Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2021 Jan 13;11:892. doi: 10.1038/s41598-020-77756-x

Spin and pseudospin solutions to Dirac equation and its thermodynamic properties using hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential

Ituen B Okon 1,, E Omugbe 2, Akaninyene D Antia 1, C A Onate 3, Louis E Akpabio 1, O E Osafile 2
PMCID: PMC7806893  PMID: 33441567

Abstract

In this research article, the modified approximation to the centrifugal barrier term is applied to solve an approximate bound state solutions of Dirac equation for spin and pseudospin symmetries with hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential using parametric Nikiforov–Uvarov method. The energy eigen equation and the unnormalised wave function were presented in closed and compact form. The nonrelativistic energy equation was obtain by applying nonrelativistic limit to the relativistic spin energy eigen equation. Numerical bound state energies were obtained for both the spin symmetry, pseudospin symmetry and the non relativistic energy. The screen parameter in the potential affects the solutions of the spin symmetry and non-relativistic energy in the same manner but in a revised form for the pseudospin symmetry energy equation. In order to ascertain the accuracy of the work, the numerical results obtained was compared to research work of existing literature and the results were found to be in excellent agreement to the existing literature. The partition function and other thermodynamic properties were obtained using the compact form of the nonrelativistic energy equation. The proposed potential model reduces to Hulthen and exponential inversely quadratic potential as special cases. All numerical computations were carried out using Maple 10.0 version and Matlab 9.0 version softwares respectively.

Subject terms: Applied mathematics, Pure mathematics, Physics

Introduction

Most of the quantum mechanical systems were investigated through bound state and scattering state solutions of relativistic and nonrelativistic wave equations with considerable potential models. Schrodinger wave equation constitutes the non-relativistic wave equation while Klein–Gordon, Dirac, Duffin–Kemmer–Petiau (DKP) constitute the relativistic wave equation1,2. The Dirac equation forms the foundation for the formulation of relativistic quantum mechanics3. Dirac equation has wide applications in physical sciences ranging from high energy physics, quantum information, quantum electrodynamics and quantum fluctuations47. The solutions of Dirac equation is applicable in describing the nuclear shell struture810. The concept of spin and pseudospin symmetries under Dirac formulation have been used extensively to explain the feature of deformed nuclei and super-deformation thereby establishing and effective shell model coupling scheme1113. Spin symmetry is use for the description of mesons. This arises when the difference of the potential between the repulsive Lorentz vector V(r) and the attractive Lorentz scalar vector S(r) is constant; that is, Δ=V(r)-S(r). However, pseudo symmetry arises when the sum of the potential of the repulsive Lorentz vector potential V(r) and the attractive Lorentz scalar potential S(r) is constant; that is (r)=V(r)+S(r)1416. The Klein–Gordon equation as Lorentz scalar was use to describe spinless particle while Dirac equation was used for the description of spin-1/2 particles1725. Meanwhile, the relativistic wave equation wether Dirac, Klein–Gordon, and DKP is consider either as mixed vector and scalar potentials or equal vector and scalar potentials2630. In mathematical physics, the Dirac equation with pseudo scalar potential can be handled as a Sturm–Liouville problem while the bound state spectrum of Dirac equation is relevant for the study of Zakharaov–Shabat eigenvalue problem which is applicable in the study of isospectral flow of soliton in plasma3134. The solutions of Dirac equation with various considerable potentials within spin and pseudospin symmetries have been obtained by different authors using different methods such as: factorisation method35,36, asymptotic iteration method37,38, Laplace transform technique39, Supersymmetric quantum mechanics approach4042, path integral formulation4345, Nikiforov–Uvarov method46,47 and others.

Both Dirac and Klein–Gordon equations have been studied with different potentials such as: Woods–Saxon, Rosen–Morse, Hulthen, Eckart, Manning Rosen plus Hellmann, Scarf potential and others4857. The investigation of approximate bound state solutions of Dirac equation has been carried out by different authors. Okorie et al.58 investigated the solution of Dirac and Schrodinger equation with shifted Tietz–Wei potential where they obtained relativistic and nonrelativistic ro-vibrational energy spectra as well as numerical solutions for different diatomic molecules within the framework of factorisation method. Onyeaju et al.59 employed the Perkeris approximation to the centrifugal term to obtain approximate bound state solutions of Dirac equation with some thermodynamic properties for the deformed Hylleraas plus deformed Woods-Saxon potential. Similarly Ikhdair and Hamzavi60 studied Dirac bound state solutions of spherically ringed-shape q-deform Woods-Saxon potential for any l-state; where they obtained energy eigenvalue equation and the corresponding two components wave functions within the framework of Nikiforov–Uvarov method. Arda and Sever3 studied bound state solutions of Dirac equation for Kratzer potential with pseudo-scalar Coulomb term. Ortakaya et al.61 investigated bound state solutions of Dirac equation with Deng–Fan potential including a Coulomb tensor interaction within the framework of asymptotic iteration method where they presented their numerical results for spin and pseudospin limits. A lot of research work have been carried out by Ikot and co-authors on Dirac equation as seen in Refs62,63. Other research contributions on Dirac equations were presented in Refs6466.

Some considerable potentials describing physical systems have been modelled as hyperbolic and trigonometric potentials because of their contributions in nuclear and high energy physics. Some authors have reported the applications and usefulness of such potential models. Ikhdair67 calculated a rotational and vibrational energies of diatomic molecules in Klein–Gordon equation using hyperbolic scalar and vector potential by means of parametric Nikiforov–Uvarov method. Ikot et al.68 studied Schrodinger equation with screen Kratzer potential in the presence of external magnetic and AB flux field using factorisation method. The eigenvalue and the eigenfunction of the system were presented in a close form while magnetisation and magnetic susceptibility were evaluated at zero and finite temperatures as well as thermodynamic properties. Dong et al.69 examined quantum information entropies for a squared tangent potential where the calculated position Shannon and momentum entropies that satisfies Beckner, Bialynicki and Mycieslki (BBM) inequality. Okon et al.70 obtained eigen solutions to Schrodinger equation with trigonometric Inversely quadratic plus Coulombic hyperbolic potential where they obtained energy eigen equation and normalised wave function using Nikiforov–Uvarov method. Onate71 examined bound state solutions of Schrodinger equation with second Poschl–Teller-like potential where he obtained vibrational partition function, mean energy and mean free energy where Poschl–Teller-like potential was expressed in the form of hyperbolic cosh and sinh. Okorie et al.72 obtained the ro-vibrational energy spectra of the improved deformed exponential-type potential using Greene–Aldrich approximation scheme and coordinate transformation where they obtained vibrational partition function and other thermodynamic properties using poisson summation formular.

In this research article, we solve bound state solutions of Dirac equation with equal scalar and vector potential using hyperbolic Hulthen plus hyperbolic Yukawa inversely quadratic potential under spin and pseudospin symmetries using the parametric Nikiforov–Uvarov method. This work is also extended to study some thermodynamic properties using the nonrelativistic energy eigen equation. This article is divided into seven sections. “Introduction” gives the brief introduction of the article. The basic theory of Dirac equation is presented in “Dirac equation for spin and pseudospin symmetry” section. Parametric Nikiforov–Uvarov method is presented in “The parametric Nikiforov–Uvarov (NU) method” section while the analytical solution of Dirac equation is presented in “Solution of Dirac equation with the proposed potential” section. The numerical results for both spin and pseudospin symmetries are presented in “Numerical results” section. Thermodynamic properties is presented in “Thermodynamic properties for the potential model” section while the discussion of numerical results and tables are done in “Discussion” section. The research article is concluded in “Conclusion” section.

Dirac equation for spin and pseudospin symmetry

The Dirac equation8 for spin-1/2 particles moving in a field of attractive scalar potential S(r) and repulsive vector potential V(r) is given as

[α·p+β(M+S(r))]ψ(r)=[E-V(r)]ψ(r) 1

where E is the relativistic energy, M is the mass of a single particle, p=-iΔ is the momentum operator, while α and β are the 4×4 Pauli matrices defined as

α=0σiσi0,β=I00-I 2

Here I is the 2×2 unitary matrix and σi are the three vector spin matrices given as

σ1=0110,σ2=0-ii0,σ3=1001 3

The total angular momentum J and the spin orbit operator K^=-β(α·L+1) of a particle commutes with the Dirac Hamiltonian in a central field where L is the orbital angular momentum of the spherical nucleons. The eigenvalues of the spin-orbit coupling operator K^ are κ=-(j+12)<0, j=(l-12) for unaligned spin and κ=(j+12)>0, j=(l+12) for aligned spin respectively. Thus, the spinor wave function can be classified according to the angular momentum j, the spin orbit quantum number κ and the radial quantum number n. The wave function can then be written as κ and the radial quantum number n. The wave function can then be written as

ψ(r)=ξ(r)ϕ(r)=1rFnk(r)Yjml(θ,φ)iGnk(r)Yjml~(θ,φ) 4

where Fnk and Gnk are the upper and lower radial wave functions respectively. Yjml(θ,φ) and Yjml~(θ,φ) are the spin and pseudospin spherical harmonics respectively. m is the projection of angular momentum on the z-axis. Substituting Eqs. (1)–(4) and by making use of the following relations

(σ^·A)·(σ^·B)=A·B+iσ^·(A×B) 5
σ^·p^=σ^·r^r^·p^+iσ^l~r 6

Together with the additional properties

(σ^·L)Yjml~(θ,φ)=(κ-1)Yjml~(θ,φ)(σ^·L)Yjml(θ,φ)=(κ-1)Yjml(θ,φ)(σ^·r^)Yjml~(θ,φ)=-Yjml(θ,φ)(σ^·r^)Yjml(θ,φ)=-Yjml~(θ,φ) 7

result into two coupled differential equations whose solutions constitutes the upper Fnk and the lower Gnk as follows:

ddr+κr-U(r)Fnk(r)=(M+Enk-Δ(r))Gnk(r) 8
ddr-κr+U(r)Gnk(r)=M-Enk+(r)Fnk(r) 9

where

Δ(r)=V(r)-S(r),(r)=V(r)+S(r) 10

By eliminating Fnk(r) and Gnk(r) from Eqs. (8) and (9), the following Schrodinger-like differential equations for the upper and lower radial spinor components are obtained as follow:

d2dr-κ(κ+1)r2+2κU(r)r-dU(r)dr-U2(r)Fnk(r)+dΔ(r)drM+Enk-Δ(r)ddr+κr-U(r)Fnk(r)=(M+Enk-Δ(r))(M-Enk-(r))Fnk(r) 11
d2dr-κ(κ-1)r2+2κU(r)r+dU(r)dr-U2(r)Gnk(r)+d(r)drM+Enk-(r)ddr-κr+U(r)Gnk(r)=(M+Enk-Δ(r))(M-Enk-(r))Gnk(r) 12

where κ(κ+1)=l~(l~+1) and κ(κ-1)=l(l+1). The relationship between the quantum number κ and the quantum numbers for spin l and pseudospin l~ symmetries are

κ=-(l+1)=-j+12s12,p32j=l+12;aligned spin(κ<0)(l~+1)=j+12d32,d52l=l-12;unaligned spin(κ>0) 13
κ=-l~=-j+12s12,p32j=l-12;aligned spin(κ<0)(l~+1)=j+12d32,d52j=l~-12;unaligned spin(κ>0). 14

However, for spin symmetry limit, Δ(r) is a constant that is cs=dΔ(r)dr=0 whereas for pseudospin symmetry limit (r) is a constant such that cps=d(r)dr=0

The parametric Nikiforov–Uvarov (NU) method

The NU method is based on reducing second order linear differential equation to a generalised equation of hyper-geometric type and provides exact solutions in terms of special orthogonal functions like Jacobi and Laguerre as well as corresponding energy eigenvalues7378. The standard differential equation for parametric NU method according to Tezcan and Sever79 is given as

ψ(s)+(c1-c2s)s(1-c3s)ψ(s)+1s2(1-c3s)2-Ω1s2+Ω2s-Ω3ψ(s)=0 15

The parametric constants are obtained as follows

c4=121-c1;c5=12c2-c3;c6=c52+ϵ1c7=2c4c5-Ω2;c8=c42+Ω3;c9=c3c7+c32c8+c6c10=c1+2c4+2c8;c11=c2-2c5+2c9+c3c8c12=c4+c8;c13=c5-c9+c3c8. 16

The condition for energy equation is given as

c2n-2n+1c52n+1c9+c3c8+nn-1c3+c7+2c3c8+2c8c9=0 17

The corresponding total wave function is then given as

Ψ(s)=Nnlsc121-c3s-c12-c11c3Pnc10-1,c11c3-c10-11-2c3s. 18

Solution of Dirac equation with the proposed potential

Dirac equation8 with equal scalar and vector potential without tensor interaction is given as

d2dr2-k(k+1)r2-2(Enl+M)V(r)+(Enl2-M2)Fnk=0 19

Equation (19) can further be express as

d2Fnkdr2+-k(k+1)r2-2γV(r)+β2Fnk=0 20

where

γ=(Enl2-M2),β=(Enl2-M2). 21

The hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential is given as

V(r)=v1e-rbcoshω1-e-rbcoshω-Ae-rbcoshωr2 22

where v1 is the potential depth, A is a real constant parameter, b is the screening parameter representing the strength of the potential and ω is the optimising parameter. The potential of Eq. (22) can be express as

V(r)=v1qe-υr1-qe-υr-Aqe-υrr2 23

where υ=1b, q=coshω. The standard Greene–Aldrich approximation to the centrifugal term suitable for the propose potential is given as

1r2=υ2qe-υr(1-qe-υr) 24

Substituting (23) and (24) into (20) and simplifying gives

d2Fnkdr2+-k(k+1)υ2qe-υr(1-qe-υr)2+2γv1qe-υr(1-qe-υr)+2Aγυ2q2e-2υr(1-qe-υr)2+β2Fnk=0 25

Let s=e-υr, then (25) reduces to

d2Fnkdr2+(1-qs)s(1-qs)dFnkds+1s2(1-s)2-2γv1q2υ2-2Aγq2-q2β2υ2s2+κ(κ+1)q-2qβ2υ2+2γv1qυ2s--β2υ2Fnk=0 26

Comparing (26)–(15), the followings are obtain

Ω1=2γv1q2υ2-2Aγq2-q2β2υ2,Ω2=κ(κ+1)q-2qβ2υ2+2γv1qυ2,Ω3=-β2υ2 27

Using Eq. (16), the following parametric constants are obtained as follows:

c1=1,c2=c3=q;c4=0;c5=-q2;c6=q24+2γv1q2υ2-2Aγq2-q2β2υ2c7=-κ(κ+1)q+2qβ2υ2-2γv1qυ2;c8=-β2υ2;c9=κ(κ+1)q2+q24-2γq2Ac10=1+2-β2υ2;c11=2q+24κ(κ+1)q2-8Aγq2+q2+2q-β2b2c12=-β2b2;c13=-q2-124κ(κ+1)q2-8Aγq2+q2+2q-β2b2. 28

Using Eq. (17) with some algebraic simplification, we have

β2=-1b2(n2+n+12)q+q(n+12)(2κ+1)2-8Aγ+qκ(κ+1)-2qγv1b2(2n+1)q+q(2κ+1)2-8Aγ 29

substituting (21)–(29) gives the relativistic spin energy equation as

(Enks-M)(Enks+M)=-1b2(n2+n+12)q+q(n+12)(2κ+1)2-8A(Enks+M)+qκ(κ+1)-2q(Enks+M)v1b2(2n+1)q+q(2κ+1)2-8A(Enks+M)2. 30

Equation (30) can also be express as

(Enks-M)(Enks+M)=-1b2n2+n+12coshω+n+12(2κ+1)2-8A(Enks+M)coshω+κ(κ+1)coshω-2(Enks+M)v1b2coshω(2n+1)coshω+(2κ+1)2-8A(Enks+M)coshω2. 31

In order to obtain the solution for the pseudospin symmetry, then the condition for pseudospin symmetry limit discussed in “Dirac equation for spin and pseudospin symmetry” section is fully applied such that γ=Enk-M-cps, β=(M+Enk-cps), cps=0. Following the same steps to obtain the energy equation for the spin symmetry, the energy equation for pseudospin symmetry limit is then given as

(M+Enkps)(M-Enkps)=-1b2(n2+n+12)q+q(n+12)(1-2κ)2-8A(Enks+M)+qκ(κ-1)-2q(Enkps-M)v1b2(2n+1)q+q(1-2κ)2-8A(Enkps-M)2. 32

Using Eq. (8), the upper component of the wave function is given as

Ψnl=Nnl(e-rbcoshω)-β2b2(1-e-rbcoshω)η×Pn-β2b2,2coshω+24κ(κ+1)(coshω)2-8Aγ(coshω)2+(coshω)2+2coshω-β2b2-2-β2b2-2×(1-2e-rbcoshω) 33

where

η=--β2b2-2coshω+24κ(κ+1)(coshω)2-8Aγ(coshω)2+(coshω)2+2coshω-β2b2.

