Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2021 Jan 18:2021.01.15.426691. [Version 1] doi: 10.1101/2021.01.15.426691

SARS-CoV-2 infection reduces Krüppel-Like Factor 2 in human lung autopsy

Tzu-Han Lee, David Wu, Robert Guzy, Nathan Schoettler, Ayodeji Adegunsoye, Jeffrey Mueller, Aliya Hussein, Anne Sperling, Gokhan M Mutlu, Yun Fang
PMCID: PMC7814823  PMID: 33469586

Abstract

Acute respiratory distress syndrome (ARDS) occurred in ~12% of hospitalized COVID-19 patients in a recent New York City cohort. Pulmonary endothelial dysfunction, characterized by increased expression of inflammatory genes and increased monolayer permeability, is a major component of ARDS. Vascular leak results in parenchymal accumulation of leukocytes, protein, and extravascular water, leading to pulmonary edema, ischemia, and activation of coagulation associated with COVID-19. Endothelial inflammation further contributes to uncontrolled cytokine storm in ARDS. We have recently demonstrated that Kruppel-like factor 2 (KLF2), a transcription factor which promotes endothelial quiescence and monolayer integrity, is significantly reduced in experimental models of ARDS. Lung inflammation and high-tidal volume ventilation result in reduced KLF2, leading to pulmonary endothelial dysfunction and acute lung injury. Mechanistically, we found that KLF2 is a potent transcriptional activator of Rap guanine nucleotide exchange factor 3 (RAPGEF3) which orchestrates and maintains vascular integrity. Moreover, KLF2 regulates multiple genome-wide association study (GWAS)-implicated ARDS genes. Whether lung KLF2 is regulated by SARS-CoV-2 infection is unknown. Here we report that endothelial KLF2 is significantly reduced in human lung autopsies from COVID-19 patients, which supports that ARDS due to SARS-CoV-2 is a vascular phenotype possibly attributed to KLF2 down-regulation. We provide additional data demonstrating that KLF2 is down-regulated in SARS-CoV infection in mice.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES