Skip to main content
Mitochondrial DNA. Part B, Resources logoLink to Mitochondrial DNA. Part B, Resources
. 2016 Jul 5;1(1):394–396. doi: 10.1080/23802359.2016.1174087

The complete mitochondrial genome of the Endangered European brown frog Rana pyrenaica through RNAseq

Marcos Peso-Fernández a, Raquel Ponti de la Iglesia a, Guillermo Ponz Segrelles a, Rubén González Martínez a,b, Angel Arcones Segovia a, David R Vieites a,b,c,
PMCID: PMC7799604  PMID: 33473495

Abstract

We sequenced the complete mitogenome of the Pyrenean frog Rana pyrenaica, which was determined from an Illumina Hi-seq RNAseq run (Illumina Inc., San Diego, CA). The genome is 17,213 bp in size, including 13 protein-coding genes, 21 transfer RNAs, two ribosomal RNAs and a control region. It shows the typical gene order of previously available frog mitogenomes, although it lacks the tRNAPhe. This is the first complete mitogenome described for a Western Palearctic brown frog species.

Keywords: Amphibia, mitogenome, Pyrenees, Rana pyrenaica, RNAseq


The Pyrenean frog (Rana pyrenaica) is an Endangered narrowly distributed endemism (Sillero et al. 2014). Despite that its sister species Rana temporaria shows a considerable degree of mtDNA genetic variation across its range, including several divergent lineages in the Pyrenees (Vences et al. 2013); a preliminary mtDNA study across the range of R. pyrenaica showed a single mutation difference using three mitochondrial genes (Carranza & Arribas 2008). This potential lack of genetic variation has important conservation implications for this Endangered species.

RNAseq is becoming a common approach for gathering transcriptome data using Next-Generation Sequencing, being complete mitogenomes a potential output. We explored the use of RNAseq to describe the complete mitogenome of R. pyrenaica, which will benefit future phylogeographic, population genetic and conservation studies.

An adult of R. pyrenaica (Museo Nacional de Ciencias Naturales, Madrid, collection number MNCN 46671) was collected in Uztárroz (42°35′38″N, 0°59′27″W), NE Spain. We extracted RNA from several tissues, which were quantified with Qubit HS and normalized. A RNAseq library was prepared using the NEBNext Ultra RNA kit for Illumina (Illumina Inc., San Diego, CA). Quantification and size estimation were performed on a Bioanalyzer 2100 High Sensitivity DNA chip, and sequenced on 1/2 lane on a Illumina HiSeq (2 × 100 bp pair-end reads). After quality control and trimming with Trimmomatic (v 0.32.2) (Bolger et al. 2014), assembly was done with Trinity (v 2.0.6) (Haas et al. 2013). Trinity recovered the mitogenome except part of the control region; hence we used this assembly as input for MITObim (Hahn et al. 2013) to complete the reconstruction. Genome annotation was done through nucleotide sequence alignments with other ranids. The genome is deposited in GenBank (KU720300).

The complete mitogenome of R. pyrenaica is 17,213 bp in length, including 13 protein-coding genes, two rRNAs, 21 tRNAs and a control region. Gene order, lengths and codon compositions are shown in Table 1. The overall base composition of the heavy strand is 27.7% for A, 28.3% for T, 14.9% for G and 29.1% for C, with an A + T bias of 59.9%, similar to other ranid species (Hofman et al. 2014, Li et al. 2014a, 2014b, Ni et al. 2015). The genome shows a similar gene organization as other ranids (Kurabayashi et al. 2010; Xia et al. 2014), but it is the only anuran known so far lacking the tRNAPhe. A maximum-likelihood phylogenetic analysis of ranid frogs based on the available complete mitogenomes (Figure 1) recovers the European R. pyrenaica as the sister taxon to the clade of Asian brown frogs.

Table 1.

Location of features in the mtDNA of R. pyrenaica.

Gene/region Start position Stop position Length (bp) Spacer (+) overlap (−) Start codon Stop codon Strand
tRNALeu 1 72 72 2     H
tRNAThr 75 144 70 0     H
tRNAPro 145 176 32 3     H
12S rRNA 180 1109 930 0     H
tRNAVal 1109 1177 69 −1     H
16S rRNA 1178 2758 1581 1     H
tRNALeu (UUR) 2760 2832 73 0     H
NAD1 2833 3793 961 0 ATT T–– H
tRNAIle 3794 3863 71 0     H
tRNAGln 3864 3934 71 −1     H
tRNAMet 3934 4002 69 −1     H
NAD2 4003 5035 1033 0 ATT T–– H
tRNATrp 5036 5105 70 0     H
tRNAAla 5106 5175 70 0     L
tRNAAsn 5176 5248 73 0     L
OL 5249 5278 30 0     L
tRNACys 5276 5340 65 −3     L
tRNATyr 5341 5407 67 3     L
COI 5411 6961 1551 0 ATA AGG H
tRNASer (UCN) 6953 7023 71 −9     L
tRNAAsp 7025 7093 69 0     H
COII 7094 7781 688 0 ATG T–– H
tRNALys 7782 7850 69 1     H
ATP8 7852 8013 162 0 ATG TAA H
ATP6 8007 8688 682 −7 ATG T–– H
COIII 8689 9472 784 0 ATG T–– H
tRNAGly 9473 9540 68 0     H
ND3 9541 9880 340 0 ATG T–– H
tRNAArg 9881 9949 69 0     H
ND4L 9950 10,234 285 0 ATG TAA H
ND4 10,228 11,587 1360 −7 ATG T–– H
tRNAHis 11,588 11,655 68 0     H
tRNASer (AGY) 11,656 11,722 67 30     H
ND5 11,753 13,544 1792 105 ATG T–– H
ND6 13,650 14,150 501 0 ATG AGA L
tRNAGlu 14,151 14,218 68 3     L
Cyt b 14,222 15,364 1143 0 ATG TAAa H
Control region 15,365 17,211 1846 0     H
a