The lower component of the Dirac spinor can be evaluated using the equation

Gnk(r)=1M+Enkddr+krFnk(r) 34

where Enk-M+cs

Non-relativistic solution

The non-relativistic(NR) solution of the spin symmetry leads to the Schrodinger-like solution. This is obtain by applying non-relativistic limit to the relativistic spin energy equation (30). The non relativistic transformation equations are M+Enk=2μħ2, M-Enk=-Enl as κl. Substituting above condition into (31) and simplifying gives the nonrelativistic energy eigen equation as

Enl=-ħ22μb2q(n2+n+12)+q(n+12)(2l+1)2-8μAħ2+ql(l+1)-2qμv1b2ħ2(2n+1)q+q(2l+1)2-8μAħ22. 35

Deduction for special cases

  1. Hulthen potential: Substituting A=0,q=1 into (23), the potential reduces to Hulthen potential.
    V(r)=-v1e-rb(1-e-rb) 36
    The resulting energy equation is given as
    Enl=-ħ22μb2(1+n+1)2-2μv1b2ħ22(1+n+l)2 37
    However, for the purpose of comparison of the Hulthen potential to an existing literature, let v1=ze2b where z=e=1 in atomic mass unit. Substituting v1 into Eq. (37) gives the energy equation of the Hulthen potential as
    Enl=-ħ22μb2(1+n+1)2-2μbħ22(1+n+l)2. 38
  2. Exponential inversely quadratic potential: When v1=0, and q=1, the potential reduces to exponential inversely quadratic potential
    V(r)=-Ae-rbr2 39
    The resulting energy equation is given as
    Enl=-ħ22μb2(n2+n+12)+(n+12)(2l+1)2-8μAħ2+l(l+1)(2n+1)+(2l+1)2-8μAħ22. 40

Thermodynamic properties for the potential model

The thermodynamic properties for the potential model is calculated using Eq. (35) for q=1. The thermodynamic properties for a quantum mechanical systems can be obtained from the exact partition function given by

Z(β)=n=0λe-βEn 41

where λ is an upper bound of the vibrational quantum number obtained from the numerical solution of dEndn=0, β=1kT where K and T are Boltzmann constant and absolute temperature respectively. In the classical limit, the summation in (41) can be replaced with the integral:

Z(β)=0λe-βEndn 42

The energy equation of Eq. (35) can be simplified to

Enl=-Q1(n+Δ)+Q2(n+Δ)2 43

where

Q1=ħ28μb2,Q2=2μħ2(A-V1b2),Δ=12+12l+122-2μAħ2 44

The maximum vibrational quantum number is given by λ=-Δ+Q2. The energy equation (43) can then be express in the form

Enl=-Q1ρ2+Q1Q22ρ2-2Q1Q2,ρ=n+Δ 45

Hence, the partition function Eq. (42) can be express in the classical limit as

Z(β)=e2βQ1Q20λeQ1ρ2+Q1Q22ρ2dρ 46

Equation (46) is integrated using MAPLE package. Hence, the integral equation (46) which is the partition function is given as

Z(β)=e2βQ1Q2πe2βQ1Q2erf-βQ1λ+Q2-βQ1λ+e-2βQ1Q2erf-βQ1λ-Q2-βQ1λ4-βQ1 47

Using the partition function (47), other thermodynamic properties are obtain as follows

  1. Vibrational mean energy:
    U(β)=-lnZ(β)β=-128Q1Q2πβλe2βQ1Q2erf(χ1)+2λ2-βQ1χ3+2Q2-βQ1χ3+2λ2-βQ1χ4-2Q2-βQ1χ4-πλe2βQ1Q2erf(χ1)πλe-2βQ1Q2erf(χ2)πβλe2βQ1Q2erf(χ1)+e-2βQ1Q2erf(χ2) 48
    where
    χ1=-βQ1(λ2+Q2)λχ2=-βQ1(λ2-Q2)λχ3=eβQ1(4Q2λ2+λ4+Q22)λ2χ4=eβQ1(-4Q2λ2+λ4+Q22)λ2. 49
  2. Vibrational specific heat capacity:
    C(β)=kβ22lnZ(β)β2=12kχ9+χ10+χ11+χ12+χ13-βQ1πλ3e2βQ1Q2erf(χ1)+e-2βQ1Q2erf(χ2)2 50
    where
    χ5=eβQ1(6Q2λ2+λ4+Q22)λ2χ6=eβQ1(-6Q2λ2+λ4+Q22)λ2χ7=e2βQ1(4Q2λ2+λ4+Q22)λ2χ8=e2βQ1(-4Q2λ2+λ4+Q22)λ2χ9=-βQ1Q2λ2πeβQ1(λ2+Q2)2λ2erf(χ2)+βQ1Q2λ2πeβQ1(λ2-Q2)2λ2erf(χ1)-2Q1λ5β-βQ1χ8-λ3π-βQ1e4βQ1Q2erf(χ1)2-λ3π-βQ1e-4βQ1Q2erf(χ1)2-4Q1Q2λ3β-βQ1χ3+4Q1Q2λ3β-βQ1χ8-2Q1Q22λβ-βQ1χ7;χ10=4Q1Q22λβ-βQ1e2βQ1(λ4+Q22)λ2-2Q1Q22λβ-βQ1χ8-βQ1λ4πeβQ1(λ2+Q2)2λ2erf(χ2)-βQ1λ4πeβQ1(λ2-Q2)2λ2erf(χ1)+2Q12πβ2λ6eβQ1(λ2+Q22)λ2. 51
    χ11=2Q12Q23πβ2eβQ1(λ2+Q2)2λ2erf(χ2)+2Q12λ6eβQ1(λ2+Q2)2λ2erf(χ1)-2Q12Q23β2eβQ1(λ2+Q2)2λ2erf(χ1)+2Q12πβ2χ5λ6erf(χ1)+2Q12πβ2χ5λ6erf(χ2)-2Q12Q23πβ2χ6erf(χ2);χ12=-2-βQ1λ3πerf(χ1)erf(χ2)-2Q1λ5β-βQ1erf(χ3)-4Q1λ5β-βQ1e2βQ1(λ4+Q22)λ2-βQ1Q2λ2πχ6erf(χ2)+6Q12πβ2λ4χ5Q2erf(χ1)+6Q12πβ2λ2χ5Q22erf(χ1)χ13=-6Q12πβ2χ6λ4Q2erf(χ2)-32Q12πβ2λ3Q22erf(χ1)-βQ1erf(χ2)+6Q12πβ2λ2χ6Q22erf(χ2)+22λ2Q12Q22β2πeβQ1(λ2+Q2)2λ2erf(χ2)-22λ4Q12Q2β2πeβQ2(λ2+Q2)2λ2erf(χ1). 52
  3. Vibrational entropy
    S(β)=klnZ(β)-kβlnZ(β)β=klne2βQ1Q2πe2βQ1Q2erf-βQ1λ+Q2-βQ1λ+e-2βQ1Q2erf-βQ1λ-Q2-βQ1λ4-βQ1-12kβ8Q1Q2πβλe2βQ1Q2erf(χ1)+2λ2-βQ1χ3+2Q2-βQ1χ3+2λ2-βQ1χ4-2Q2-βQ1χ4-πλe2βQ1Q2erf(χ1)πλe-2βQ1Q2erf(χ2)πβλe2βQ1Q2erf(χ1)+e-2βQ1Q2erf(χ2) 53
  4. Vibrational free energy
    F(β)=-kTlnZ(β)=-1βlne2βQ1Q2πe2βQ1Q2erf-βQ1λ+Q2-βQ1λ+e-2βQ1Q2erf-βQ1λ-Q2-βQ1λ4-βQ1. 54

Numerical results

Using Maple software package, the numerical solutions for spin and pseudospin symmetries were obtained using Eqs. (30) and (32) respectively. the nonrelativistic numerical bound state solutions were obtained using (35). Finally, the numerical solutions for Hulthen potential were obtained using (38) as one of the special cases in comparison to the results of existing literature.

Discussion

Figure 1 is the graph of standard Greene–Aldrich approximation to the centrifugal term. The trend of Fig. 1 shows that the approximation was suitable and appropriate for the proposed potential. Figure 2a,b are the partition function Z(λ,β) which increases exponentially with respect to λ and β respectively. The vibrational mean energy U(λ,β) curves are shown in Fig. 2c,d. The vibrational mean energy decreases with temperature parameter β, but increases monotonically with a maximum turning point at λ=4 with respect to λ. The vibrational specific heat capacities C(λ,β) is shown in Fig. 2e,f, with λ; it has a perfect curve with a minimum turning point at different values of β. However, with β, it deceases and rises to a certain value and then decreases monotonically. The vibrational entropy S(λ,β) decreases with an increasing λ and β as shown in Fig. 2g,h respectively. The vibrational free energy F(λ,β) presented in Fig. 2i,j increases with increasing λ and β respectively. The behaviour of the thermal properties in the present study are in accordance with those reported in refs68,71,72. Table 1 is the numerical values for spin symmetry energies for A=5fm-1, V1=15fm-1, b=0.1 and M=10fm-1. Table 2 is the numerical values for spin symmetry energies for A=5fm-1, V1=15fm-1, b=0.2 and M=10fm-1. Table 3 is the numerical values for spin symmetry energies for A=5fm-1, V1=15fm-1, b=0.3 and M=10fm-1 while Table 4 is the numerical values for spin symmetry energies for A=5fm-1, V1=15fm-1, b=0.3 and M=10fm-1. In Table 2, the S-spin quantum state 0s12 has the highest relativistic spin energy symmetry value of 10.65566240fm-1 for κ<0 and the minimum value of − 9.402539935fm-1 for κ>0. In Table 3, the S-spin quantum state 0s12 has the highest relativistic spin energy symmetry value of 11.94562892fm-1 for κ<0 and the minimum value of − 9.653034948fm-1 for κ>0. In Table 4, the S-spin quantum state 0s12 has the highest relativistic spin energy symmetry value of 13.56961400fm-1 for κ<0 and the minimum value of − 9.759490473fm-1 for κ>0. This illustrates that the s-spin quantum state assume the most stable state for relativistic spin energy symmetry. Also, Tables 1, 2, 3 and 4 are predominantly positive values which are applicable in describing some properties of relativistic antiparticles. Considering Tables 1, 2, 3 and4, the energy rise with an increase in the screening parameter. The following degeneracies were obtain for the screening parameter b=0.1,0.2,0.3 and 0.4: 3p32=3s12, 2f72=2d52, 3f72=3d52, 0f72=0d52 and 1f72=1d52.

