, 2008) which were both D-Loop tRNAs and located inside the cox2 sequence and in trnA/trnR, respectively. Therefore, their functionality remains questionable.

Table 1.

Mitochondrial genome organization and gene content of A. imperator with detailed description of gene boundaries, strand, gene length (in bp) as well as start and stop codons for protein-coding genes and anticodons for tRNA genes, respectively.

Gene/region Strand Start position Stop position Length (bp) Anti/start codon Stop codon
trnI + 214 281 68 GAT /
trnQ 278 347 70 TTG /
trnM + 352 420 69 CAT /
nad2 + 424 1419 996 ATA TAA
trnW + 1417 1487 71 TCA /
trnC 1479 1543 65 GCA /
trnY 1545 1613 69 CTA /
s1 NA 1614 1653 40 / /
cox1 + 1654 3192 1539 TTG TAA
trnL2 + 3187 3256 70 TAA /
cox2 + 3256 3943 688 ATG T(aa)
trnK + 3944 4016 73 CTT /
trnD + 4016 4084 69 GTC /
atp8 + 4084 4245 162 ATC TAA
atp6 + 4239 4916 678 ATG TAA
cox3 + 4916 5704 789 ATG TAA
trnG + 5704 5768 65 TCC /
nad3 + 5,766 6,122 357 ATA TAA
trnA + 6122 6190 69 TGC /
trnR + 6189 6,258 70 TCG /
trnN + 6258 6324 67 GTT /
trnS1 + 6325 6392 68 GCT /
trnE + 6392 6460 69 TTC /
trnF 6459 6526 68 GAA /
nad5 6525 8254 1730 ATT T(aa)
trnH 8255 8322 68 GTG /
nad4 8322 9665 1344 ATG TAA
nad4l 9659 9952 294 ATG TAA
trnT + 9954 10,022 69 TGT /
s2 NA 10,023 10,045 23 / /
trnP 10,046 10,111 66 TGG /
nad6 + 10,113 10,634 522 ATC TAA
cob + 10,634 11,767 1134 ATG TAA
trnS2 + 11,766 11,832 67 TGA /
s3 NA 11,833 11,849 17 / /
nad1 11,850 12,800 951 TTG TAA
trnL1 12,801 12,868 68 TAG /
l-rRNA 12,810 14,180 1371 / /
trnV 14,167 14,236 70 TAC /
s-rRNA 14,239 15,008 770 / /
A + T-rich (control) region NA 15,009 212 1291 / /

Transfer RNAs are given in the one-letter amino acid code with the corresponding anticodons. Intergenic spacer regions are numbered (s1–s3).

However, in contrast to the known other anisopteran mitogenomes, only three intergenic spacer regions were discovered (see Table 1). These are located between trnY/cox1, trnT/trnP, and trnS2/nad1. They are also present in other odonates (Anisoptera and Zygoptera), e.g. Ischnura elegans (Feindt et al. 2016), Ischnura pumilio (Lorenzo-Carballa et al. 2014), Megaloprepus caerulatus (Feindt et al. 2016), or Brachythemis contaminata (Yu et al. 2014). The latter, an anisopteran species additionally shows a fourth spacer region between nad1/trnL2 that is asserted to be typical for Anisopterans and lacking in Zygopterans (Lin et al. 2010). This spacer, commonly called s5 (though counting and numbering spacer regions is not consistent between most mitogenome publications) is not present in Anax. Consequently, the absence of this spacer refutes the theory of being a putative distinctive feature between Anisoptera and Zygoptera and stresses the necessity to analyze more mitogenomes within Odonata to allow stronger, reliable assumptions about phylogenetically informative mtDNA characteristics. The phylogenetic position of A. imperator in the context of all available anisopteran mitogenomes to date (3 May 2016) is displayed in Figure 1 and so far consistent with other gene tree phylogenies.

Figure 1.

Figure 1.

Neighbour-Joining Tree of A. imperator within all available anisopteran odonate species (03 May 2016): Orthetrum triangulare (AB126005.1), Hydrobasileus croceus (NC_025758.1), B. contaminata (NC_026305.1), Ictinogomphus sp. (KM244673) and Davidius lunatus (NC_012644.1). The phylogeny was reconstructed based on 13 mitochondrial protein-coding genes via Paup with 1000 bootsrap replicates and Euphea formosa (NC_014493.1) as an outgroup.