Stop codon completed with the addition of an A.

Figure 1.

Figure 1.

Phylogenetic reconstruction of the relationships between ranid frogs, based on available complete mitochondrial genomes except control regions. Maximum-likelihood analyses using a partitioned dataset by codon and gene were performed in RaxML, running for 1000 generations. ML support values are provided above branches. Genbank accession numbers are provided after the species names.

RNAseq has been proven to be a very fast and useful approach to gather complete mitogenomes. Although using common assembly tools like Trinity was not enough to gather the full genome, the combination with MITOBim has performed well to fill the assembly gaps.

Acknowledgements

The authors thank the CETA/CIEMAT and the Parque Científico de la UAM for the use of their infrastructures, and the Navarra authorities for collecting permits.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding information

This work was supported by the Spanish OAPN- Ministry of Environment under Grant 206/2010; Zoo de Barcelona (Ayuntamiento de Barcelona); and the Spanish Ministry of Economy under Grant CGL2013-40924-P. MP was supported by a CNPQ fellowship.

ORCID detail

David R. Vieites http://orcid.org/0000-0001-5551-7419

References

  1. Bolger AM, Lohse M, Usadel B.. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30:2114–2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carranza S, Arribas O.. 2008. Genetic uniformity of Rana pyrenaica Serra-Cobo, 1993 across its distribution range: a preliminary study with mtDNA sequences. Amphibia–Reptilia. 29:579–582. [Google Scholar]
  3. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protocols. 8:1494–1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hahn C, Bachmann L, Chevreux B.. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucl Acids Res. 41:e129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hofman S, Pabijan M, Osikowski A, Szymura JM.. 2014. Complete mitochondrial genome of the Greek marsh frog Pelophylax cretensis (Anura, Ranidae). Mitochondrial DNA. 27:1955–1956. [DOI] [PubMed] [Google Scholar]
  6. Kurabayashi A, Yoshikawa N, Sato N, Hayashi Y, Oumi S, Fujii T, Sumida M.. 2010. Complete mitochondrial DNA sequence of the endangered frog Odorrana ishikawae (family Ranidae) and unexpected diversity of mt gene arrangements in ranids . Mol Phylogenet Evol. 56:543–553. [DOI] [PubMed] [Google Scholar]
  7. Li J, Lei G, Fu C.. 2014a. Complete mitochondrial genomes of two brown frogs, Rana dybowskii and Rana cf. chensinensis (Anura: Ranidae). Mitochondrial DNA. 27:155–156. [DOI] [PubMed] [Google Scholar]
  8. Li J, Yin W, Xia R, Lei G, Fu C.. 2014b. Complete mitochondrial genome of a brown frog, Rana kunyuensis (Anura: Ranidae). Mitochondrial DNA. 27:34–35. [DOI] [PubMed] [Google Scholar]
  9. Ni N, Yu D, Storey KB, Zheng R, Zhang J.. 2015. The complete mitochondrial genome of Lithobates sylvaticus (Anura: Ranidae). Mitochondrial DNA. doi: 10.3109/19401736.2015.1033697. [DOI] [PubMed] [Google Scholar]
  10. Sillero N, Campos J, Bonardi A, Corti C, Creemers R, Crochet PA, Isailović JC, Denoël M, Ficetola GF, Gonçalves J, et al. 2014. Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia–Reptilia 35:1–31. [Google Scholar]
  11. Vences M, Hauswaldt S, Steinfartz S, Rupp O, Goesmann A, Künzel S, Orozco-terWengel P, Vieites DR, Nieto-Román S, Haas S, et al. 2013. Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Mol Phylogen E. 68:657–670. [DOI] [PubMed] [Google Scholar]
  12. Xia Y, Zheng Y, Miura I, Wong PB, Murphy RW, Zeng X.. 2014. The evolution of mitochondrial genomes in modern frogs (Neobatrachia): nonadaptive evolution of mitochondrial genome reorganization. BMC Genomics. 15:691. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mitochondrial DNA. Part B, Resources are provided here courtesy of Taylor & Francis

RESOURCES