Figure 1.

Figure 1

Standard Greene–Aldrich approximation to the centrifugal term.

Figure 2.

Figure 2

Figure 2

(a) Variation of partition function with respect to λ. (b) Variation of partition function with respect to β. (c) Variation of vibrational mean energy with respect to λ. (d) Variation of vibrational mean energy with respect to β. (e) Variation of specific heat capacity with respect to λ. (f) Variation of specific heat capacity with respect to β. (g) Variation of vibrational entropy with respect to λ. (h) Variation of vibrational entropy with respect to β. (i) Variation of vibrational free energy with respect to λ. (j) Variation of vibrational free energy with respect to β.

Table 1.

Numerical values for spin symmetry energies for A=5fm-1,v1=15fm-1,b=0.1,M=10fm-1,(ħ=c=1)unit.

k<0 n (,j) Enk k>0 n (,j) Enk
0 − 1 0 0s12 8.983921278 1 0 0s12 −  8.223233399
0 −  1 1 1s12 3.255885745 1 1 1s12 2.349810532
0 −  1 2 2s12 3.764133532 1 2 2s12 3.244054374
0 −  1 3 3s12 4.671917081 1 3 3s12 4.275589604
1 −  2 0 0p32 −  8.223233399 2 0 0p32 −  7.512110433
1 −  2 1 1p32 2.349810532 2 1 1p32 0.6388962715
1 −  2 2 2p32 3.244054374 2 2 2p32 2.246255163
1 −  2 3 3p32 4.275589604 2 3 3p32 3.505707617
2 −  3 0 0d52 −  7.512110433 3 0 0d52 −  7.240908451
2 −  3 1 1d52 0.6388962715 3 1 1d52 −  1.407169997
2 −  3 2 2d52 2.246255163 3 2 2d52 0.8693835435
2 −  3 3 3d52 3.505707617 3 3 3d52 2.410060646
3 −  4 0 0f72 −  7.240908451 4 0 0f72 −  7.586751966
3 −  4 1 1f72 −  1.407169997 4 1 1f72 −  3.30875422
3 −  4 2 2f72 0.8693835435 4 2 2f72 −  0.7385660036
3 −  4 3 3f72 2.410060646 4 3 3f72 1.060283723

Table 2.

Numerical values for spin symmetry energies for A=5fm-1,v1=15fm-1,b=0.2,M=10fm-1,(ħ=c=1)unit.

k<0 n (,j) Enk k>0 n (,j) Enk
0 − 1 0 0s12 10.65566240 1 0 0s12 − 9.402539935
0 − 1 1 1s12 8.879147410 1 1 1s12 8.593038708
0 − 1 2 2s12 6.851894743 1 2 2s12 6.412449813
0 − 1 3 3s12 6.591830427 1 3 3s12 6.277759731
1 − 2 0 0p32 − 9.402539935 2 0 0p32 − 8.862687863
1 − 2 1 1p32 8.593038708 2 1 1p32 8.010408756
1 − 2 2 2p32 6.412449813 2 2 2p32 5.467061490
1 − 2 3 3p32 6.257759731 2 3 3p32 5.589744715
2 − 3 0 0d52 − 8.862687863 3 0 0d52 − 8.201366952
2 − 3 1 1d52 8.010408756 3 1 1d52 − 5.105451949
2 − 3 2 2d52 5.467061490 3 2 2d52 3.898663797
2 − 3 3 3d52 5.589744715 3 3 3d52 4.606019730
3 − 4 0 0f72 − 8.201366952 4 0 0f72 − 7.510682389
3 − 4 1 1f72 − 5.105451949 4 1 1f72 − 3.748571939
3 − 4 2 2f72 3.898663797 4 2 2f72 1.865629960
3 − 4 3 3f72 4.606019730 4 3 3f72 3.379690499

Table 3.

Numerical values for spin symmetry energies for A=5fm-1,v1=15fm-1,b=0.3,M=10fm-1,(ħ=c=1)unit.

k<0 n (,j) Enk k>0 n (,j) Enk
0 − 1 0 0s12 11.94562892 1 0 0s12 − 9.653054948
0 − 1 1 1s12 11.45354051 1 1 1s12 11.30816398
0 − 1 2 2s12 10.64354064 1 2 2s12 10.45259601
0 − 1 3 3s12 9.931274480 1 3 3s12 9.710639231
1 − 2 0 0p32 − 9.653054948 2 0 0p32 − 9.226504128
1 − 2 1 1p32 11.30816398 2 1 1p32 11.01670360
1 − 2 2 2p32 10.45259601 2 2 2p32 10.05799030
1 − 2 3 3p32 9.710639231 2 3 3p32 9.251447327
2 − 3 0 0d52 − 9.226504128 3 0 0d52 − 8.642597290
2 − 3 1 1d52 11.01670360 3 1 1d52 − 7.704698788
2 − 3 2 2d52 10.05799030 3 2 2d52 9.428222506
2 − 3 3 3d52 9.251447327 3 3 3d52 8.510496320
3 − 4 0 0f72 − 8.642597290 4 0 0f72 − 7.911699446
3 − 4 1 1f72 − 7.704698788 4 1 1f72 − 6.620201873
3 − 4 2 2f72 9.428222506 4 2 2f72 8.493229223
3 − 4 3 3f72 8.510496320 4 3 3f72 7.400643640

Table 4.

Numerical values for spin symmetry energies for A=5fm-1,v1=15fm-1,b=0.4,M=10fm-1,(ħ=c=1)unit.

k<0 n (,j) Enk k>0 n (,j) Enk
0 − 1 0 0s12 13.56961400 1 0 0s12 − 9.759490473
0 − 1 1 1s12 13.42954857 1 1 1s12 13.32679497
0 − 1 2 2s12 13.18355639 1 2 2s12 13.7149132
0 − 1 3 3s12 12.89651062 1 3 3s12 12.77434725
1 − 2 0 0p32 − 9.759490473 2 0 0p32 − 9.405058745
1 − 2 1 1p32 13.32679497 2 1 1p32 − 9.212559444
1 − 2 2 2p32 13.07149132 2 2 2p32 12.84444065
1 − 2 3 3p32 12.77434725 2 3 3p32 12.52547716
2 − 3 0 0d52 − 9.405058745 3 0 0d52 − 8.898795585
2 − 3 1 1d52 − 9.212559444 3 1 1d52 − 8.562364622
2 − 3 2 2d52 12.8444065 3 2 2d52 12.49608256
2 − 3 3 3d52 12.52547716 3 3 3d52 12.13969691
3 − 4 0 0f72 − 8.898795585 4 0 0f72 − 8.238455058
3 − 4 1 1f72 − 8.562364622 4 1 1f72 − 7.749637734
3 − 4 2 2f72 12.49608256 4 2 2f72 − 7.377835097
3 − 4 3 3f72 12.1396969 4 3 3f72 11.59818143

Table 5 is the numerical values for pseudospin symmetry for A=5fm-1, V1=15fm-1, b=0.1 and M=10fm-1. Table 6 is the numerical values for pseudospin symmetry for A=5fm-1, V1=15fm-1, b=0.2 and M=10fm-1, Table 7 is the numerical values for pseudospin symmetry for A=5fm-1, V1=15fm-1, b=0.3 and M=10fm-1 and Table 8 is the numerical values for pseudospin symmetry for A=5fm-1, V1=15fm-1, b=0.4 and M=10fm-1. Tables 5, 6, 7 and 8 are the numerical relativistic pseudospin bound state energies which constitutes negative energy eigenvalues which can be use to describe the properties of relativistic particles. The degeneracies obtained for the pseudospin limit with the same screening parameter are: 3s12=3p32, 0p32=0d52, 2s12=2p32, 3p32=3d52,2d52=2f72, 1d52=1f72. Figure 3a is the variation of energy spectra for S-quantum spin symmetry. Figure 3b is the variation of energy spectra for s-quantum pseudospin symmetry. Figure 3c is the variation of energy spectra for p-quantum spin symmetry while Fig. 3d is the variation of energy spectra for P-quantum pseudospin symmetry. Considering Fig. 3a–d, there is an inverse relationship between the spin and pseudospin energy spectra. spin spectral diagram is an exact opposite of pseudospin diagram. Figure 4a is the variation of energy spectra for a mixed quantum spin state while Fig. 4b is the variation of energy spectra for a mixed pseudo quantum spin. There is also an inverse relationship between the mixed spin quantum state and the mixed pseudo quantum spin as observed in Fig. 3a–d Meanwhile, the numerical bound state energies decreases with an increase in quantum state for both spin and pseudospin symmetries. Table 9 is nonrelativistic numerical bound state energies for different quantum state obtain using Eq. (35). The energy eigenvalues of Table 9 are predominantly negative which is the necessary and sufficient condition for bound state. Figure 5a is the nonrelativistic energy spectra for the screening parameter b=0.1, Fig. 5b is the nonrelativistic energy spectra for the screening parameter b=0.2, Fig. 5c is the nonrelativistic energy spectra for the screening parameter b=0.3 and Fig. 5d is the nonrelativistic energy spectra for the screening parameter b=0.4. Figure 5a–d show unique quantisation of different energy level which is very important concept in quantum physics in the description of atomic structure.

Table 5.

Numerical values for pseudospin symmetry energies for A=5fm-1,v1=15fm-1,b=0.1,M=10fm-1,(ħ=c=1)unit.

k<0 n (,j) Enk k>0 n (,j) Enk
0 − 1 0 0s12 − 12.69213560 1 0 0s12 − 12.30271714
0 − 1 1 1s12 − 20.05606687 1 1 1s12 − 19.58322167
0 − 1 2 2s12 − 28.51380132 1 2 2s12 − 28.07267520
0 − 1 3 3s12 − 37.19205174 1 3 3s12 − 36.79032895
1 − 2 0 0p32 − 13.50050752 2 0 0p32 − 12.69213560
1 − 2 1 1p32 − 20.98411765 2 1 1p32 − 20.05606687
1 − 2 2 2p32 − 29.37941053 2 2 2p32 − 28.51380132
1 − 2 3 3p32 − 37.98303228 2 3 3p32 − 37.19205174
2 − 3 0 0d52 − 14.75172391 3 0 0d52 − 13.50050752
2 − 3 1 1d52 − 22.33384979 3 1 1d52 − 20.98411765
2 − 3 2 2d52 − 30.63932420 3 2 2d52 − 29.37941053
2 − 3 3 3d52 − 39.14034408 3 3 3d52 − 37.98303228
3 − 4 0 0f72 − 16.43288886 4 0 0f72 − 14.75172391
3 − 4 1 1f72 − 24.06031886 4 1 1f72 − 22.33384979
3 − 4 2 2f72 − 32.25483876 4 2 2f72 − 30.63932420
3 − 4 3 3f72 − 40.63390244 4 3 3f72 − 39.14034408

Table 6.

Numerical values for pseudospin symmetry energies for A=5fm-1,v1=15fm-1,b=0.2,M=10fm-1,(ħ=c=1)unit.

k<0 n (,j) Enk k>0 n (,j) Enk
0 − 1 0 0s12 − 12.28432355 1 0 0s12 − 12.09991279
0 − 1 1 1s12 − 15.51562769 1 1 1s12 − 15.29325472
0 − 1 2 2s12 − 19.25297714 1 2 2s12 − 19.02772195
0 − 1 3 3s12 − 23.19071008 1 3 3s12 − 22.97175688
1 − 2 0 0p32 − 12.66108726 2 0 0p32 − 12.28432355
1 − 2 1 1p32 − 15.95750279 2 1 1p32 − 15.51562769
1 − 2 2 2p32 − 19.70093833 2 2 2p32 − 19.02772195
1 − 2 3 3p32 − 23.62302141 2 3 3p32 − 23.19071008
2 − 3 0 0d52 − 13.24035926 3 0 0d52 − 12.66108726
2 − 3 1 1d52 − 16.61218365 3 1 1d52 − 15.95750279
2 − 3 2 2d52 − 20.35795593 3 2 2d52 − 19.70093833
2 − 3 3 3d52 − 24.25815897 3 3 3d52 − 23.62302141
3 − 4 0 0f72 − 14.02686986 4 0 0f72 − 16.61218365
3 − 4 1 1f72 − 17.46826708 4 1 1f72 − 16.61218365
3 − 4 2 2f72 − 21.21020722 4 2 2f72 − 20.35795593
3 − 4 3 3f72 − 25.08181569 4 3 3f72 − 24.25815897

Table 7.

Numerical values for pseudospin symmetry energies for A=5fm-1,v1=15fm-1,b=0.3,M=10fm-1,(ħ=c=1)unit.

k<0 n (,j) Enk k>0 n (,j) Enk
0 − 1 0 0s12 − 13.10449580 1 0 0s12 − 12.97416326
0 − 1 1 1s12 − 15.24478036 1 1 1s12 − 15.10293877
0 − 1 2 2s12 − 17.57946118 1 2 2s12 − 17.43537205
0 − 1 3 3s12 − 20.01181246 1 3 3s12 − 19.86975971
1 − 2 0 0p32 − 13.365886250 2 0 0p32 − 13.10449580
1 − 2 1 1p32 − 15.52663385 2 1 1p32 − 15.24478036
1 − 2 2 2p32 − 17.86488937 2 2 2p32 − 17.57946118
1 − 2 3 3p32 − 20.29298159 2 3 3p32 − 20.01181246
2 − 3 0 0d52 − 13.75860256 3 0 0d52 − 17.57946118
2 − 3 1 1d52 − 15.94464389 3 1 1d52 − 1.552663385
2 − 3 2 2d52 − 18.28631249 3 2 2d52 − 17.86488937
2 − 3 3 3d52 − 20.70765586 3 3 3d52 − 20.29298159
3 − 4 0 0f72 − 14.28119674 4 0 0f72 − 13.75860256
3 − 4 1 1f72 − 16.49274719 4 1 1f72 − 15.94464389
3 − 4 2 2f72 − 18.83612438 4 2 2f72 − 18.28631249
3 − 4 3 3f72 − 21.24802969 4 3 3f72 − 20.70765586

Table 8.

Numerical values for pseudospin symmetry energies for A=5fm-1,v1=15fm-1,b=0.4,M=10fm-1,(ħ=c=1)unit.

k<0 n (,j) Enk k>0 n (,j) Enk
0 − 1 0 0s12 − 14.47035819 1 0 0s12 − 14.37133775
0 − 1 1 1s12 − 16.06990567 1 1 1s12 − 15.96860262
0 − 1 2 2s12 − 17.735611113 1 2 2s12 − 17.63433738
0 − 1 3 3s12 − 19.43972082 1 3 3s12 − 19.33973124
1 − 2 0 0p32 − 14.66732944 2 0 0p32 − 14.47035819
1 − 2 1 1p32 − 16.27093685 2 1 1p32 − 16.06990567
1 − 2 2 2p32 − 17.93639247 2 2 2p32 − 17.73561113
1 − 2 3 3p32 − 19.63790665 2 3 3p32 − 19.43972082
2 − 3 0 0d52 − 14.96002329 3 0 0d52 − 14.66732944
2 − 3 1 1d52 − 16.56860653 3 1 1d52 − 16.27093685
2 − 3 2 2d52 − 18.23327378 3 2 2d52 − 17.93639247
2 − 3 3 3d52 − 19.93084754 3 3 3d52 − 19.63790665
3 − 4 0 0f72 − 15.34495615 4 0 0f72 − 14.96002329
3 − 4 1 1f72 − 16.95844684 4 1 1f72 − 16.56860653
3 − 4 2 2f72 − 18.62144186 4 2 2f72 − 18.23327378
3 − 4 3 3f72 − 20.31372099 4 3 3f72 − 19.93084754

Figure 3.

Figure 3

(a) Variation of Energy Spectra for S-spin Symmetry. (b) Variation of Energy Spectra for S-pseudospin Symmetry. (c) Variation of Energy Spectra for P-spin Symmetry. (d) Variation of Energy Spectra for P-pseudospin Symmetry.

Figure 4.

Figure 4

(a) Variation of Energy Spectra for Mixed Quantum spin. (b) Variation of Energy Spectra for Mixed Pseudo Quantum spin.

Table 9.