Disclosure statement

The authors declare no conflict of interest to other working groups.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410. [DOI] [PubMed] [Google Scholar]
  2. Bergmann T, Rach J, Damm S, DeSalle R, Schierwater B, Hadrys H.. 2013. The potential of distance‐based thresholds and character‐based DNA barcoding for defining problematic taxonomic entities by CO1 and ND1. Mol Ecol Resources. 13:1069–1081. [DOI] [PubMed] [Google Scholar]
  3. Beutler H. 1985. [Freiland-Daten zur Koexistenz von Aeshnidenlarven]. Entomol Nachrichten Und Berichte. 29:73–75. [in German]. [Google Scholar]
  4. Chen M-Y, Chaw S-M, Wang J-F, Villanueva RJT, Nuneza OM, Lin C-P.. 2015. Mitochondrial genome of a flashwing demoiselle, Vestalis melania from the Philippine Archipelago. Mitochondrial DNA. 26:720–721. [DOI] [PubMed] [Google Scholar]
  5. Feindt W, Herzog R, Osigus H-J, Hadrys H.. 2016. Short read sequencing assembly revealed the complete mitochondrial genome of Ischnura elegans (Vander Linden, 1820). Mitochondrial DNA. 1:547–576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feindt W, Osigus H-J, Herzog R, Mason CE, Schierwater B, Hadrys H.. 2016. The complete mitochondrial genome of the Neotropical helicopter damselfly Megaloprepus caerulatus Odonata: Zygoptera) assembled from next generation sequencing data. Mitochondrial DNA Part B. 1:497–499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fleck G, Ullrich B, Brenk M, Wallnisch C, Orland M, Bleidissel S, Misof B.. 2008. A phylogeny of anisopterous dragonflies (Insecta, Odonata) using mtRNA genes and mixed nucleotide/doublet models. J Zool Syst Evol Res. 46:310–322. [Google Scholar]
  8. Hadrys H, Balick M, Schierwater B.. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecol. 1:55–63. [DOI] [PubMed] [Google Scholar]
  9. Hadrys H, Timm J, Streit B, Giere S.. 2007. A panel of microsatellite markers to study sperm precedence patterns in the emperor dragonfly Anax imperator (Odonata: Anisoptera). Mol Ecol Notes. 7:296–298. [Google Scholar]
  10. Hunger H, Schiel F-J, Kunz B.. 2006. [Verbreitung und Phänologie der Libellen BadenWürttembergs (Odonata)]. Libellula Suppl. 7:15–188. [in German]. [Google Scholar]
  11. Laslett D, Canbäck B.. 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 24:172–175. [DOI] [PubMed] [Google Scholar]
  12. Lejfelt-Sahlén A. 2007. [Trollsländefauna i förvandling]. Fauna Och Flora. 102:44–44. [in Swedish]. [Google Scholar]
  13. Lin CP, Chen MY, Huang JP.. 2010. The complete mitochondrial genome and phylogenomics of a damselfly, Euphaea formosa support a basal Odonata within the Pterygota. Gene. 468:20–29. [DOI] [PubMed] [Google Scholar]
  14. Lorenzo-Carballa MO, Thompson DJ, Cordero-Rivera A, Watts PC.. 2014. Next generation sequencing yields the complete mitochondrial genome of the scarce blue-tailed damselfly, Ischnura pumilio. Mitochondrial DNA. 25:247–248. [DOI] [PubMed] [Google Scholar]
  15. Lowe TM, Eddy SR.. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Misof B, Rickert AM, Buckley TR, Fleck G, Sauer KP.. 2001. Phylogenetic signal and its decay in mitochondrial SSU and LSU rRNA gene fragments of Anisoptera. Mol Biol Evol. 18:27–37. [DOI] [PubMed] [Google Scholar]
  17. Nielsen OF. 1998. [Guldsmede-nyt fra Danmark 1997]. Nordic Odonatol Soc Newslett. 4:4. [in Danish]. [Google Scholar]
  18. Ott J. 2010. Dragonflies and climatic change-recent trends in Germany and Europe. BioRisk. 5:253. [Google Scholar]
  19. Parr AJ. 2010. Monitoring of Odonata in Britain and possible insights into climate change. In: Ott J (Ed) Monitoring Climatic Change with Dragonflies. BioRisk. 5:127–139. [Google Scholar]
  20. Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H.. 2008. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc Royal Soc London B: Biol Sci. 275:237–247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simon S, Hadrys H.. 2013. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol. 69:393–403. [DOI] [PubMed] [Google Scholar]
  22. Westermann K. 2003. [Zum Status der Großen Königslibelle im höheren Schwarzwald]. Naturschutz Am Südlichen Oberrhein. 4:81–85. [in German]. [Google Scholar]
  23. Yu P, Cheng X, Ma Y, Yu D, Zhang J.. 2014. The complete mitochondrial genome of Brachythemis contaminata (Odonata: Libellulidae). Mitochondrial DNA. 27:1–2. [DOI] [PubMed] [Google Scholar]

Articles from Mitochondrial DNA. Part B, Resources are provided here courtesy of Taylor & Francis

RESOURCES