Skip to main content
Mitochondrial DNA. Part B, Resources logoLink to Mitochondrial DNA. Part B, Resources
. 2016 Feb 5;1(1):100–102. doi: 10.1080/23802359.2015.1137844

The complete mitochondrial genome of horn-nosed boxfish (Ostracion rhinorhynchos)

Yu Huang a, Xiaomeng Zhao a, Zhiqiang Ruan a, Min Wang a,b, Junmin Xu a,b, Qiong Shi a,b,
PMCID: PMC7799600  PMID: 33473425

Abstract

The horn-nosed boxfish, Ostracion rhinorhynchos (Tetraodontiformes: Ostraciidae) is a toxic marine species inhabiting tropical coral reefs. In this study, we first reported its whole mitochondrial genome sequence. The complete mitochondrial genome, 16 483 bp with an AT ratio of 56.8%, is composed of 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs and an 826-bp D-loop control region. The molecular-based phylogenetic tree indicated that O. rhinorhynchos has close affinities with fishes from family Ostraciidae as expected.

Keywords: Complete mitochondrial genome, Ostracion rhinorhynchos, tetraodontiformes


First described in 1851 (Bleeker 1851), Ostracion rhinorhynchos, commonly known as horn-nosed boxfish because of its box-like carapace and large protuberance on the snout, is a toxic marine genus belonging to Ostraciidae in Tetraodontiformes of which most species dwell in and around tropical coral reefs. Ostraciidae contains about 23 extant species in 6 extant genera, but mitochondrial genomes of only two species (Ostracion immaculatus and Lactoria diaphana) have been sequenced. In this study, we first reported the whole mitochondrial genome sequence of O. rhinorhynchos (GenBank accession number KU308378).

One adult horn-nosed boxfish was collected from Sanya, China. Whole genomic DNA was extracted from its muscle with Puregene Tissue Core Kit A (Qiagen, Germantown, MD, USA) and sequenced by Illumina Hiseq4000 (BGI, Shenzhen, China). Raw data containing adaptor contamination (with >15 bp matched to the adaptor sequence), polyNs (>5 bp Ns) or >1% error rate (>10 bp bases with quality score <20) were filtered out with a Perl script (Zhou et al. 2013; Tang et al. 2014). Clean reads were subsequently assembled with SOAPdenovo-Trans (Xie et al. 2014) and annotated with DOGMA (Wyman et al. 2004). tRNA genes were further identified using tRNAscan-SE 1.21 (http://lowelab.ucsc.edu/tRNAscan-SE).

The complete mitochondrial genome of O. rhinorhynchos is 16 483 bp in length. The overall base composition is 29.7% A, 27.1% T, 27.7% C and 15.4% G, with an AT bias of 56.8%, in common with other vertebrate mitochondrial genomes and slightly higher than that in reported O. immaculatus (Yamanoue et al. 2007). This circular molecule contains 13 protein-coding genes, 22 transfer RNA gens, 2 ribosomal RNA genes (12S rRNA and 16S rRNA) and an 826-bp D-loop control region (Table 1). ND6 is the only protein coding gene coded by L-strand while 14 out of 22 tRNAs are coded by H-strand. The 13 protein coding genes were aligned to two reported Ostraciidae fishes (O. immaculatus and L. diaphana) with Blastall (Mount 2007) and the result shows that, except for ATP8 which presents the same identity (93.94%), other 12 genes all have higher identity in O. immaculatus than those in L. diaphana, confirming that O. rhinorhynchos and O. immaculatus which are in the same genus have relatively closer phylogenetic relationship (Table 1).

Table 1.

Mitochondrial genome characteristics of the Ostracion rhinorhynchos.

Gene name Position
Size (bp) Intergenic nucleotidesa Coding strand Identity with Ostraciidae species (%)
Start End Ostracion immaculatus Lactoria diaphana
tRNA-Phe 1 68 68 0 H / /
s-rRNA 69 1011 943 6 H / /
tRNA-Val 1018 1089 72 0 H / /
l-rRNA 1090 2771 1682 2 H / /
tRNA-Leu 2774 2847 74 0 H / /
ND1 2848 3819 972 7 H 91.87 84.36
tRNA-Ile 3827 3897 71 −1 H / /
tRNA-Gln 3897 3967 71 −1 L / /
tRNA-Met 3967 4035 69 0 H / /
ND2 4036 5079 1044 2 H 92.24 83.33
tRNA-Trp 5082 5153 72 0 H / /
tRNA-Ala 5154 5222 69 1 L / /
tRNA-Asn 5224 5296 73 37 L / /
tRNA-Cys 5334 5400 67 0 L / /
tRNA-Tyr 5401 5471 71 1 L / /
COX1 5473 7020 1548 4 H 95.28 87.34
tRNA-Ser 7025 7095 71 3 L / /
tRNA-Asp 7099 7169 71 7 H / /
COX2 7177 7866 690 1 H 96.52 89.57
tRNA-Lys 7868 7942 75 1 H / /
ATP8 7944 8108 165 −7 H 93.94 93.94
ATP6 8102 8782 681 2 H 95.15 86.93
COX3 8785 9567 783 2 H 95.79 88.89
tRNA-Gly 9570 9641 72 0 H / /
ND3 9642 9989 348 1 H 92.24 81.9
tRNA-Arg 9991 10 060 70 0 H / /
ND4L 10 061 10 354 294 −4 H 97.28 87.41
ND4 10 351 11 730 1380 1 H 93.81 84.75
tRNA-His 11 732 11 800 69 0 H / /
tRNA-Ser 11 801 11 868 68 4 H / /
tRNA-Leu 11 873 11 945 73 0 H / /
ND5 11 946 13 781 1836 2 H 93.03 85.19
ND6 13 784 14 302 519 0 L 91.71 84.39
tRNA-Glu 14 303 14 371 69 4 L / /
CYTB 14 376 15 515 1140 1 H 92.89 84.7
tRNA-Thr 15 517 15 588 72 −1 H / /
tRNA-Pro 15 588 15 657 70 0 L / /
D-loop 15 658 16 483 826 0   / /
a

Positive numbers indicate the number of nucleotides found in intergenic spacers between different genes. Negative numbers indicate overlapping nucleotides between adjacent genes.

Several studies have confirmed the phylogenetic position of Tetraodontiformes fishes as a monophyletic group within the higher teleosts (Holcroft 2004; Yamanoue et al. 2007). However, within this order, the genetic relationship is not clear (Yamanoue et al. 2007; Santini et al. 2013). Taking Oryzias latipes and Oryzias dancena in order Beloniformes as outgroups, we constructed a neighbour-joining tree using MEGA6 (Tamura et al. 2013), based on the complete mitochondrial genomes of O. rhinorhynchos together with other 23 reported affinis species in order Tetraodontiformes (Figure 1). As expected, O. rhinorhynchos has closer affinities with other Ostraciidae species. The achieved mitochondrial genome of O. rhinorhynchos will be useful for verification of the evolutionary relationship within Tetraodontiformes.

Figure 1.

Figure 1.

Phylogenetic tree based on Ostracion rhinorhynchos together with other 25 reported species. GenBank accession numbers of mitochondrial genome sequences are listed as follows: Aluterus monoceros: NC_027268.1; Anoplocapros lenticularis: NC_011319.1; Arothron manilensis: NC_015371.1; Balistapus undulatus: NC_011946.1; Chilomycterus reticulatus: NC_011331.1; Diodon holocanthus: NC_009866.1; Kentrocapros aculeatus: NC_009864.1; Lactoria diaphana: NC_011330.1; Macrorhamphosodes uradoi: NC_009860.1; Masturus lanceolatus: NC_005837.1; Mola mola: NC_005836.1; Monacanthus chinensis: NC_011925.1; Oryzias dancena: NC_012976.1; Oryzias latipes: NC_004387.1; Ostracion immaculatus: NC_009865.1; Ranzania laevis: NC_007887.1; Sufflamen fraenatum: NC_004416.1; Takifugu fasciatus: NC_013087.1; Tetraodon lineatus: NC_028551.1; Thamnaconus hypargyreus: NC_027070.1; Triacanthodes anomalus: NC_009861.1; Triacanthus biaculeatus: NC_009863.1; Triodon macropterus: NC_009859.1; Trixiphichthys weberi: NC_009862.1; Xenobalistes tumidipectoris: NC_011321.1.

Acknowledgements

We would like to thank Chuanyu Guo from BGI, Shenzhen for collecting precious samples for this study.

Disclosure statement

The authors report no conflicts of interest. The authors are responsible for the content and writing. .

Funding information

This work was supported by Three New Projects of Agricultural Aquaculture Program of Jiangsu Province (No. Y2015-12), Special Project on the Integration of Industry, Education and Research of Guangdong Province (No. 2013B090800017), Shenzhen and Hong Kong Innovation Circle (No. SGLH20131010105856414) and Fish-T1K (Transcriptomes for 1000 Fishes) project (www.fisht1k.org).

References

  1. Bleeker P. 1851. Bijdrage tot de kennis der Balistini en Ostraciones van den Indischen Archipel. Verb Bat Gen. 24:1–38. [Google Scholar]
  2. Holcroft NI. 2004. A molecular test of alternative hypotheses of tetraodontiform (Acanthomorpha: Tetraodontiformes) sister group relationships using data from the RAG1 gene. Mol Phylogenet Evol. 32:749–760. [DOI] [PubMed] [Google Scholar]
  3. Mount DW. 2007. Using the basic local alignment search tool (BLAST). CSH Protoc. 1(2007):pdb.top17. [DOI] [PubMed] [Google Scholar]
  4. Santini F, Sorenson L, Marcroft T, Dornburg A, Alfaro ME.. 2013. A multilocus molecular phylogeny of boxfishes (Aracanidae, Ostraciidae; Tetraodontiformes). Mol Phylogenet Evol. 66:153–160. [DOI] [PubMed] [Google Scholar]
  5. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S.. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30: 2725–2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Tang M, Tan M, Meng G, Yang S, Su X, Liu S, Song W, Li Y, Wu Q, Zhang A, et al. 2014. Multiplex sequencing of pooled mitochondrial genomes – a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res. 42:e166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Wyman SK, Jansen RK, Boore JL.. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. [DOI] [PubMed] [Google Scholar]
  8. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, et al. 2014. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666. [DOI] [PubMed] [Google Scholar]
  9. Yamanoue Y, Miya M, Matsuura K, Yagishita N, Mabuchi K, Sakai H, Katoh M, Nishida M.. 2007. Phylogenetic position of tetraodontiform fishes within the higher teleosts: Bayesian inferences based on 44 whole mitochondrial genome sequences. Mol Phylogenet Evol. 45:89–101. [DOI] [PubMed] [Google Scholar]
  10. Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J, Huang Q.. 2013. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience 2:4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mitochondrial DNA. Part B, Resources are provided here courtesy of Taylor & Francis

RESOURCES