Nonrelativistic numerical solutions for A=5fm-1,v1=15fm-1,b=0.1,(ħ=c=1)unit.

n l Enl,b=0.1 Enl,b=0.2 Enl,b=0.3 Enl,b=0.4
0 0 − 12.0181250 − 2.3225000 0.520138889 1.30375000
1 0 − 87.4934896 − 18.9583333 − 6.00622106 − 1.16536458
1 − 109.063125 − 24.5025000 − 8.56812500 − 2.66625000
2 0 − 182.670166 − 40.7539062 − 14.4047580 − 5.10180664
1 − 214.749043 − 48.4604592 − 17.6280116 − 6.79145408
2 − 303.153125 − 68.8625000 − 25.6003472 − 10.606250
3 0 − 279.82502 − 64.0625000 − 24.1323031 − 10.1872417
0 − 311.98140 − 71.7850000 − 27.3604340 − 11.8782812
0 − 602.045000 − 89.597656 − 34.5408257 − 15.4670410
0 − 279.82502 − 142.805000 − 57.9605556 − 28.5012500
4 0 − 387.471458 − 90.6358333 − 35.7246065 − 16.5745833
1 − 417.501993 − 97.9209184 − 38.8189573 − 18.2274394
2 − 482.44108 − 113.49479 − 45.3146340 − 21.6207682
3 − 725.170139 − 174.222222 − 72.3337191 − 36.8368056
3 − 1003.75451 − 244.436412 − 103.906246 − 54.8202637
5 0 − 513.819102 − 122.163125 − 49.6983030 − 24.4112891
1 − 542.076047 − 129.083276 − 52.6810413 − 26.0322888
2 − 600.711343 − 143.360078 − 58.7800185 − 29.3123919
3 − 879.002551 − 213.063776 − 89.8438209 − 46.8373724
4 − 1204.49792 − 294.812302 − 126.418037 − 67.5580482
5 − 12.0181250 − 369.920000 − 159.906806 − 86.4612500

Figure 5.

Figure 5

(a) Nonrelativistic energy spectra for b=0.1. (b) Nonrelativistic energy spectra for b=0.2. (c) Nonrelativistic energy spectra for b=0.3. (d) Nonrelativistic energy spectra for b=0.4.

Finally, using Eq. (38) the numerical bound state solution is obtain for Hulthen potential as shown in Table 10. The numerical solutions obtained for Hulthen potential are in excellent agreement with Refs7377.

Table 10.

Comparison of energy spectra (-Enl) for Hulthen potential as a function of the screening parameter 1b for 2p, 3p,3d, 4p, 4d, 4f, 5p (ħ=c=1)unit.

State 1/b Present Jia et al.73 Ikhdair74 Bayrak et al.75 Varshni76 Stanek77
2p 0.025 0.1128125 0.1126344 0.1127611 0.1127605 0.1127605 0.1127604
0.050 0.1012500 0.1009128 0.1010442 0.1010425 0.1010425 0.101042
0.075 0.0903120 0.0898350 0.0898495 0.0898478 0.0898478 0.0898453
0.100 0.0800000 0.0794011 0.0791769 0.0791794 0.0791794 0.0791717
0.150 0.0612500 0.0604650 0.0593981 0.0594415 0.0594415 0.0594007
0.200 0.0450000 0.0441045 0.0417078 0.0418861 0.0418860 0.0417491
0.250 0.0312500 0.0303195 0.0261059 0.0266111 0.0266111 0.0262466
0.300 0.0199994 0.0191101 0.0125925 0.0137900 0.0137900 0.0129347
3p 0.025 0.0437587 0.0436848 0.0437072 0.0437069 0.0437069 0.0437066
0.050 0.0333681 0.0332390 0.0331623 0.0331645 0.0331645 0.0331602
0.075 0.0243837 0.0242183 0.0239207 0.0239397 0.0239397 0.0239173
0.100 0.0168056 0.0166227 0.0159825 0.0160537 0.0160537 0.0159798
0.150 0.0058680 0.0057067 0.0040162 0.004463 0.0044663 0.0040316
3d 0.025 0.0437587 0.0435371 0.0436044 0.0436030 0.0436030 0.0436028
0.050 0.0333681 0.0329817 0.0327508 0.0327532 0.0327532 0.0327495
0.075 0.0243837 0.0238893 0.0229948 0.0230307 0.0230307 0.0230109
0.100 0.0168056 0.0162600 0.0143364 0.0144842 0.0144842 0.0144147
4p 0.025 0.0200000 0.0199625 0.0199486 0.0199489 0.0199489 0.019948
0.050 0.0112500 0.0111938 0.0110442 0.0110582 0.0110582 0.0110422
0.075 0.0050000 0.0049439 0.0045370 0.0046219 0.0046219 0.0045340
0.100 0.0012500 0.0012128 0.0004269 0.0007549 0.000755 0.0004252
4d 0.025 0.02000000 0.0198877 0.0198457 0.0198463 0.0198462 0.0198444
0.050 0.0112500 0.0110819 0.0106327 0.0106674 0.0106674 0.0106355
0.075 0.0050000 0.0048327 0.0036111 0.0038345 0.0038345 0.0036479
4f 0.025 0.0200000 0.0197756 0.0196914 0.0196911 0.0196911 0.0196903
0.050 0.0112500 0.0109150 0.0100154 0.0100620 0.0100620 0.0100463
0.075 0.0050000 0.0046682 0.0022222 0.0025563 0.0025563 0.0024452
5p 0.025 0.00945312 0.0094325 0.0094017 0.0094036 0.0094036 0.0094011
0.050 0.00281250 0.0027900 0.0026067 0.0026490 0.0026490 0.0026047

Conclusion

In this research work, we obtained analytical solutions of Dirac equation for spin and pseudospin symmetries with hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential within the framework of parametric Nikiforov–Uvarov method. Using Maple software package, numerical solutions for both the spin and pseudospin symmetries were obtain. The nonrelativistic energy equation were obtain by applying nonrelativistic limit to the relativistic energy equation. The Partition function and other thermodynamic properties were obtain using the nonrelativistic energy equation presented in a close form. The proposed potential reduces to Hulthen and exponential inversely quadratic potential as special cases. The numerical results obtained for Hulthen potential, spin and pseudospin bound state energies and thermodynamic plots are in agreement to the work of other researchers.

Acknowledgements

The authors acknowledge the contribution of ICTP for communicating some of the research materials as well the reviewers for their comments and positive suggestions which have improved the present article.

Author contributions

I.B.O., E.O. and A.D.A. designed and wrote the main manuscript. C.O., L.E.A. and O.E.O. did the computations, prepared the figures and the tables. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Okon IB, Isonguyo CN, Antia AD, Ikot AN, Popoola OO. Fisher and Shannon information entropies for a noncentral inversely quadratic plus exponential Mie-type potential. Commun. Theor. Phys. 2020;72:065104. doi: 10.1088/1572-9494/ab7ec9. [DOI] [Google Scholar]
  • 2.Oluwadare OJ, Oyewumi KJ, Akoshile CO, Babalola OA. Approximate analytical solutions of the relativistic equations with the Deng–Fan molecular potential including a Perkeris-type approximation to the (pseudo or) centrifugal term. Phys. Scr. 2012;86:035002. doi: 10.1088/0031-8949/86/03/035002. [DOI] [Google Scholar]
  • 3.Arda A, Sever R. Bound state solutions of the Dirac equation for the Kratzer potrential with pseudoscalar Coulomb term. Eur. Phys. J. Plus. 2019;134:29. doi: 10.1140/epjp/i2019-12421-9. [DOI] [Google Scholar]
  • 4.Bermudez A, Martin-Degado MA, Solana E. Mesoscopic superposition states in relativistic Landau levels. Phys. Rev. A. 2007;99:123602. doi: 10.1103/PhysRevLett.99.123602. [DOI] [PubMed] [Google Scholar]
  • 5.Bermudez A, Martin-Degado MA, Solana E. Exact mapping of the 2+1 Dirac oscillator onto the Jaynes–Cummings model: ion-trap experimental proposal. Phys. Rev. A. 2007;76:041801. doi: 10.1103/PhysRevA.76.041801. [DOI] [Google Scholar]
  • 6.Lamata L, Martin-Degado MA, Solano E. Relativity and Lorentz invariance of entanglement distillability. Phys. Rev. A. 2006;97:250502. doi: 10.1103/PhysRevLett.97.250502. [DOI] [PubMed] [Google Scholar]
  • 7.Bermudez A, Martin-Degado MA, Luis A. Chirality quantum phase transition in the Dirac oscillator. Phys. Rev. A. 2007;77:063815. doi: 10.1103/PhysRevA.77.063815. [DOI] [Google Scholar]
  • 8.Pakdel F, Rajabi AA, Hamzavi M. Scattering and bound state solutions of the Yukawa potential within the Dirac equation. Adv. High. Energy Phys. 2014;2014:867483. doi: 10.1155/2014/867483. [DOI] [Google Scholar]
  • 9.Jia CS, Guo P, Peng XL. Exact solution of the Dirac Eckart problem with spin and pseudospin symmetry. J. Phys. A. 2008;372:2201. [Google Scholar]
  • 10.Ikhdair SM, Sever R. Exact solution of the Klein–Gordon equation for the PT-symmetric generalized Woods–Saxon potential by the Nikiforov–Uvarov method. Ann. Phys. 2007;16:218. doi: 10.1002/andp.200610232. [DOI] [Google Scholar]
  • 11.Ginocchio JN. Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 1997;78:436. doi: 10.1103/PhysRevLett.78.436. [DOI] [Google Scholar]
  • 12.Ginocchio JN. Relativistic symmetries in nuclei and hadrons. Phys. Rep. 2005;414:165–261. doi: 10.1016/j.physrep.2005.04.003. [DOI] [Google Scholar]
  • 13.Troltenier D, Bahri C, Draayer JP. Generalized pseudo-SU(3) model and pairing. Nucl. Phys. A. 1995;586:53–72. doi: 10.1016/0375-9474(94)00518-R. [DOI] [Google Scholar]
  • 14.Ikhdair SM, Sever R. Bound states of the Klein–Gordon for exponential-type potentials in D-dimensions. Appl. Math. Comput. 2010;216:545–555. [Google Scholar]
  • 15.Hamzavi M, Eshghi M, Ikhdair SM. Effect of Tensor interaction in the Dirac attractive radial problem under pseudospin symmetry limit. J. Math. Phys. 2012;53:082101. doi: 10.1063/1.4739434. [DOI] [Google Scholar]
  • 16.Hamzavi M, Rajabi AA, Hassanabadi H. Exact pseudospin mass symmetry solution of the Dirac equation for spatially-dependent Coulomb potential including a Coulomb-like tensor interaction via asymptotic Iteration Method. Phys. Lett. A. 2010;374:4303–4307. doi: 10.1016/j.physleta.2010.08.065. [DOI] [Google Scholar]
  • 17.Zhang XC, Liu QW, Jia CS, Wang LZ. Bound states of the Dirac equation with vector and scalar Eckart potential. Phys. Lett. A. 2005;340:54–64. [Google Scholar]
  • 18.Yahya WA, Oyewumi KJ, Akoshile CO, Ibrahim TT. Bound states of the relativistic Dirac equation with equal scalar and vector Eckart potentials using the Nikiforov-Uvarov Method. J. Vect. Relativ. 2010;5:1–8. [Google Scholar]
  • 19.Berkdemir C. Relativistic treatment of a spin-zero particles subject to a Kratzer-type potential. Am. J. Phys. 2007;75:81–86. doi: 10.1119/1.2360992. [DOI] [Google Scholar]
  • 20.Guo JY, Meng J, Xu FX. Solution of the relativistic Dirac–Woods–Saxon problem. Chin. Phys. Lett. 2003;20:602. doi: 10.1088/0256-307X/20/5/303. [DOI] [Google Scholar]
  • 21.Zhao XQ, Jia CS, Yang QB. Bound states of relativistic particles in the generalized symmetrical double-well potential. Phys. Lett. A. 2005;337:189–196. doi: 10.1016/j.physleta.2005.01.062. [DOI] [Google Scholar]
  • 22.Simsek M, Grifes E. The Klein–Gordon equation of generalized Hulthen potential in complex quantum mechanics. J. Phys. A Math. Gen. 2004;37:4379. doi: 10.1088/0305-4470/37/15/007. [DOI] [Google Scholar]
  • 23.Chargui Y, Trabelsi A, Chetouani L. Bound-states of the (1+1)-dimensional DKP equation with a pseudoscalar linear plus Coulomb-like potential. Phys. Lett. A. 2010;374:2907–2913. doi: 10.1016/j.physleta.2010.05.025. [DOI] [Google Scholar]
  • 24.Durmus A, Yasuk F. Relativistic and nonrelativistic solutions for diatomic molecules in the presence of double ring-shape potential. J. Chem. Phys. 2007;126:074108. doi: 10.1063/1.2566432. [DOI] [PubMed] [Google Scholar]
  • 25.Zou X, Yi LZ, Jia CS. Bound states of the Dirac equation with vector and scalar Eckart potentials. Phys. Lett. A. 2005;346:54–64. doi: 10.1016/j.physleta.2005.07.075. [DOI] [Google Scholar]
  • 26.Agboola D. Dirac equation with spin symmetry for the modified Poschl–Teller potential in D dimensions. Pramana J. Phys. 2011;76:875–885. doi: 10.1007/s12043-011-0104-5. [DOI] [Google Scholar]
  • 27.Bayrak, O. & Boztosun, I. The pseudospin symmetric solution of the Morse potential for any k state. J. Phys. A Math. Theor.40, 11119–11127 (2007). 10.1007/s13369-001-0168-z. Eng. 137 (2011).
  • 28.Ikhdair SM, Sever R. Approximate eigenvalue and eigenfunction solutions for the generalized Hulthn potential with any angular momentum. J. Math. Chem. 2007;42:461–471. doi: 10.1007/s10910-006-9115-8. [DOI] [Google Scholar]
  • 29.Wen-Chao, Q. and Dong S. H. SUSYQM and SWKB approaches to relativistic equation with hyperbolic potential. v0tanh2rd. Phys. Scr., 72, 2–3 (2005).
  • 30.Akbarieh AR, Motavalli H. Exact solutions of Klein–Gordon equations for the Rosen–Morse type potential via Nikiforov–Uvarov method. Mod. Phys. Lett. A. 2008;23:3005–3013. doi: 10.1142/S0217732308026686. [DOI] [Google Scholar]
  • 31.De Castro AS. Bound states of the Dirac equation for a class of effective quadratic plus inversely quadratic potentials. Ann. Phys. (N. Y.) 2004;311:170–181. doi: 10.1016/j.aop.2003.12.007. [DOI] [Google Scholar]
  • 32.De Castro AS. Bounded solutions of neutral fermions with a screened Coulomb potential. Ann. Phys. (N. Y.) 2005;320:56–70. doi: 10.1016/j.aop.2005.05.003. [DOI] [Google Scholar]
  • 33.Shabat A, Zakharov V. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP. 1972;34:118–134. [Google Scholar]
  • 34.Takhtadzhyan LA, Faddeev LD. Essentially nonlinear one-dimensional model of classical field theory. Theor. Math. Phys. 1974;21:1046–1057. doi: 10.1007/BF01035551. [DOI] [Google Scholar]
  • 35.Dong SH. Factorisation Method in Quantum Mechanics. Dordrecht: Springer; 2007. [Google Scholar]
  • 36.Infeld I, Hall TE. The factorisation method. Rev. Mod. Phys. 1951;23:21–68. doi: 10.1103/RevModPhys.23.21. [DOI] [Google Scholar]
  • 37.Ciftci H, Hall R, Saad N. Asymptotic iteration method for eigenvalue problem. J. Phy. A. 2003;36:11807–11816. doi: 10.1088/0305-4470/36/47/008. [DOI] [Google Scholar]
  • 38.Ozer O, Levai G. Assymptotic iteration method applied to bound state problems. Rom. J. Phys. 2012;57:582–593. [Google Scholar]
  • 39.Arda A, Sever R. Exact solutions of the Morse-like potential, step-up and step-down operators via Laplace transform approach. Commun. Theor. Phys. 2012;58:27. doi: 10.1088/0253-6102/58/1/05. [DOI] [Google Scholar]
  • 40.Jia CS, Gao P, Peng XL. Exact solution of the Dirac–Eckart problem with spin and pseudospin symmetry. J. Phys A Math. Gen. 2006;39:7737. doi: 10.1088/0305-4470/39/24/010. [DOI] [Google Scholar]
  • 41.Astorga AC, Andez DJ, Negro J. Solutions of the Dirac equation in a magnetic field and intertwining operators. SIGMA. 2012;8:082. [Google Scholar]
  • 42.Feizi H, Rajabi AA, Shojaei MR. Raising and lowering operators for the Dirac–Woods–Saxon potential in the presence of spin and pseudospin symmetry Eur. Phys. J. Plus. 2012;127:41. doi: 10.1140/epjp/i2012-12041-y. [DOI] [Google Scholar]
  • 43.Cai J, Cai P, Inomata A. Path-integral treatment of the Hulthn potential. Phys. Rev. A. 1986;36:4621. doi: 10.1103/PhysRevA.34.4621. [DOI] [PubMed] [Google Scholar]
  • 44.Diaf A, Chouchaoui A, Lombard RJ. Feynman integral treatment of the Bargmann potential. Ann. Phys. 2005;317:354. doi: 10.1016/j.aop.2004.11.010. [DOI] [Google Scholar]
  • 45.Diaf A, Chouchaoui A. l-states of the Manning–Rosen potential with an improved approximate scheme and Feynman path integral formalism. Phys. Scr. 2011;84:015004. doi: 10.1088/0031-8949/84/01/015004. [DOI] [Google Scholar]
  • 46.Shojaei MR, Rajabi AA, Farrokh M, Zoghi-Foumani N. Energy levels of spin-1/2 particles with Yukawa interaction. Int. J. Mod. Phys. 2014;5:773–780. [Google Scholar]
  • 47.Xu Y, He S, Jia C-S. Approximate analytical solutions of the Klein–Gordon equation with Poschl–Teller potential including centrifugal term. Phys. Scr. 2010;81:045001. doi: 10.1088/0031-8949/81/04/045001. [DOI] [Google Scholar]
  • 48.Oluwadare OJ, Oyewumi KJ, Babalola OA. Exact S-waves solution of the Klein–Gordon equation with the Deng–Fan molecular potential using Nikiforov–Uvarov method. Afr. Rev. Phys. 2012;7:0016. [Google Scholar]
  • 49.Cheng Y-F, Dai T-Q. Exact solutions of the Klein–Gordon equation with a ring-shaped modified Kratzer potential. Chin. J. Phys. 2007;45:480–487. [Google Scholar]
  • 50.Zhang XC, Liu QW, Jia CS, Wang SZ. Bound states of the Dirac equation with vector and scalar Scarf-type potentials. Phys. Lett. A. 2005;340:59. doi: 10.1016/j.physleta.2005.04.011. [DOI] [Google Scholar]
  • 51.Guo JY, Sheng ZQ. Solution of the Dirac equation for the Woods–Saxon potential with spin and pseudospin symmetry. Phys. Lett. A. 2005;338:90. doi: 10.1016/j.physleta.2005.02.026. [DOI] [Google Scholar]
  • 52.Scarf F. New soluble energy band problem. Phys. Rev. 1958;112:1137–1140. doi: 10.1103/PhysRev.112.1137. [DOI] [Google Scholar]
  • 53.Chen CY. Exact solutions of the Dirac equation with scalar and vector Hartmann potentials. Phys. Lett. A. 2005;339:283–287. doi: 10.1016/j.physleta.2005.03.031. [DOI] [Google Scholar]
  • 54.Falaye BJ. Any l-state solutions of the Eckart potential via asymptotic iteration method. Cent. Euro. J. Phys. 2012;10:960–965. [Google Scholar]
  • 55.Falaye BJ, Ikhdair SM, Hamzavi M. Formula method for bound state problems. Few-Body Syst. 2015;56:63–78. doi: 10.1007/s00601-014-0937-9. [DOI] [Google Scholar]
  • 56.Shojaei MR, Mousavi M. Calculation energy levels and charge radius for odd 41–49 Ca isotopes by using the analytical approach. Adv. High Energy. Phys. 2016;2016:12. doi: 10.1155/2016/8314784. [DOI] [Google Scholar]
  • 57.Dutra AD, Hott M. Dirac equation exact solutions for generalized asymmetrical Hartmann potentials. Phys. Lett. A. 2006;356:215. doi: 10.1016/j.physleta.2006.03.042. [DOI] [Google Scholar]
  • 58.Okorie US, Ibekwe EE, Onyeaju MC, Ikot AN. Solutions of the Dirac and Schrodinger equations with shifted Tietz–Wei potential. Eur. Phys. J. Plus. 2018;133:433. doi: 10.1140/epjp/i2018-12307-4. [DOI] [Google Scholar]
  • 59.Onyeaju MC, et al. Approximate bound-states solution of the Dirac equation with some thermodynamic properties for the deformed Hylleraas plus deformed Woods–Saxon potential. Eur. Phys. J. Plus. 2017;132:302. doi: 10.1140/epjp/i2017-11573-x. [DOI] [Google Scholar]
  • 60.Shui ZW, Jia CS. Relativistic rotation-vibrational energies for the 107Ag 109Ag isotope. Eur. Phys. J. Plus. 2017;132:292. doi: 10.1140/epjp/i2017-11568-7. [DOI] [Google Scholar]
  • 61.Ortakaya S, Hassanabadi H, Yazarloo BH. Bound state solutions of the Dirac equation with Deng–Fan potential including Coulomb and tensor interaction. Chin. Phys. B. 2014;23:3. doi: 10.1088/1674-1056/23/3/030306. [DOI] [Google Scholar]
  • 62.Ikot AN. Solutions of Dirac equation for generalized hyperbolical potential including Coulomb-like tensor potential with spin symmetry. Few-Body Syst. 2012;53:549–555. doi: 10.1007/s00601-012-0451-x. [DOI] [Google Scholar]
  • 63.Ikot AN, Maghsoodi E, Antia AD, Zarrinkamar S, Hassanabadi H. Approximate k-state solutions to the Dirac Mobius square—Yukawa and Mobius square—quasi Yukawa problems under pseudospin and spin symmetry limits with Coulomb-like tensor interaction. Can. J. Phys. 2013;91:560–575. doi: 10.1139/cjp-2012-0506. [DOI] [Google Scholar]
  • 64.Dong SH, Qiang WC, Sun GH, Bezerra VB. Analytical approximations to the l-wave solutions of the Schrodinger equation with the Eckart potential. J. Phys. A Math. Theor. 2007;40:10535. doi: 10.1088/1751-8113/40/34/010. [DOI] [Google Scholar]
  • 65.Jia CS, Jia Y. Relativistic rotation-vibrational energies for the Cs2 molecule. Eur. Phys. J. D. 2017;71:3. doi: 10.1140/epjd/e2016-70415-y. [DOI] [Google Scholar]
  • 66.Hu XT, Liu JY, Jia CS. The 33g+ state of Cs2 molecule. Comput. Theor. Chem. 2013;1019:137. doi: 10.1016/j.comptc.2013.06.020. [DOI] [Google Scholar]
  • 67.Ikhdair SM. Rotational and vibrational diatomic molecule in the Klein–Gordon equation with hyperbolic scalar and vector potential. Int J. Mod. Phys. C. 2009;20:1563–1582. doi: 10.1142/S0129183109014606. [DOI] [Google Scholar]
  • 68.Ikot AN, et al. Thermodynamic properties of Aharanov–Bohm (AB) and magnetic fields with screened Kratzer potential. Eur. Phys. J. D. 2020;74:159. doi: 10.1140/epjd/e2020-10084-9. [DOI] [Google Scholar]
  • 69.Dong S, Sun G-H, Dong S-H, Draayer JP. Quantum information entropies for a squared tangent potential well. Phys. Lett. A. 2014;378:124–130. doi: 10.1016/j.physleta.2013.11.020. [DOI] [Google Scholar]
  • 70.Okon IB, Antia AD, Akankpo AO, Essien IE. Eigen-solutions to Schrodinger equation with trigonometric inversely quadratic plus Coulombic hyperbolic potential. Phys. Sci. Int. J. 2020;24:61–75. doi: 10.9734/psij/2020/v24i330183. [DOI] [Google Scholar]
  • 71.Onate CA. Bound state solutions of the Schrodinger equation with second Poschl–Teller like potential model and the vibrational partition function, mean energy and mean free energy. Chin. J. Phys. 2016;54:138–165. [Google Scholar]
  • 72.Okorie US, Ikot AN, Chukwuuocha EO, Rampho GJ. Thermodynamic properties of improved exponential-type potential (IDEP) for some diatomic molecules. Results Phys. 2020;17:103078. doi: 10.1016/j.rinp.2020.103078. [DOI] [Google Scholar]
  • 73.Jia C-S, Liu J-Y, Wang P-Q. A new approximation scheme for the centrifugal term and the Hulthenn potential. Phys. Lett. A. 2008;372:4779–4782. doi: 10.1016/j.physleta.2008.05.030. [DOI] [Google Scholar]
  • 74.Ikhdair SM. An improved approximation scheme for the centrifugal term and the Hulthen potential. Eur Phy. J. A. 2009;39:307–314. doi: 10.1140/epja/i2008-10715-2. [DOI] [Google Scholar]
  • 75.Bayrak O, Kocak G, Boztosun I. Any l-state solutions of the Hulthen potential by the asymptotic iteration method. J. Phys A Math. Gen. 2006;39:11521–11529. doi: 10.1088/0305-4470/39/37/012. [DOI] [Google Scholar]
  • 76.Varshni YP. Eigenenergies and oscillator strengths for the Hulthen potential. Phys. Rev. A. 1990;41:4682. doi: 10.1103/PhysRevA.41.4682. [DOI] [PubMed] [Google Scholar]
  • 77.Stanek J. Approximate analytical solutions for arbitrary l-state of the Hulthen potential with an improved approximation of the centrifugal term. Cent. Eur. J. Chem. 2011;9:737–742. [Google Scholar]
  • 78.Okon IB, Popoola OO, Isonguyo CN. Approximate solutions of Schrodinger equation with some diatomic molecular interactions using Nikiforov–Uvarov method. Adv. High Energy Phys. 2017;2017:9671816. doi: 10.1155/2017/9671816. [DOI] [Google Scholar]
  • 79.Tezcan C, Sever RA. General approach for the exact solution of the Schrodinger equation. Int. J. Theor. Phys. 2009;48:337–350. doi: 10.1007/s10773-008-9806-y. [DOI] [Google Scholar]

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES