Skip to main content
Animals : an Open Access Journal from MDPI logoLink to Animals : an Open Access Journal from MDPI
. 2021 Jan 12;11(1):170. doi: 10.3390/ani11010170

Haemogregarines and Criteria for Identification

Saleh Al-Quraishy 1, Fathy Abdel-Ghaffar 2, Mohamed A Dkhil 1,3, Rewaida Abdel-Gaber 1,2,*
PMCID: PMC7828249  PMID: 33445814

Abstract

Simple Summary

Taxonomic classification of haemogregarines belonging to Apicomplexa can become difficult when the information about the life cycle stages is not available. Using a self-reporting, we record different haemogregarine species infecting various animal categories and exploring the most systematic features for each life cycle stage. The keystone in the classification of any species of haemogregarines is related to the sporogonic cycle more than other stages of schizogony and gamogony. Molecular approaches are excellent tools that enabled the identification of apicomplexan parasites by clarifying their evolutionary relationships.

Abstract

Apicomplexa is a phylum that includes all parasitic protozoa sharing unique ultrastructural features. Haemogregarines are sophisticated apicomplexan blood parasites with an obligatory heteroxenous life cycle and haplohomophasic alternation of generations. Haemogregarines are common blood parasites of fish, amphibians, lizards, snakes, turtles, tortoises, crocodilians, birds, and mammals. Haemogregarine ultrastructure has been so far examined only for stages from the vertebrate host. PCR-based assays and the sequencing of the 18S rRNA gene are helpful methods to further characterize this parasite group. The proper classification for the haemogregarine complex is available with the criteria of generic and unique diagnosis of these parasites.

Keywords: haemogregarines, gamogony, sporogony, schizongony, molecular analysis

1. Introduction

Phylum Apicomplexa was described by Levine [1] to include parasitic protozoa sharing unique ultrastructural features known as the “apical complex” (Figure 1). Haemogregarines (Figure 2) are ubiquitous adeleorine apicomplexan protists inhabiting the blood cells of a variety of ectothermic and some endothermic vertebrates [2,3,4]. They have also an obligatory heteroxenous life cycle (Figure 3), where asexual multiplication occurs in the vertebrate host; while sexual reproduction occurs in the hematophagous invertebrate vector [5]. This family contains four genera, according to Levine [6]: Haemogregarina Danilewsky [7], Karyolysus Labbé [8], Hepatozoon Miller [9], and Cyrilia Lainson [10]. Barta [11] conducted a phylogenetic analysis of representative genera in phylum Apicomplexa using biological and morphological features to infer evolutionary relationships in this phylum among the widely recognized groups. The data showed that the biologically diverse Haemogregarinidae family should be divided into at least three families (as suggested by Mohammed and Mansour [12]), were family Haemogregarinidae, containing the genera Haemogregarina and Cyrilia; family Karyolysidae Wenyon [13], of the genus Karyolysus; and family Hepatozoidae Wenyon [13], of the genus Hepatozoon, since the four genera currently in the family do not constitute a monophyletic group. The picture is further complicated by evidence from a study by Petit et al. [14] of a new Brazilian toad haemogregarine parasite Haemolivia stellata.

Figure 1.

Figure 1

The general structure for the apical complex for Apicomplexa.

Figure 2.

Figure 2

Haemogregarines as a part of phylum Apicomplexa.

Figure 3.

Figure 3

The life cycle of the apicomplexan parasites.

It undergoes sporogonic development in its tick host’s gut wall and has a complex life cycle that resembles Karyolysus species much more than Hepatozoon, Haemogregarina, and Cyrilia species. Haemogregarines can be morphologically classified based on the developmental details of sporogonic phases of the parasite in the vector, which provide the main characters for classification, the morphology of gametocytes in the red blood cells, and an evaluation of the stages of development [15,16]. Although useful, this methodology is not sufficient for a taxonomic diagnosis [17,18] also the classical systematics has been problematic because of the variability to which morphological details are subjected [19]. Therefore, the use of molecular methods from blood or tissue samples [20,21,22], with appropriate molecular phylogeny study, became an essential adjunct to existing morphological and biological characters for use in the inference of evolutionary history relationships among haemoprotozoan parasites [23,24,25]. Molecular data has been carried out based using PCR assays targeting the nuclear 18s ribosomal RNA gene, which have been extensively applied to characterize hemoparasites DNA more fully in the absence of complete life cycles [26,27,28,29,30,31,32].

In the present critical review of the haemogregarines complex, the proper classification, the criteria of generic and unique diagnosis, and the cosmopolitan distribution of haemogregarines among the vertebrate and invertebrate hosts are examined because of their relevant characteristic and taxonomic revisions.

2. Materials and Methods

This review included all related published scientific articles from January 1901 to December 2020. This article was conducted by searching the electronic databases NCBI, ScienceDirect, Saudi digital library, and GenBank database, to check scientific articles and M.Sc./Ph.D. Thesis related to the research topic of this review. Studies published in the English language were only included and otherwise are excluded.

Relevant studies were reviewed through numerous steps. In the first step, target published articles were identified by using general related terms related to the morphological features, such as “Haemogregarines” and “Apicomplex”. The second step involved screening the resulting articles by using highly specific keywords of the generic features for stages in the life cycle of haemogregarines species, including “Merogony”, “Gamogony”, “Sporogony”, “Infective stages”, “Motile stage”, “Infection sites”, and “sporozoites”. The last step of the review focused on selected studies involving the use of molecular analysis for accurate taxonomic identification by using highly specific keywords, including “PCR”, “Genetic markers”, “Variable regions”, “18S rRNA”, and “Phylogenetic analysis”.

The obtained data were presented in tables and figures and were: Table 1 representing the characteristic features for the haemogregarines genera, Table 2, Table 3, Table 4, Table 5 and Table 6 showing haemogregarines species, the vertebrate host, site of the merogonic stage, the invertebrate vectors, site of gamogony and sporogonic stages, geographical locality for hosts, and the authors for publishing data, Table 7 with the primer sets used for the amplification and sequencing for the appropriate gene of 18S rRNA for haemogregarines, and Table 8 representing all the sequenced and deposited haemogregarines in the GenBank database until now.

Table 1.

Characters of different groups of haemogregarines used in the parsimony analysis carried out by Barta [19] and Siddall and Desser [36].

Comparable Features Karyolysis Haemogregarina Cryilia Hepatozoon Haemolivia
Conoid present In all non-gametes In all non-gametes In all non-gametes In all non-gametes In all non-gametes
Crystalloid bodies +/- ? + ? + + (fragmented)
Merogeny +/- + Intra-cellular + Intra-cellular + Intra-cellular + Intra-cellular + Intra-cellular
Micropores +/- + + + + +
Mitochondria. Cristate Cristate Cristate Cristate Cristate
Mitosis Centriolar Centriolar ? Centriolar Centriolar
Amylopectin granules +/- + - - + +
Polar ring complex +/- + + + + +
Gametogenesis Extra-cellular Extra-cellular Extra-cellular Extra-cellular Intra-cellular
No. of microgametes/each microgamont 2 4 4 4 2–4
Gamonts Anisogamous Anisogamous Anisogamous Anisogamous Anisogamous
Syzygy + + + + +
Zygote Non-motile Non-motile Non-motile Non-motile Non-motile
Sporogony Extra-cellular Extra-cellular Extra-cellular Extra-cellular Intra-cellular
Persistent cysts +/- - - - + +
No. of flagella/microgametes 1 1 Absent 1 ?
Arrangement of flagella in microgametes Terminal Terminal ? Terminal Terminal
No. of sporozoites/oocyst 20–30 8 >20 4–16 10–25

Note: (+) presence, (-) absence, (?) not detected.

Table 2.

Haemogregarines of fish.

Species of Haemogregarines The Vertebrate Host Site of Merogony Invertebrate Vector Site of Gamogony and Sporogony Locality Authors
Cyrilia gomesi Synbranchus marmoratus Leucocytes Haementeria lutzi Stomach Sao Paulo, Brazil Nakamoto et al. [38]
Haemogregarina bigemina Lipophrys folis and Coryphoblrnnius galerita Blood cells Gnathia maxillaris Hindgut Portugal Atlantic west coast Davies et al. [39]
Haemogregarina vltavensis Perca fluviatilis Intra-erythrocytic gamonts are only described -- -- Czechoslovakia Lom et al. [40]
Haemogregarina leptocotti Leptocottus armatus Blood cells -- -- California USA Hill and Hendrickson [41]
Haemogregarina roelofsi Sebastes melanops Blood cells -- -- California USA Hill and Hendrickson [41]
Haemogregarina bigemina Clinus superciliosus and Clinus cottoides Intra-erythrocytic Gnathia africana -- South Africa Davies and Smit [42]
Haemogregarine sp. Scomber scombrus L. Leucocytes -- -- Northwest and Northeast Atlantic ocean Maclean and Davies [43]
Haemogregarina curvata Clinus cottoides, Parablennius cornutus Intra-erythrocytic Zeylanicobdella arugamensis Host gut tissue South Africa Hayes et al. [44]
Haemogregarina balistapi Rhinecanthus aculeatus Intra-erythrocytic Gnathia aureamaculosa Host gut tissue Great Barrier Reef, Australia Curtis et al. [45]
Cyrilia sp. Potamotrygon wallacei Intra-erythrocytic -- -- Rio Negri Oliveira et al. [46]
Haemogregarina daviesensis Lepidosiren paradoxa Intra-erythrocytic -- -- Eastern Amazon region Esteves-Silva et al. [47]

Table 3.

Haemogregarines of amphibians.

Species of Haemogregarines The Vertebrate Host Site of Merogony Invertebrate Vector Site of Gamogony and Sporogony Locality Authors
Pseudohaemogregarina nutti Rana nutti Erythrocytes and liver -- -- Germany Awerenzew [48]
Haemogregarina theileri Rana angloensis Erythrocytes and liver -- -- Njoro, Kenya Ball [49]
Haemolivia stellate Brazilian toads Liver Ticks Gut wall Brazil Petit et al. [14]
Haemogregarina nucleobisecans Bufo himalayanus Erythrocytes and liver -- -- India Ray [50]
Hepatozoon sipedon Nerodia sipedon and Rana pipiens Various internal organs Culex pipiens and Culex territans Hemocoel Ontario, Canada Smith et al. [51]
Hepatozoon catesbianae Rana catesbeiana Erythrocytes and liver Culex territans Malpighian tubules Ontario, Canada Desser et al. [52]
Hepatozoon caimani Rana catesbeiana Intra-erythrocytic Culex fatigans Extra-erythrocytic gametocytes State of Mato Grosso Lainson et al. [53]
Hepatozoon theileri Amietia quecketti Intra-erythrocytic gamonts are only described -- -- South Africa Conradie et al. [54]
Hepatozoon involucrum Hyperolius marmoratus Intra-erythrocytic -- -- KwaZulu-Natal, South Africa Netherlands et al. [55]
Hepatozoon tenuis Afrixalus fornasinii Intra-erythrocytic -- -- KwaZulu-Natal, South Africa Netherlands et al. [55]
Hepatozoon thori Hyperolius marmoratus Intra-erythrocytic -- -- KwaZulu-Natal, South Africa Netherlands et al. [55]

Table 4.

Haemogregarines of lizards.

Species of Haemogregarines The Vertebrate Host Site of Merogony Invertebrate Vector Site of Gamogony and Sporogony Locality Authors
Hepatozoon mesnili Gecko verticillatus Endothelial cells of all host organs Culex fatigans and Aedes albopictus Stomach Saigon Robin [56]
Haemogregarina triatomae Tupinambis teguixin Liver and lung Triatoma subrovaria Intestine South America Osimani [33]
Hepatozoon argantis Agama mossambica Liver Argas brumpti Gut and homocoelomic cavity East Africa, Mossambic Garnham [57]
Hepatozoon sauromali Sauromalus sp. Liver Ophionyssus sp. Hemocoel -- Lewis and Wagner [58]
Haemogregarina sp. Tarentola annularis Lung -- -- Sudan Elwasila [59]
Hepatozoon lygosomarum Leiolopisma nigriplantare Liver and spleen Ophionissus saurarum Wall of the gut caeca Canterbury, New Zealand Allison and Desser [60]
Haemogregarina waltairensis Calotes versicolor Peripheral blood, liver, lung, and bone marrow -- -- India Saratchandra [61]
Hepatozoon gracilis Mabuya quinquetaeniata Liver Culex pipienis molesus Hemocoel Giza, Egypt Bashtar et al. [62]
Haemogregarina sp. Podarcis bocagei and Podarcis carbonelli Intra-erythrocytic -- -- NW Portugal Roca and Galdón [63]
Haemogregarina ramadani Acanthodactylus boskianus Intra-erythrocytic -- -- Giza, Egypt Abdel-Baki and Al-Quraishy [64]
Hepatozoon sp. Podarcis vaucheri Intra-erythrocytic -- -- Oukaimeden Moreira et al. [65]
Haemogregarina sp. Tarentola annularis Intra-erythrocytic -- -- Qena, Egypt Rabie and Hussein [66]
Karyolysus lacazei
Karyolysus sp.
Karyolysus latus
Lacerta agilis
Zootoca vivipara
Podarcis muralis
Intra-erythrocytic Ophionyssus saurarum and Ixodes ricinus Poland, Slovakia
Haklová-Kočíková et al. [18]
Karyolysus paradoxa Varanus albigularis, Varanus niloticus Intra-erythrocytic -- -- Ndumo Game Reserve, South Africa Cook et al. [31]
Haemogregarina daviesensis Lepidosiren paradoxa Intra-erythrocytic -- -- Eastern Amazon
region
Esteves-Silva et al. [47]
Haemogregarina sp. Scincus scincus Intra-erythrocytic -- -- South Sinai, Egypt Abou Shafeey et al. [67]
Karyolysus lacazei Lacerta schreiberi Intra-erythrocytic Ixodes ricinus -- Czech Republic Zechmeisterová et al. [68]

Table 5.

Haemogregarines of snakes.

Species of Haemogregarines The Vertebrate Host Site of Merogony Invertebrate Vector Site of Gamogony and Sporogony Locality Authors
Hepatozoon rarefaciens Drymachon corais Lung Culex tarsalis, Anopheles albintarus, Aedes sierrensis Hemocoel California, USA Ball and Oda [69]
Haemogregarnia
matruhensis
Psammophis schokari Intra-erythrocytic -- -- Egypt Ramadan [70]
Hepatozoon fusifex Boa constrictor Lung Culex tarsalis Hemocoel USA Ball et al. [71]
Hepatozoon aegypti Spalerosophis diadema Lung Culex pipiens molestus Hemocoel Egypt Bashtar et al. [72]
Hepatozoon mocassini Agkistrodon piscivorus leucostoma Liver parenchyma cells Aedes aegypti Hemocoel Louisiana, USA Lowichik et al. [73]
Hepatozoon seurati Cerastes cerastes Liver, lung, and spleen Culex pipiens molestus Hemocoel Aswan, Egypt Abdel-Ghaffar et al. [74]
Hepatozoon mehlhorni Echis carinatus Liver, lung, and spleen Culex pipiens molestus Hemocoel Siwah and Baharia Oasis, Egypt Bashtar et al. [75]
Hepatozoon matruhensis Psammophis schokari Liver and lung Culex pipiens molestus Hemocoel Faiyum, Ismailia, Egypt Bashtar et al. [76]
Hepatozoon ghaffari Cerastes vipera Liver, lung, and spleen Culex pipiens molestus Hemocoel Aswan, Egypt Shazly et al. [77]
Hepatozoon sipedon Nerodia sipedon and Rana pipiens Liver and internal organs Culex pipiens, and Culex territans Hemocoel Ontario, Canada Smith et al. [51]
Haemogregarnia garnhami Psammophis schokari Intra-erythrocytic -- -- Egypt Saoud et al. [78]
Hepatozoon ayorgbor Python regius Intra-erythrocytic -- -- Ghana Sloboda et al. [79]
Haemogregarnia sp. Cerastes cerastes gasperetti Intra-erythrocytic -- -- Jizan, Saudi Arabia Al-Farraj [80]
Hepatozoon garnhami Psammophis schokari Intra-erythrocytic -- -- Riyadh, Saudi Arabia Abdel-Baki et al. [29]
Hepatozoon sp. Zamenis longissimus Intra-erythrocytic -- -- Iran Sajjadi and Javanbakht [81]
Hepatozoon aegypti Spalerosophis diadema Intra-erythrocytic -- -- Riyadh, Saudi Arabia Abdel-Haleem et al. [82]

Table 6.

Haemogregarines of turtles and tortoises.

Species of Haemogregarines The Vertebrate Host Site of Merogony Invertebrate Vector Site of Gamogony and Sporogony Locality Authors
Hemogregarina nicoriae Nicoria trijuga Circulating blood and lung Ozobranchus shipleyi Intestinal epithelium Ceylon Robertson [83]
Haemogregarina balli Chelydra serpentine serpentina Lacunar endothelial cells, liver, lung, and spleen Placobdella ornata Gastric and intestinal caeca Ontario, Canada Siddall and Desser [84]
Hepatozoon mauritanicum Testudo graeca Endothelial cells of all host organs as liver, lung, spleen … etc Hyalomma aegyptium The intestinal epithelium of the tick -- Michel [85]
Haemogregarina pseudomydis Pseudemys scripta elegans Leucocytes and Erythrocytes Placobdella parasitica The intestinal epithelium of the leech Louisiana, USA Acholonu [86]
Haemogregarina gangetica (=H. simondi) Trionyx gangeticus Erythrocytes and lung -- -- India Misra [87]
Haemogregarina ganapatii Lissemys punctata granosa Peripheral blood and Liver and lung -- -- India Saratchandra [61]
Haemogregarina sinensis Trionyx sinensis Erythrocytes and Kupffer’s cells of the liver Mooreotorix cotylifer Gastric and intestinal caeca of the leech China Chai and Chen [88]
Haemogregarina sp. Emys orbicularis Intra-erythrocytic Placobdella costata -- Romania Mihalca et al. [89]
Haemolivia mauritanica Testudo graeca Intra-erythrocytic Hyalomna aegyptium Gut cells Israel Paperna [90]
Haemolivia mauritanica Tortoises Intra-erythrocytic Hyalomma aegyptium -- Western Palaearctic realm Široký et al. [91]
Haemogregarina macrochelysi Macrochelys temminckii Intra-erythrocytic Leech -- Georgia and Florida Telford et al. [92]
Haemogregarina stepanowi Emys orbicularis, Mauremys caspica, M. rivulata, M. leprosa Intra-erythrocytic -- -- Western Palaearctic Dvořáková et al. [23]
Haemogregarina sp. Lissemys punctata and Geoclemys hamiltonii Intra-erythrocytic -- -- West Bengal, India Hossen et al. [4]
Haemolivia mauritanica Testudo graeca and Testudo marginata Intra-erythrocytic -- North African Harris et al. [93]
Haemogregarina sp. Rhinoclemmys funera and Kinosternon leucostomum Intra-erythrocytic -- -- Costa Rica Rossow et al. [94]
Haemogregarina sp. Podocnemis unifilis Intra-erythrocytic -- -- Brazilian Amazonia Soares et al. [95]
Haemogregarina sundarbanensis Lissemys punctata Intra-erythrocytic -- -- West Bengal, India Molla et al. [96]
Haemogregarina stepanowi Emys orbicularis Intra-erythrocytic -- -- Belgrade Zoo Jòzsef et al. [24]
Haemogregarina sp. Podocnemis expansa Intra-erythrocytic -- -- Araguaia River Basin, Brazil Picelli et al. [97]
Haemogregarina sacaliae
Haemogregarina pellegrini
Cuora galbinifrons, Leucocephalon yuwonoi, Malayemys subtrijuga, Platysternon megacephalum, Intra-erythrocytic -- -- Southeast Asia Dvořáková et al. [37]
Haemogregarina fitzsimonsi
Haemogregarina parvula
Land tortorise, Stigmochelys pardalis Intra-erythrocytic -- -- South African Cook et al. [31]
Haemogregarina stepanowi Emys trinacris Intra-erythrocytic -- -- Sicily Arizza et al. [98]
Haemogregarina sp. Mauremys caspica Intra-erythrocytic -- -- Iran Rakhshandehroo et al. [99]
Haemogregarina sp. Macrochelys temminckii Intra-erythrocytic -- -- Caldwell Zoo, Texas Alhaboubi et al. [100]
Haemogregarina sp. Mesoclemmys vanderhaegei Intra-erythrocytic -- -- Brazil Goes et al. [101]
Haemogregarina podocnemis Podocnemis Unifilis Intra-erythrocytic -- -- Brazil Úngari et al. [102]

Table 7.

Haemogregarines of crocodilians.

Species of Haemogregarines The Vertebrate Host Site of Merogony Invertebrate Vector Site of Gamogony and Sporogony Locality Authors
Haemogregarina crocodilinorum Alligator mississippiensis Intra-erythrocytic Placobdella multilineata Intestinal epithelial cells of the leech Southern USA includes Arkansas, Carolina, and Florida Börner [103]
Haemogregarina caimani
(= Hepatozoon caimani)
Caiman latirostris Intra-erythrocytic Culex dolosus Hemocoel Brazil Pessôa and de Biasi [104]
Haemogregarina pettiti (=Hepatozoon pettiti Hoare 1932) Crocodilus niloticus Erythrocytes and liver Glossina palpalis Intestine Uganda, Senegal, West Africa Hoare [105]
Hepatozoon sp. Caiman c. yacare Intra-erythrocytic Phaeotabanus fervens Intestine Pantanal Viana and Marques [106]
Hepatozoon caimani Caiman yacare Intra-erythrocytic -- -- Pantanal region, Brazil Viana et al. [107]

Table 8.

Haemogregarines of birds.

Species of Haemogregarines The Vertebrate Host Site of Merogony Invertebrate Vector Site of Gamogony and Sporogony Locality Authors
Hepatozoon atticorae Hirundo spilodera Intra-erythrocytic Ornithodoros peringueyi and Xenopsylia trispinis Hemolymph South Africa, South America, Jamaica, Europea Bennett et al. [108]
Hepatozoon prionopis Prionops plumatus Intra-erythrocytic -- -- Transvaal, South Africa Bennett and Earle [109]
Hepatozoon lanis Lanius collaris Intra-erythrocytic -- -- South Africa Bennett et al. [108]
Hepatozoon malacotinus Dryoscopus cubla Intra-erythrocytic -- -- South Africa Bennett et al. [108]
Hepatozoon numidis Numida meleagris Intra-erythrocytic -- -- South Africa Bennett et al. [108]
Hepatozoon pittae Pitta arcuate Intra-erythrocytic -- -- Sabah Bennett et al. [108]
Hepatozoon estrildus Lonchura cucullata Intra-erythrocytic -- -- Zambia Bennett et al. [108]
Hepatozoon sylvae Parisoma subcaeruleum Intra-erythrocytic -- -- South Africa Bennett et al. [108]
Hepatozoon zosteropis Zosterops pallida Intra-erythrocytic -- -- South Africa Bennett et al. [108]
Hepatozoon passeris Sporopipes squamifrons Intra-erythrocytic -- -- Botswana, South Africa Bennett et al. [108]

3. Results and Discussion

In this review, the different stages of the apicomplexan life cycle were used to identify haemogregarines. However, in most cases, their assignment to one or another genus cannot be considered more than provisional. Accordingly, about 82 haemogregarines in 155 research articles were identified previously. Osimani [33] stated that the differences between the haemogregarines relied more on the host’s identity than the parasite’s characteristics. Mohammed and Mansour [12] reported that haemogregarines gamonts morphology does not provide generic identification with a reliable key. However, Telford et al. [34], and Herbert et al. [35] stated that the determination of generic haemogregarines should not be based exclusively on the gamonts’ form, the type of parasitized host cells, and their effect on the host and site merogony in host cells. While the most characteristic feature for the basic identification via the sporogonic stage.

The reviewed species belonged to the four genera within Hemogregarinidae (Table 1). Following the parsimony analysis in the phylogenetic study of the representative genera in phylum Apicomplexa performed by Siddall and Desser [36] primarily based on ultrastructural observations, it was concluded that the variations between the different haemogregarines genera are mainly reflected by the sporogony features. Besides, Dvořáková et al. [37] added that the host specificity, together with the haemogregarine’s careful morphological and biological analysis, is a sound criterion for accurate identification. These species are common in different animals as fish (Table 2), amphibians (Table 3), reptiles (Table 4, Table 5, Table 6 and Table 7), birds (Table 8), and mammals (Table 9).

Table 9.

Haemogregarines of mammals.

Species of Haemogregarines The Vertebrate Host Site of Merogony Invertebrate Vector Site of Gamogony and Sporogony Locality Authors
Hepatozoon perniciosum Laboratory white rats The liver Echinolaelaps echidninus Stomach Washington, USA Miller [9]
Hepatozoon griseisciuri Sciurus carolinensis Bone marrow, liver, lung, and spleen (with intra-leucocytic gametocytes) Euhaemogamasus ambulans, Echinolaelaps echidninus and Haemogamasus reidi Stomach Washington, Marland, Georgia, USA Desser [110]
Hepatozoon erhardovae Clethrionomys glareolus Lung Xenopsylla cheopis, Ctenophthalmus agyrtes, C. assimilis and Nosopsyllus fasciatus Stomach and fat-body cells Munich, Germany Göbel and Krampitz [111]
Hepatozoon sylvatici Apodemus sylvaticus and Apodemus flavicollis Bone marrow and liver Laelaps agilis Stomach Austria Frank [112]
Hepatozoon sp. Dogs Intra-erythrocytic -- -- Brazil Forlano et al. [113]
Hepatozoon canis Dogs Intra-erythrocytic -- -- Italy Otranto et al. [114]
Hepatozoon felis Cats Intra-erythrocytic -- -- India Baneth et al. [115]
Hepatozoon canis Dogs Intra-erythrocytic Rhipicephalus sanguineus -- Mato Grosso do Sul, Brazil Ramos et al. [116]
Hepatozoon canis Dogs Intra-erythrocytic -- -- Central-western Brazil Paiz et al. [117]
Hepatozoon sp. Cerdocyon thous, Nasua nasua, Leopardus pardalis, Canis familiaris, Thrichomys fosteri, Oecomys mamorae, Clyomys laticeps, Thylamys macrurus, Monodelphis domestics Intra-erythrocytic Amblyomma sculptum, A. parvum, A. tigrinum, Rhipicephalus microplus, R. sanguineus, A. auricularium -- Brazil De Sousa et al. [118]
Hepatozoon felis Panthera leo -- Rhipicephalus sanguineus -- Thailand Bhusri et al. [119]
Hepatozoon canis Dogs Intra-erythrocytic -- -- Czech Republic Mitkova et al. [120]
Hepatozoon felis Dogs Intra-erythrocytic -- -- Northeastern Iran Barati and Razmi [121]
Hepatozoon sp. Cats Intra-erythrocytic -- -- Turkey Tuna et al. [122]
Hepatozoon canis Dogs Intra-erythrocytic -- -- United Kingdom Attipa et al. [123]
Hepatozoon felis Felis silvestris, Caracal caracal, Panthera pardus, P. leo, Leptailurus serval Muscle and Liver -- -- Limpopo and Mpumalanga Harris et al. [124]
Hepatozoon luiperdjie Panthera pardus Leukocytes -- -- Limpopo Province, South Africa Van As et al. [125]
Hepatozoon canis Dogs Intra-erythrocytic -- -- Manila, Philippines Baticados et al. [126]

In the schizogony (merogony) stage, haemogregarines are characterized by their considerable ability to invade and develop within different organs and cell types inside the vertebrate host (Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9). Bray [127] proposed that haemogregarines with schizonts in the liver should be placed in the genus Hepatozoon. In contrast, those species that precede schizogony in other organs should belong to another genus as Haemogregarina or Karyolysus. However, only in the lung of the river turtle, Trionyx gangeticus infected with Haemogregarina gangetica, was described by Misra [87]. In addition to the usual location of merogonic development in the liver, lung, and spleen, Ball et al. [71] have found certain merogonic stages in the highly infected snakes’ brain and heart. Siddall and Desser [84] described merogonic stages in the lacunar endothelial cells of the circulatory system of the leech and its proboscis, besides the liver, lung, and spleen in the turtle. Yanai et al. [128] also described nodular lesions containing schizonts and merozoites of Hepatozoon sp. of the heart’s martens, perisplenic, and perirenal adipose tissues, the diaphragm, mesentery, and tongue. Úngari et al. [102] reported that the genus Haemogregarina underwent schizogony in the circulating blood cells as in turtles and fish, and the genus Hepatozoon underwent schizogony in the liver. Additionally, there are two morphologically different meronts were the micro- and macromeronts. The presence of these two forms of meronts was mentioned to be a fundamental feature of the whole haemogregarine [74,129,130].

Gametocytes are usually the only stages of the parasite detected by scientists. Their morphology, unfortunately, does not provide a reliable clue to the generic differentiation. Together with other relevant data, their morphological characteristics offer a reliable basis for specific identification [35,67]. The haemogregarines gametocytes appeared as sausage-shaped and generally lie singly within erythrocytes (Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9), but sometimes free in extracellular space, which is consistent with Telford et al. [34], Sloboda et al. [79] as the presence of free extracellular gametocytes. They are also observed in the leucocytes of fish (Table 2), birds (Table 8), and mammals (Table 9).

The shape, size, and structure of infected blood-corpuscles often undergo considerable changes. Hypertrophy may result directly from the gametocyte’s added intraerythrocytic volume or represent an erythrocyte adaptation to the gametocyte’s presence [53,82,131,132]. An entirely different cell response occurred when the gametocytes of Hemogregarina sp. invaded erythrocytes of Rana berlandieri. The erythrocytes undergo hypertrophy, and the plasmalemma of the infected erythrocyte demonstrated numerous microvilli-like out-growings. Hussein [133] also described the hypertrophy of Karyolysus-infected erythrocytes. Most haemogregarine gametocytes do not invade the host cell’s nucleus but instead move it to the opposite side or the other host cell’s other pole. This is contrary to the effect of the genus Karyolysus on the infected erythrocytes. Karyolysus has a karyolytic impact on the host cell’s nucleus and is therefore identified Karyolysus Reichenow [134].

Little work had been done to identify the actual arthropod vectors of haemogregarines, as the transmission by inoculation of blood was rarely successful. In general, the invertebrate vectors of haemogregarines were the most challenging problem facing this group’s research progress [49]. The haemogregarines displayed a wide distribution of vertebrate host infections, and a large number of invertebrate vectors (Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9). In all haemogregarines, fertilization is of Adelea type; both micro- and macrogamonts lie in syzygy within the same parasitophorous vacuole. Syzygy can stimulate the production of the associated gamonts in haemogregarines, since only the parasites found in pairs were mostly differentiated, which is consistent with Davies and Smit [42]. Regarding the number of microgametes produced by each microgamont, the members of the suborder Adeleidea were characterized by the production of only a few (four or less) microgametes [135]. Simultaneously, the formation of multiple microgametes has been identified in most haemogregarines species [52]. However, there are some suggestions that multiple microgamete formation does not occur in the entire genus Hepatozoon [111]. Regarding the number of flagella in microgametes in haemogregarines, contradictions were recorded. While monoflagellated microgametes have been described for haemogregarines species [74], biflagellated microgametes were also recorded for other haemogregarines [52]. On the other hand, Michel [85] reported non-flagellated microgametes in Hepatozoon mauritanicum.

Fertilization follows, leading to the formation of a zygote that becomes an oocyst. The oocyst is surrounded by a flexible membrane rather than a wall, and it produces sporozoites that may undergo further merogony. Sporogony is elucidated for just a few known haemogregarines species, the vast majority of which is supposed to investigate this aspect of their life-cycle, as reported by Forlano et al. [113]. There is also another potential criterion for distinguishing between Hepatozoon and Haemogregarina based on the presence or absence of oocysts containing sporocysts in the invertebrate vector, which is consistent with Levine [6]. When the developing mite reaches the nymphal stage, the sporozoites attain their maturity. The sporozoites eventually get the nymph’s stomach and pass out with their faeces, which are considered infection sources of the vertebrate host (lizard). The morphological characteristics of the gamonts and meronts found in the blood cells sometimes provide inadequate information for differential diagnoses [37], meaning that assigning species of haemogregarines to one of these genera must be based on the characteristics of its sporogony in the invertebrate vectors [6,64]. However, data on invertebrate vectors and sporogony are missing for the majority of species [23].

Until now, the current taxonomy of haemogregarines is facing a great challenge due to the high variation in gamont morphology, low host specificity, unknown invertebrate hosts in many cases, and fewer details of sporogony. Therefore, molecular approaches are now available to distinguish populations of morphologically identical but genetically different parasites, including DNA and polymerase chain reaction (PCR) based approaches [22,136,137,138,139,140,141]. Some studies based on PCR-based assays as the reference diagnostic test for epidemiological studies, which given their greater sensitivity, particularly for testing different hosts with intermittent levels of parasitemia via a low infection rate by gamonts, as Otranto et al. [114], Haklová-Kočíková et al. [18], Jòzsef et al. [24], Ramos et al. [116], and Mitkova et al. [120]. Notably, all the molecular evidence comes from the complete and partial sequences of the small subunit (SSU) ribosomal DNA (rDNA) 18S gene is a sufficient phylogenetic marker to approximate ordinal level relationships and those within orders [68,98,119,142,143,144,145]. Previous molecular studies of Harris et al. [22] and Barta et al. [19] demonstrated that the haemogregarine species are clustered in sister clades with interspecies linked more with the host geographic distribution, rather than host species. There are universal primer sets that were able to molecularly characterize haemogregarines, as mentioned in Table 10. However, many species with sequences deposited in the GenBank database are not identified correctly at the generic level. Table 11 expressed only haemogregarines identified at the species level and others identified at the generic level are excluded.

Table 10.

Primer sets used in the phylogenetic analysis of haemogregarines by 18S rRNA gene.

Primer Set Primer Sequence Reference
4558F 5′- GCT AAT ACA TGA GCA AAA TCT CAA -3ʹ Mathew et al. [146]
2733R 5′- CGG AAT TAA CCA GAC AAA T -3ʹ
2867F 5′- AAC CTG GTT GAT CCT GCC AG -3′ Mathew et al. [146]
2868R 5′- TGA TCC TTC TGC AGG TTC ACC TAC -3′
HEMO1 5′ - TAT TGG TTT TAA GAA CTA ATT TTA TGA TTG - 3′ Perkins and Keller [147]
HEMO2 5′ - CTT CTC CTT CCT TTA AGT GAT AAG GTT CAC - 3′
HepF 5′- ATA-CAT-GAG-CAA-AAT-CTC-AAC -3′ Inokuma et al. [148]
HepR 5′- CTT-ATT-ATT-CCA-TGC-TGC-AG -3′
HepF300 5′- GTTTCTGACCTATCAGCTTTCGAC -3ʹ Ujvari et al. [20]
HepR900 5′- CAAATCTAAGAATTTCACCTCTGAC -3ʹ
HEP-1 5′- CGC GAA ATT ACC CAA TT -3′ Criado-Fornelio et al. [149]
HEP-2 5′- CAG ACC GGT TAC TTT YAG CAG -3′
Piroplasmid-F 5′- CCA GCA GCC GCG GTA ATT -3ʹ Tabar et al. [150]
Piroplasmid-R 5′- CTT TCG CAG TAG TTY GTC TTT AAC AAA TCT -3ʹ
EF 5′-GAA ACT GCG AAT GGC TCA TT-3′ Kvičerová et al. [26]
ER 5′-CTT GCG CCT ACT AGG CAT TC-3′
Hep-001F 5′- CCT GGC TAT ACA TGA GCA AAA TCT CAA CTT -3′ Kledmanee et al. [151]
Hep-737R 5′- CCA ACT GTC CCT ATC AAT CAT TAA AGC -3′
BTH-1F 5′- CCT GAG AAA CGG CTA CCA CAT CT -3′ Zintl et al. [152]
BTH-1R 5′- TTG CGA CCA TAC TCC CCC CA -3′
GF2 5′- GTC TTG TAA TTG GAA TGA TGG -3′ Hodžić et al. [153]
GR2 5′- CCA AAG ACT TTG ATT TCT CTC -3′
Haemog11_F 5′- ATT GGA GGG CAA GTC TGG TG -3ʹ Rakhshandehroo et al. [99]
Haemog11_R 5′- GCG TTA GAC ACG CAA AGT CT -3ʹ
HemoFN 5′- CCG TGG TAA TTC TAG AGC TAA TAC ATG AGC -3′ Alhaboubi et al. [100]
HemoRN 5′- GAT AAG GTT TAC GAA ACT TTC TAT ATT TA -3′

Table 11.

List of sequences for haemogregarines from GenBank database based on the 18S rRNA gene.

Parasites Hosts Accession Number in GenBank
Haemogregarina podocnemis Podocnemis unifilis MF476203.1 - MF476205.1
Haemogregarina pellegrini Platysternon megacephalum KM887509.1
Malayemys subtrijuga KM887508.1
Haemogregarina sacaliae Sacalia quadriocellata KM887507.1
Haemogregarina stepanowi Emys orbicularis MT345287.1
Mauremys leprosa MT345284.1 - MT345286.1, KX691418.1, KX691417.1
Emys orbicularis KT749877.1, KF257928.1
Mauremys leprosa KF257929.1
Mauremys rivlata KF257927.1
Mauremys caspica KF257926.1, KF992697.1
Haemogregarina bigemina Lipophrys pholis MK393799.1 - MK393801.1
Haemogregarina balli Chelydra serpentine HQ224959.1
Hepatozoon fitzsimonsi Kinixys zombensis KR069084.1
Chersina angulate KJ702453.1
Hepatozoon ursi Ursus thibetanus japonicus EU041718.1, AB586028.1, LC431855.1 - LC431853.1
Melursus ursinus HQ829437.1 - HQ829429.1
Hepatozoon seychellensis Gradisonia alternans KF246566.1, KF246565.1,
Hepatozoon ayorgbor Apodemus sylvaticus KT274177.1, KT274178.1
Ctenophthalmus agyrtes KJ634066.1
Python regius EF157822.1
Rhombomys opimus MW342705.1
Hepatozoon musa Crotalus durissus MF497763.1 - MF497767.1
Philodryas natterei KX880079.1
Hepatozoon involucrum Hyperolius marmoratus MG041591.1 - MG041594.1
Ursus arctos MN150506.1 - MN150504.1
Hepatozoon clamatae Rana pipiens MN310689.1
Hepatozoon catesbianae Rana clamitans MN244529.1, MN244528.1, AF040972.1,
Hepatozoon aegypti Spalerosophis diadema MH198742.1
Hepatozoon martis Martes foina MG136688.1, MG136687.1
Hepatozoon procyonis Nasua nasua MF685386.1 - MF685409.1
Hepatozoon griseisciuri Scinurus carolinensis MK452389.1, MK452388.1, MK452253.1, MK452252.1,
Hepatozoon sciuri Scinus vulgaris MN104636.1 - MN104640.1,
Hepatozoon americanum Canis familiaris AF206668.1, KU729739.1
Hepatozoon ingwe Panthera pardus pardus MN793001.1, MN793000.1
Hepatozoon theileri Amietia quecketti KP119773.1, KX512804.1, KJ599676.1,
Amietia delalandii MG041605.1
Hepatozoon caimani Caiman crocodilus yacare MF322538.1, MF322539.1
Caiman crocodilus MF435046.1 - MF435049.1
Hepatozoon silvestris Felis silvestris silvestris KX757032.1
Felis catus MH078194.1, KY649445.1
Hepatozoon tenuis Afrixalus fornasini MG041595.1 - MG041599.1
Hepatozoon thori Hyperolius argus MG041600.1 - MG041603.1
Hepatozoon ixoxo Amietophrynus maculatus KP119772.1
Hepatozoon luiperdjie Panthera pardus pardus MN793002.1 - MN793004.1,
Hepatozoon cuestensis Crotalus durissus MF497769.1, MF497770.1
Hepatozoon sipedon Snakes AF110249.1 - AF110241.1
Hepatozoon erhardovae Megabothris turbidus KJ608372.1
Hepatozoon domerguei Furcifer sp. KM234649.1 - KM234646.1
Hepatozoon tuatarae Sphenodon punctatus GU385473.1 - GU385470.1
Hepatozoon cf. ophisauri Rhombomys opimus MW256822.1
Hepatozoon colubri -- MN723844.1
Hepatozoon canis Amblyomma cajennense KT215377.1 - KT215353.1
Amblyomma sculptum KP167594.1
Tapir tapir MT458172.1
Haemaphysalis longicornis MT107092.1 - MT107097.1, MT107087.1 - MT107089.1, LC169075.1
Haemaphysalis concinna KC509532.1 - KC509527.1
Rhipicephalus sanguineus MH595911.1 - MH595892.1, MG807347.1, KY056823.1, MG241229.1, KT587790.1, KT587789.1, KY196999.1, KY197000.1 - KY197002.1, JQ867389.1, MN207197.1
Rhipicephalus microplus HQ605710.1
Rhipicephalus decoloratus MN294724.1
Canis lupus familiaris MH615003.1, EU289222.1, DQ071888.1, MK910141.1 - MK910144.1, MK757793.1 - MK757815.1, MN791089.1, MN791088.1, MN393913.1, MN393910.1, MK645971.1 - MK645946.1, MK214285.1 - MK214282.1, MG254613.1 - MG254622.1, MK091084.1 - MK091092.1, KY940658.1, MG772658.1, MG254573.1 - MG254611.1, KY021176.1 - KY021184.1, MG496257.1, MG496273.1, MG062866.1, MG076961.1, MG209580.1 - MG209594.1, KX588232.1, KU729737.1, KU729738.1, KY026191.1, KY026192.1, KX880502.1 - KX880506.1, KX761384.1, KU232309.1, KU232310.1, KT736298.1, LC012839.1 - LC012821.1, LC053450.1, JX976545.1, JN584478.1 - JN584475.1, JF459994.1, GQ176285.1, EU571737.1, EF650846.1, MW019643.1 - MW019630.1, MT909554.1, MT081051.1, MT081050.1, MT821184.1, MT499356.1 - MT499354.1, MT754266.1, LC556379.1, MT433126.1 - MT433121.1
Lycalopex vetulus AY150067.2, MT458173.1
Kinixys species MT704950.1
Lycalopex gymnocercus KX816958.1
Didelphis albiventris KY392884.1, KY392885.1
Canis aureus KF322145.1, KC886721.1, KC886729.1 - KC886733.1, KJ868814.1, KJ572977.1 - KJ572975.1, KJ634654.1, JX466886.1 - JX466880.1,
Felis catus KY469446.1, MN689671.1 - MN689661.1
Vulpes vulpes KF322141.1-KF322144.1, KC886720.1 - KC886728.1, MK757741.1 - MK757792.1, MN103520.1, MN103519.1, MH699884.1 - MH699892.1, MG077084.1 - MG077087.1, KY693670.1, KJ868819.1 - KJ868815.1, KU893118.1 - KU893127.1, KM096414.1 - KM096411.1, KJ572979.1, KJ572978.1, EU165370.1, GU376458.1 - GU376446.1, DQ869309.1, AY731062.1, MW295531.1, MN463026.1 - MN463021.1
Ixodes ricinus KU597235.1 - KU597242.1, KC584780.1
Hydrochoerus hydrochaeris KY965141.1 - KY965144.1
Cuon alpinus HQ829448.1 - HQ829438.1, MK144332.1
Dermacentor reticulatus KC584777.1 - KC584773.1
Pseudalopex gymnocercus AY471615.1, AY461376.1, AY461375.1
Panthera leo MT814748.1
Panthera tigris MT232064.1 - MT232062.1
Camelus dromedrius MN989311.1
Hepatozoon apri Sus scrofa leucomystax LC314791.1
Amietophrynus gutturalis KP119771.1
Amietophrynus garmani KP119770.1,
Sclerophrys maculata KX512803.1
Sclerophrys pusilla MG041604.1
Hepatozoon cf. felis Felis catus MK301457.1 - MK301462.1, MK724001.1, MG386482.1 - MG386484.1, KY649442.1 - KY649444.1, AY628681.1, AY620232.1
Felis silvestris silvestris KX757033.1, MT210593.1 - MT210598.1,
Puma concolor MT458171.1
Eira barbara MT458170.1
Lycalopex gymnocercus HQ020489.1
Leopardus pardalis KY684005.1
Asiatic lion KX017290.1
Prionailurus bengalensis AB771577.1 - AB771501.1, GQ377218.1 - GQ377216.1
Prionailurus iriomotensis AB636287.1 - AB636285.1
Panthera onca KU232302.1 - KU232308.1
Panthera tigris MT645336.1, MT634695.1
Rhipicephalus sanguineus JQ867388.1
Eurasian lynx MN905025.1, MN905023.1, MN905027.1
Haemolivia parvula Kinixys zombensis KR069083.1, KR069082.1
Haemolivia stellata Amblyomma dissimile MH196477.1 - MH196482.1, MH196475
Amblyomma rotundatum KP881349.1
Haemolivia mariae Egernia stokesii KF992712.1, KF992711.1
Tiliqua rugosa JN211118.1, HQ224961.1
Haemolivia mauritanica Hyalomma aegyptium MH618775.1, MN463032.1, MN463031.1, MW092781.1 - MW092776.1, MK918611.1 - MK918608.1, MH497199.1 - MH497190.1, MH975037.1, MH975031.1, MH975026.1, MH975025.1,
Hyalomma sp. MF383512. - MF383506.1,
Haemolivia mauritanica Canis lupus familiaris KP719092.1
Testudo marginata KF992710.1, KF992699.1
Testudo graeca KF992709.1 - KF992698.1, MH975039.1 - MH975032.1, MH975030.1 - MH975027.1, MH975024.1 - MH975021.1,
Karyolysus paradoxa Varanus albigularis KX011039.1, KX011040.1
Karyolysus cf. lacazei Ixodes ricinus MK497254.1

4. Conclusions

Few haemogregarine characteristics provide a reliable basis for the related parasite to recognized genera. Details of the sporogonic cycle seem to be the only reliable criterion as they are the “Key-stone” in the classification system. Morphological characteristics of the gametocytes do not help in this respect. Features of the schizogonic stages, when these are known, are not much better as criteria of generic value. Molecular phylogenetic studies using the appropriate genetic markers are helpful tools for the accurate taxonomic identification for haemogregarines. Further studies are recommended to include other nuclear and mitochondrial genes to provide more information about the genetic variability among haemogregarines.

Acknowledgments

The authors extend their appreciation to the Deanship for Research and Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number IFKSURP-131”.

Author Contributions

Conceptualization, S.A.-Q., F.A.-G. and M.A.D.; methodology, F.A.-G. and R.A.-G.; validation, M.A.D.; formal analysis, R.A.-G. and M.A.D.; investigation, S.A.-Q. and F.A.-G.; resources, R.A.-G. and M.A.D.; data curation, R.A.-G. and M.A.D.; writing—original draft preparation, S.A.-Q., F.A.-G., R.A.-G. and M.A.D.; writing—review and editing, S.A.-Q., F.A.-G., R.A.-G. and M.A.D.; visualization, R.A.-G. and M.A.D.; supervision, S.A.-Q., F.A.-G. and M.A.D. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Deanship for Research and Innovation, “Ministry of Education” in Saudi Arabia, grant number IFKSURP-131.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data generated or analysed during this study are included in this published article.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Levine N.D. Taxonomy of the Sporozoa. J. Parasitol. 1970;56:208–209. [Google Scholar]
  • 2.Davies A.J., Johnston M.R.L. The biology of some intraerythrocytic parasites of fishes, amphibian and reptiles. Adv. Parasitol. 2000;45:1–107. doi: 10.1016/s0065-308x(00)45003-7. [DOI] [PubMed] [Google Scholar]
  • 3.Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S., Brown M.W., Burki F., Dunthorn M., Hampl V., et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 2012;59:429–514. doi: 10.1111/j.1550-7408.2012.00644.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Hossen M.S., Bandyopadhyay P.K., Gürelli G. On the occurrence of a Haemogregarinae (Apicomplexa) parasite from freshwater turtles of South 24 Parganas, West Bengal, India. Tutkiye Parazitol. Derg. 2013;37:118–122. doi: 10.5152/tpd.2013.27. [DOI] [PubMed] [Google Scholar]
  • 5.Telford S.R. Hemoparasites of the Reptilia: Color Atlas and Text. CRC Press, Taylor and Francis Group; Boca Raton, FL, USA: 2009. [Google Scholar]
  • 6.Levine N.D. Some corrections in Haemogregarine (Apicomplexa: Protozoa) Nomenclature. J. Protozool. 1982;29:601–603. doi: 10.1111/j.1550-7408.1982.tb01344.x. [DOI] [PubMed] [Google Scholar]
  • 7.Danilewsky B. Die Hematozoen der Kaltblüter. Arch. Mikr. Anat. 1885;24:588–598. doi: 10.1007/BF02960394. [DOI] [Google Scholar]
  • 8.Labbé A. Recherches zoologiques et biologiques sur les parasites endoglobulaires du sang des Vertébrés. Arch. Zool. Exp. Gen. 1894;2:55–258. [Google Scholar]
  • 9.Miller W.W. Hepatozoon perniciosum n. g. n. sp., a haemogregarines pathogenic for white rats: With a brief description of the sexual cycle in the intermediate host a mite (Laelaps echidninus Berlese) Hyg. Lab. Bull. (Washington) 1908;46:51–123. [Google Scholar]
  • 10.Lainson R. On Cyrilia gomesi (Neiva and Pinto, 1926) gen. nov. (Haemogregarinidae) and Trypanosoma bourouli Neiva and Pinto. In the fish Synbranchus marmoratus: Simultaneous transmission by the leech Haementeria lutzi. In: Canning E.U., editor. Parasitological Topics. Volume 1. Society of Protozoologists, Inc.; Lawrence, KS, USA: 1981. pp. 150–158. Special Publication. [Google Scholar]
  • 11.Barta J.R. Phylogenetic analysis of the Class Sporozoa (Phylum Apicomplexa Levine 1970): Evidence for the independent evaluation of heteroxenous life cycles. J. Parasitol. 1989;75:195–206. doi: 10.2307/3282766. [DOI] [PubMed] [Google Scholar]
  • 12.Mohammed A.H.H., Mansour N.S. The haemogregarines complex (an analytical systematic review) Bull. Fac. Pharm. Cairo Univ. (BFPC) 1959;35:39–52. [Google Scholar]
  • 13.Wenyon C.M. Protozoology. Volume 2 Bailliere, Tindall and Cox; London, UK: 1926. [Google Scholar]
  • 14.Petit G., Landau I., Baccam D., Lainson R. Description et cycle biologique d’Hemolivia stellate n. g., n. sp., hémogregarine de crapauds Brésiliens. [Desription and life cycle of Hemolivia stellate n.g., n. sp., a haemogregarines of Brazilian toads] Ann. Parasitol. Hum. Comp. 1990;65:3–15. doi: 10.1051/parasite/1990651003. [DOI] [Google Scholar]
  • 15.Široký P., Kamler M., Modrý D. Long-term occurrence of Hemolivia cf. mauritanica (Apicomplexa: Adeleina: Haemogregarinidae) in the captive Testudo marginata (Reptilia: Testudinidae): Evidence for cyclic merogony? J. Parasitol. 2004;90:1391–1393. doi: 10.1645/GE-3306. [DOI] [PubMed] [Google Scholar]
  • 16.Jacobson E.R. Parasites and parasitic diseases of reptiles. In: Jacobson E.R., editor. Infectious Diseases and Pathology of Reptiles: Color Atlas and Text. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2007. pp. 579–580. [Google Scholar]
  • 17.Pineda-Catalan O., Perkins S.L., Peirce M.A., Engstrand R., Garcia-Davila C., Pinedo-Vasquez M., Aguirre A.A. Revision of hemoproteid genera and description and redescription of two species of chelonian hemoproteid parasites. J. Parasitol. 2013;99:1089–1098. doi: 10.1645/13-296.1. [DOI] [PubMed] [Google Scholar]
  • 18.Haklová-Kočíková B., Hižňanová A., Majláth I., Račka K., Harris D.G., Földvári G. Molecular characterization of Karyolysus– a neglected but common parasite infecting some European lizards. Parasite. Vector. 2014;7:555. doi: 10.1186/s13071-014-0555-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Barta J.R., Ogedengbe J.D., Martin D.S., Smith T.G. Phylogenetic position of the adeleorinid coccidia (Myzozoa, Apicomplexa, Coccidia, Eucoccidiorida, Adeleorina) inferred using 18S rDNA sequences. J. Eukaryot. Microbiol. 2012;59:171–180. doi: 10.1111/j.1550-7408.2011.00607.x. [DOI] [PubMed] [Google Scholar]
  • 20.Ujvari B., Madsen T., Olsson M. High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. J. Parasitol. 2004;90:670–672. doi: 10.1645/GE-204R. [DOI] [PubMed] [Google Scholar]
  • 21.Johnson A.J., Origgi F.C., Wellehan J.F.X., Jr. Molecular diagnostics. In: Jacobson E.R., editor. Infectious Diseases and Pathology of Reptiles: Color Atlas and Text. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2007. pp. 351–380. [Google Scholar]
  • 22.Harris D.J., Maia J.P.M.C., Perera A. Molecular characterization of Hepatozoon species in reptiles from the Seychelles. J. Parasitol. 2011;97:106–110. doi: 10.1645/GE-2470.1. [DOI] [PubMed] [Google Scholar]
  • 23.Dvořáková N., Kvičerova J., Papousek I., Javanbakht H., Tiar G., Kami H.G. Haemogregarines from western Palaearctic freshwater turtles (genera Emys, Mauremys) are conspecifi c with Haemogregarina stepanowi Danilewsky, 1885. Parasitology. 2014;141:522–530. doi: 10.1017/S0031182013001820. [DOI] [PubMed] [Google Scholar]
  • 24.Jòzsef Ö., Darko M., Milos V., Bojan G., Jevrosima S., Dejan K., Sanja A.-K. Cytological and molecular identification of Haemogregarina stepanowi in blood samples of the European pond turtle (Emys orbicularis) from quarantine at Belgrade Zoo. Acta Vet.-Beograd. 2015;65:443–453. [Google Scholar]
  • 25.O’Donoghue P. Haemoprotozoa: Making biological sense of molecular. Int. J. Parasitol. Parasites Wildl. 2017;6:241–256. doi: 10.1016/j.ijppaw.2017.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kvičerová J., Hypša V., Pakandl M. Phylogenetic relationships among Eimeria spp. (Apicomplexa, Eimeriidae) infecting rabbits: Evolutionary significance of biological and morphological features. Parasitology. 2008;135:443–452. doi: 10.1017/S0031182007004106. [DOI] [PubMed] [Google Scholar]
  • 27.Kubo M., Jeong A., Kim S.I., Kim Y.J., Lee H., Kimura J., Agatsuma T., Sakai H., Yanai T. The first report of Hepatozoon species infection in leopard cats (Prionailurus bengalensis) in Korea. J. Parasitol. 2010;96:437–439. doi: 10.1645/GE-2270.1. [DOI] [PubMed] [Google Scholar]
  • 28.Pawar R.M., Poornachandar A., Srinivas P., Rao K.R., Lakshmikantan U., Shivaji S. Molecular characterization of Hepatozoon spp. infection in endangered Indian wild felids and canids. Vet. Parasitol. 2012;186:475–479. doi: 10.1016/j.vetpar.2011.11.036. [DOI] [PubMed] [Google Scholar]
  • 29.Abdel-Baki A.S., Al-Quraishy S., Zhang J.Y. Redescription of Haemogregarina garnhami (Apicomplexa: Adeleorina) from the blood of Psammophis schokari (Serpentes: Colubridae) as Hepatozoon garnhami n. comb. based on molecular, morphometric and morphologic characters. Acta Parasitol. 2014;59:294–300. doi: 10.2478/s11686-014-0241-3. [DOI] [PubMed] [Google Scholar]
  • 30.Cook C.A., Lawton S.P., Davies A.J., Smit N.J. Reassignment of the land tortoise haemogregarine Haemogregarina fitzimonsi Dias 1953 (Adeleorina: Haemogregarinidae) to the genus Hepatozoon Miller 1908 (Adeleorina: Hepatozoidae) based on parasite morphology, life cycle and phylogenetic analysis of 18S rDNA sequence fragments. Parasitology. 2014;141:1611–1620. doi: 10.1017/S003118201400081X. [DOI] [PubMed] [Google Scholar]
  • 31.Cook C.A., Netherlands E.C., Smit N.J. Redescription, molecular characterisation and taxonomic re-evaluation of a unique African monitor lizard haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb. (Karyolysidae) Parasit. Vectors. 2016;9:347. doi: 10.1186/s13071-016-1600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Cook C.A., Netherlands E.C., Van As J., Smit N.J. Two new species of Hepatozoon (Apicomplexa: Hepatozoidae) parasitizing species of Philothamnus (Ophidia: Colubridae) from South Africa. Folia Parasitol. 2018;65:004. doi: 10.14411/fp.2018.004. [DOI] [PubMed] [Google Scholar]
  • 33.Osimani J.J. Haemogregarina triatomae n. sp. from a South American lizard, Tupinambis teguixin transmitted by the Reduviid Triatoma rebrovaria. J. Parasite. 1942;28:147–154. doi: 10.2307/3272727. [DOI] [Google Scholar]
  • 34.Telford S.R., Jr., Ernst J.A., Clark A.M., Butler J.F. Hepatozoon sauritus: A polytopic haemogregarine of three genera and four species of snakes in North Florida, with specific identity verified from genome analysis. J. Parasitol. 2004;90:352–358. doi: 10.1645/GE-3258. [DOI] [PubMed] [Google Scholar]
  • 35.Herbert J.D.K., Godfrey S., Bull C.M., Menz I. Developmental stages and molecular phylogeny of Hepatozoon tuatarae, a parasite infecting the New Zealand tuatara, Sphenodon punctatus and the tick, Amblyomma sphenodonti. Int. J. Parasitol. 2010;40:1311–1315. doi: 10.1016/j.ijpara.2010.03.018. [DOI] [PubMed] [Google Scholar]
  • 36.Siddall M.E., Desser S.S. Merogonic development of Haemogregarina balli (Apicomplexa: Adeleina: Haemogregarinidae) in the leech Placobdella ornate (Glossiphoniidae), its transmission to a chelonian intermediate host and phylogenetic implications. J. Parasitol. 1991;77:426–436. doi: 10.2307/3283131. [DOI] [Google Scholar]
  • 37.Dvořáková N., Kvičerová J., Hostovský M., Široký P. Haemogregarines of freshwater turtles from Southeast Asia with a description of Haemogregarina sacaliae sp. n. and a redescription of Haemogregarina pellegrini Laveran and Pettit, 1910. Parasitology. 2015;142:816–826. doi: 10.1017/S0031182014001930. [DOI] [PubMed] [Google Scholar]
  • 38.Nakamoto W., Silva A.J., Machado P.E., Padovani C.R., Januario S.A., De Abreu M.E. Leukocytes and Cyrilia gomesi (blood parasite) in Synbranchus marmoratus Bloch, 1975 (Pisces, Synbranchidae) from the Biriqui region of Sao Paulo (Brazil) Rev. Bras. Biol. 1991;51:755–761. [Google Scholar]
  • 39.Davies A.J., Eiras J.C., Austin R.T.E. Investigations into the transmission of Haemogregarina bigemina Laveran and Mesnil, 1901 (Apicomplexa: Adeleorina) between intertidal fishes in Portugal. J. Fish. Dis. 1994;17:283–289. doi: 10.1111/j.1365-2761.1994.tb00223.x. [DOI] [Google Scholar]
  • 40.Lom J., Tomas K., Dykova I. Haemogregarina vltavensis, new species from perch (Perca fluviatilis) in Czechoslovakia. Syst. Parasitol. 1989;13:193–196. doi: 10.1007/BF00009744. [DOI] [Google Scholar]
  • 41.Hill J.P., Hendrickson G.L. Haematozoa of fishes in Humboldt Bay, California. J. Wildl. Dis. 1991;27:701–705. doi: 10.7589/0090-3558-27.4.701. [DOI] [PubMed] [Google Scholar]
  • 42.Davies A.J., Smit N.J. The life cycle of Haemogregarina bigemina (Adeleina: Haemogregarinidae) in South African hosts. Folia Parasit. 2001;48:169–177. doi: 10.14411/fp.2001.029. [DOI] [PubMed] [Google Scholar]
  • 43.MacLean S.A., Davies A.J. Prevalence and development of intraleucocytic haemogregarines from northwest and northeast Atlantic mackerel, Scomber scombrus L. J. Fish. Dis. 1990;13:59–68. doi: 10.1111/j.1365-2761.1990.tb00757.x. [DOI] [Google Scholar]
  • 44.Hayes P.M., Smit N.J., Seddon A.M., Wertheim D.F., Davies A.J. A new fish haemogregarine from South Africa and its suspected dual transmission with trypanosomes by a marine leech. Folia Parasit. 2006;53:241–248. doi: 10.14411/fp.2006.031. [DOI] [PubMed] [Google Scholar]
  • 45.Curtis L.M., Grutter A.S., Smit N.J., Davies A.J. Gnathia aureamaculosa, a likely definitive host of Haemogregarina balistapi and potential vector for Haemogregarina bigemina between fishes of the Great Barrier Reef, Australia. Int. J. Parasitol. 2013;43:361–370. doi: 10.1016/j.ijpara.2012.11.012. [DOI] [PubMed] [Google Scholar]
  • 46.Oliveira A., Araújo M.L.G., Pantoja-Lima J., Aride P., Tavares-Dias M., Brinn R.P., Marcon J.L. Cyrilia sp. (Apicomplexa: Haemogregarinidae) in the Amazonian freshwater stingray Potamotrygon wallacei (cururu stingray) in different hydrological phases of the Rio Negro. Rev. Bras. Biol. 2016;77:1–6. doi: 10.1590/1519-6984.00416. [DOI] [PubMed] [Google Scholar]
  • 47.Esteves-Silva P.H., da Silva M.R.L., O’Dwyer L.H., Tavares-Dias M., Viana L.A. Haemogregarina daviesensis sp. nov. (Apicomplexa: Haemogregarinidae) from South American lungfish Lepidosiren paradoxa (Sarcopterygii: Lepidosirenidae) in the eastern Amazon region. Parasitol. Res. 2019;118:2773–2779. doi: 10.1007/s00436-019-06430-7. [DOI] [PubMed] [Google Scholar]
  • 48.Awerenzew S. Parasiten aus dem Blute von Rana nuti. Arch. Protistenk. 1941;95:15–21. [Google Scholar]
  • 49.Ball G.H. Some blood sporozoans from East African reptiles. J. Protozool. 1967;14:198–210. doi: 10.1111/j.1550-7408.1967.tb01983.x. [DOI] [PubMed] [Google Scholar]
  • 50.Ray R. Studies on the anuran blood parasites of sub-Himalayan West Bengal, India. J. Beng. Nat. Hist. Soc. 1992;11:4–8. [Google Scholar]
  • 51.Smith T.G., Desser S.S., Martin D.S. The development of Hepatozoon sipedon n. sp. (Apicomplexa: Adeleina: Hepatozoidae) in its natural host, the northern water snake (Nerodia sipedon sipedon), its culicine vectors (Culex pipiens and Culex territans) and its intermediate host, the northern leopard frog (Rana pipiens) Parasitol. Res. 1994;80:559–568. doi: 10.1007/BF00933003. [DOI] [PubMed] [Google Scholar]
  • 52.Desser S.S., Hong H., Martin D.S. The life history, ultrastructure and experimental transmission of Hepatozoon catesbiana n. comb., an apicomplexan parasite of the bullfrog, Rana catesbeiana and the mosquito, Culex territans in Algonquin Park, Ontario. J. Parasitol. 1995;81:212–222. doi: 10.2307/3283922. [DOI] [PubMed] [Google Scholar]
  • 53.Lainson R., Paperna I., Naiff R.D. Development of Hepatozoon caimani (Carini, 1909) Pessôa, de Biasi & de Souza, 1972 in the Caiman c. Crocodilus, the frog Rana catesbeiana and the mosquito Culex fatigans. Mem. Inst. Oswaldo. Cruz. 2003;98:103–113. doi: 10.1590/s0074-02762003000100014. [DOI] [PubMed] [Google Scholar]
  • 54.Conradie R., Cook C.A., Preez L.H., Jordaan A., Netherlands E.C. Ultrastructural comparison of Hepatozoon ixoxo and Hepatozoon theileri (Adeleorina: Hepatozoidae), parasitising South African anurans. J. Eukaryot. Microbiol. 2017;64:193–203. doi: 10.1111/jeu.12351. [DOI] [PubMed] [Google Scholar]
  • 55.Netherlands E.C., Cook C.A., Du Preez L.H., Vanhove M.P.M., Brendonck L., Smit N.J. Monophyly of the species of Hepatozoon (Adeleorina: Hepatozoidae) parasitizing (African) anurans, with the description of three new species from hyperoliid frogs in South Africa. Parasitology. 2018;145:1039–1050. doi: 10.1017/S003118201700213X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Robin L.A. Cycle évolutif d’un Hepatozoon de Greko verticillatus. Ann. Inst. Pasteur. 1936;56:376–394. [Google Scholar]
  • 57.Garnham P.C.C.C. A haemogregarines in Argas brumpti. Riv. Parasitol. 1954;15:425–435. [Google Scholar]
  • 58.Lewis J.E., Wagner E.D. Hepatozoon sauromali sp. n., a haemogregarines from the Chuckwalla (Sauromalus spp.) with notes on the life history. J. Parasitol. 1964;50:11–14. doi: 10.2307/3276019. [DOI] [Google Scholar]
  • 59.Elwasila M. Haemogregarina sp. (Apicomplexa: Adeleorina) from the gecko Tarentola annularis in the Sudan: Fine structure and life-cycle trials. Parasitol. Res. 1989;75:444–448. doi: 10.1007/BF00930970. [DOI] [PubMed] [Google Scholar]
  • 60.Allison B., Desser S.S. Developmental stages of Hepatozoon lygosomarum (Dore 1919) comb. N. (Protozoa, Haemogregarinidae), a parasite of a new Zealand skink, Leiolopisma nigriplamtare. J. Parasitol. 1981;67:852–858. doi: 10.2307/3280710. [DOI] [Google Scholar]
  • 61.Saratchandra B. Two new haemogregarines, Haemogregarina waltairensis n. sp. from Calotes versicolor (Daudin) and H. ganapatii n. sp. from Lissemys punctata granosa (Shoepff) Proc. Indian Acad. Sci. (Anim. Sci.) 1981;90:365–371. doi: 10.1007/BF03186013. [DOI] [Google Scholar]
  • 62.Bashtar A.-R., Abdel-Ghaffar F., Shazly M.A. Developmental stages of Hepatozoon gracilis (Wenyon, 1909) comb. Nov., a parasite of the Egyptian Skink, Mabuya quinquetaeniata. Parasitol. Res. 1987;73:507–514. doi: 10.1007/BF00535324. [DOI] [Google Scholar]
  • 63.Roca V., Galdón M.A. Haemogregarine blood parasites in the lizards Podarcis bocagei (Seoane) and P. carbonelli (Pérez-Mellado) (Sauria: Lacertidae) from NW Portugal. Syst. Parasitol. 2010;75:75–79. doi: 10.1007/s11230-009-9206-6. [DOI] [PubMed] [Google Scholar]
  • 64.Abdel-Baki A.S., Al-Quraishy S. Morphological characteristics of a new species of Haemogregarina Danilewsky, 1885 (Apicomplexa: Adeleorina) in naturally infected Acanthodactylus boskianus (Daudin) (Sauria: Lacertidae) in Egypt. Syst. Parasitol. 2012;82:65–69. doi: 10.1007/s11230-012-9347-x. [DOI] [PubMed] [Google Scholar]
  • 65.Moreira I.D., Harris D.J., Rosado D., Tavares I., Maia J.P., Salvi D., Perera A. Consequences of haemogregarine infection on the escape distance in the lacertid lizard, Podarcis vaucheri. Acta Herpetol. 2014;9:119–123. [Google Scholar]
  • 66.Rabie S.A.H., Hussein A.-N.A. A description of Haemogregarina species naturally infecting white-spotted gecko (Tarentola annularis) in Qena, Egypt. J. Egypt Soc. Parasitol. 2014;44:351–358. doi: 10.12816/0006473. [DOI] [PubMed] [Google Scholar]
  • 67.Abou Shafeey H., Mohamadain H.S., Abdel-Gaber R., Emara N.M. Haemogregarines infecting reptiles in Egypt: 1- Blood and Merogenic stages of Haemogregarine sp. infecting the skink Scincus scincus. Egypt J. Exp. Biol. (Zool.) 2019;15:127–133. [Google Scholar]
  • 68.Zechmeisterová K., De Bellocq J.G., Široký P. Diversity of Karyolysus and Schellackia from the Iberian lizard Lacerta schreiberi with sequence data from engorged ticks. Parasitology. 2019;146:1690–1698. doi: 10.1017/S0031182019001112. [DOI] [PubMed] [Google Scholar]
  • 69.Ball G.H., Oda S.N. Sexual stages in the life history of the haemogregarines Hepatozoon rarefaciens (Sambon and Seligmann 1907) J. Protozool. 1971;18:697–700. doi: 10.1111/j.1550-7408.1971.tb03399.x. [DOI] [Google Scholar]
  • 70.Ramadan N.F. Ph.D. Thesis. Ain Shams University; Cairo, Egypt: 1974. Morphological, experimental and taxonomic studies on protozoan blood parasite of Egyptian reptiles.220p [Google Scholar]
  • 71.Ball G.H., Chao J., Telford S.R. Hepatozoon fusifex sp. n. a haemogregarine from the Boa constrictor producing marked morphological changes in the infected erythrocytes. J. Parasitol. 1969;55:800–813. doi: 10.2307/3277220. [DOI] [PubMed] [Google Scholar]
  • 72.Bashtar A.R., Boules R., Mehlhorn H. Hepatozoon aegypti nov. sp. 1- Life cycle. Z. Parasitenkd. 1984;70:29–41. doi: 10.1007/BF00929572. [DOI] [Google Scholar]
  • 73.Lowichik A., Lanners H.N., Lowrie R.C., Meiners N.E. Gametogenesis and sporogony of Hepatozoon mocassinin (Apicomplexa: Adeleina: Hepatozoidae) in an experimental mosquito host, Aedes aegypti. J. Eukaryot. Microbiol. 1993;40:287–297. doi: 10.1111/j.1550-7408.1993.tb04918.x. [DOI] [PubMed] [Google Scholar]
  • 74.Abdel-Ghaffar F.A., Bashtar A.R., Shazly M.A. Life cycle of Hepatozoon seurati comb. Nov. 1- Gamogony and sporogony inside the vector, Culex pipiens molestus. J. Egypt Ger. Soc. Zool. 1991;3:211–226. [Google Scholar]
  • 75.Bashtar A.R., Abdel-Ghaffar F.A., Shazly M.A. Life cycle of Hepatozoon mehlhorni sp. nov. in the viper Echis carinatus and the mosquito Culex pipiens. Parasitol. Res. 1991;77:402–410. doi: 10.1007/BF00931635. [DOI] [PubMed] [Google Scholar]
  • 76.Bashtar A.R., Shazly M.A., Ahmed A.K., Fayed H.M. Life cycle of Hepatozoon matruhensis comb. nov. 1- Blood stages and merogony inside the snake Psammophis schokari. J. Egypt Ger. Soc. Zool. 1994;14:117–131. [Google Scholar]
  • 77.Shazly M.A., Ahmed A.K., Bashtar A.R., Fayed H.M. Life cycle of Hepatozoon matruhensis comb. nov. 2. Gamogony and sporogony inside the vector Culex pipiens molestus. J. Egypt Ger. Soc. Zool. 1994;14:323–340. [Google Scholar]
  • 78.Saoud M., Ramadan N., Mohammed S., Fawzi S. On two new haemogregarines (Protozoa: Apicomplexa) from Colubrid and Elapidae snakes in Egypt. Qatar Univ. Sci. J. 1996;16:127–139. [Google Scholar]
  • 79.Sloboda M., Kamler M., Bulantová J., Votýpka J., Modrý D. A new species of Hepatozoon (Apicomplexa: Adeleorina) from Python regius (Serpentes:Pythonidae) and its experimental transmission by a mosquito vector. J. Parasitol. 2007;93:1189–1198. doi: 10.1645/GE-1200R.1. [DOI] [PubMed] [Google Scholar]
  • 80.Al-Farraj S. Light and electron microscopic study on a haemogregarine species infecting the viper Cerastes cerastes gasperitti from Saudi Arabia. Pak. J. Biol. Sci. 2008;11:1414–1421. doi: 10.3923/pjbs.2008.1414.1421. [DOI] [PubMed] [Google Scholar]
  • 81.Sajjadi S.S., Javanbakht H. Study of blood parasites of the three snake species in Iran: Natrix natrix, Natrix tessellate and Zamenis longissimus (Colubridae) J. Genet. Resour. 2017;3:1–6. [Google Scholar]
  • 82.Abdel-Haleem H.M., Mansour L., Holal M., Qasem M.A., Al-Quraishy S., Abdel-Baki A.S. Molecular characterisation of Hepatozoon aegypti Bashtar, Boulos & Mehlhorn, 1984 parasitising the blood of Spalerosophis diadema (Serpentes: Colubridae) Parasitol. Res. 2018;117:3119–3125. doi: 10.1007/s00436-018-6006-4. [DOI] [PubMed] [Google Scholar]
  • 83.Robertson M. Studies on Ceylon haematozoa. II- Notes on the life cycle of Haemogregarina nicoriae. Q. J. Microsc. Sci. 1910;55:741–762. [Google Scholar]
  • 84.Siddall M.E., Desser S.S. Ultrastructure of gametogenesis and sporogony of Haemogregarina (sensu lato) myoxoxephali (Apicomplexa: Adeleina) in the Marine Leech Malmianta scorpii. J. Protozool. 1992;39:545–554. doi: 10.1111/j.1550-7408.1992.tb04849.x. [DOI] [PubMed] [Google Scholar]
  • 85.Michel J.C. Hepatozoon mauritanicum (Et. Et Ed. Sergent, 1904) n. comb., parasite de Testudo graeca: Redescription de la sporogone chez Hyalomma aegyptium et de la schizogonie tissularie d’apres le material d’E. Brump. Ann. Parasitol. Hum. Comp. 1973;48:11–21. doi: 10.1051/parasite/1973481011. [DOI] [PubMed] [Google Scholar]
  • 86.Acholonu A.D. Haemogregarina pseudemydis n sp (Apicomplexa: Haemogregarinidae) and Pirhemocyton chelonarum n. sp. in turtles from Louisiana. J. Protozool. 1947;21:659–664. doi: 10.1111/j.1550-7408.1974.tb03723.x. [DOI] [PubMed] [Google Scholar]
  • 87.Misra K.K. Erythrocytic Schizogony in Haemogregarina gangetica of a River Turtle, Trionyx gangeticus Cuvier. Proc. Zool. Soc. (Calcutta) 1981;32:141–143. [Google Scholar]
  • 88.Chai J.Y., Chen C.H. Six new species of Haemogregarina from chinese turtles. Acta Hydrobiol. Sin. 1990;14:129–137. [Google Scholar]
  • 89.Mihalca A.D., Achelăriţei D., Popescu P. Haemoparasites of the genus Haemogregarina in a population of european pond turtles (Emys orbicularis) from Drăgăşani, Vâlcea county, Romania. Rev. Sci. Parasitol. 2002;3:22–27. [Google Scholar]
  • 90.Paperna I. Hemolivia mauritanica (Haemogregarindae: Apicomplex) infection in the tortoise Testudo graeca in the Near East with data on sporogonous development in the tick vector Hyalomna aegyptium. Parasite. 2006;13:267–273. doi: 10.1051/parasite/2006134267. [DOI] [PubMed] [Google Scholar]
  • 91.Široký P., Mikulíček P., Jandzik D., Kami H., Mihalca A., Rouag R., Kamler M., Schneider C., Zaruba M., Modrý D. Co-distribution pattern of a haemogregarine Hemolivia mauritanica (Apicomplexa: Haemogregarinidae) and its vector Hyalomma aegyptium (Metastigmata: Ixodidae) J. Parasitol. 2009;95:728–733. doi: 10.1645/GE-1842.1. [DOI] [PubMed] [Google Scholar]
  • 92.Telford S.R., Jr., Norton T.M., Moler P.E., Jensen J.B. A new Haemogregarina species of the alligator snapping turtle, Macrochelys temminckii (Testudines: Chelydridae), in Georgia and Florida that produces macromeronts in circulating erythrocytes. J. Parasitol. 2009;95:208–214. doi: 10.1645/GE-1696.1. [DOI] [PubMed] [Google Scholar]
  • 93.Harris D.J., Graciá E., Jorge F., Maia J.P.M.C., Perera A., Carretero M.A., Giménez A. Molecular detection of Hemolivia (Apicomplexa: Haemogregarinidae) from ticks of North African Testudo graeca (Testudines: Testudinidae) and an estimation of their phylogenetic relationships using 18S rRNA sequences. Comp. Parasitol. 2013;80:292–296. doi: 10.1654/4594.1. [DOI] [Google Scholar]
  • 94.Rossow J.A., Hernandez S.M., Sumner S.M., Altman B.R., Crider C.G., Gammage M.B., Segal K.M., Yabsley M.J. Haemogregarine infections of three species of aquatic freshwater turtles from two sites in Costa Rica. Int. J. Parasitol. Parasites Wildl. 2013;2:131–135. doi: 10.1016/j.ijppaw.2013.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Soares P., de Brito E.S., Paiva F., Pavan D., Viana L.A. Haemogregarina spp. in a wild population from Podocnemis unifilis Troschel, 1848 in the Brazilian Amazonia. Parasitol. Res. 2014;113:4499–4503. doi: 10.1007/s00436-014-4139-7. [DOI] [PubMed] [Google Scholar]
  • 96.Molla S.H., Bandyopadhyay P.K., Gürelli G. Description of a new Haemogregarine, Haemogregarina sundarbanensis n. sp. (Apicomplexa: Haemogregarinidae) from Mud Turtle of Sundarban Regions, West Bengal, India. Turkiye. Parazitol. Derg. 2015;39:131–134. doi: 10.5152/tpd.2015.3924. [DOI] [PubMed] [Google Scholar]
  • 97.Picelli A.M., Carvalho A.V., Viana L.A., Malvasio A. Prevalence and parasitemia of Haemogregarina sp. in Podocnemis expansa (Testudines: Podocnemididae) from the Brazilian Amazon. Rev. Bras. Parasitol. Vet. 2015;24:191–197. doi: 10.1590/S1984-29612015033. [DOI] [PubMed] [Google Scholar]
  • 98.Arizza V., Sacco F., Russo D., Scardino R., Arculeo M., Vamberger M., Marrone F. The good, the bad, and the ugly: Emys trinacris, Placobdella costata and Haemogregarina stepanowi in Sicily (Testudines, Annelida and Apicomplexa) Folia Parasit. 2016;63:029. doi: 10.14411/fp.2016.029. [DOI] [PubMed] [Google Scholar]
  • 99.Rakhshandehroo E., Sharifiyazdi H., Ahmadi A. Morphological and molecular characterisation of Haemogregarina sp. (Apicomplexa: Adeleina: Haemogregarinidae) from the blood of the Caspian freshwater turtle Mauremys caspica (Gmelin) (Geoemydidae) in Iran. Syst. Parasitol. 2016;93:517–524. doi: 10.1007/s11230-016-9643-y. [DOI] [PubMed] [Google Scholar]
  • 100.Alhaboubi A.R., Pollard D.A., Holman P.J. Molecular and morphological characterization of a haemogregarine in the alligator snapping turtle, Macrochelys temminckii (Testudines: Chelydridae) J. Parasitol. 2017;116:207–215. doi: 10.1007/s00436-016-5280-2. [DOI] [PubMed] [Google Scholar]
  • 101.Goes V.C., Brito E.S., Valadao R.M., Gutierrez C.O., Picelli A.M., Viana L.A. Haemogregarine (Apicomplexa: Adeleorina) infection in Vanderhaege’s toadheaded turtle, Mesoclemmys vanderhaegei (Chelidae), from a Brazilian Neotropical savanna region. Folia Parasitol. 2018;65:012. doi: 10.14411/fp.2018.012. [DOI] [PubMed] [Google Scholar]
  • 102.Úngari L.P., Santos A.L.Q., O’Dwyer L.H., da Silva M.R.L., Santos T.C.R., da Cunha M.J.R., de Melo Costa Pinto R., Cury M.C. Molecular characterization and identification of Hepatozoon species Miller, 1908 (Apicomplexa: Adeleina: Hepatozoidae) in captive snakes from Brazil. Parasitol. Res. 2018;117:3857–3865. doi: 10.1007/s00436-018-6092-3. [DOI] [PubMed] [Google Scholar]
  • 103.Börner C. Untersuchungen über Hämospridien. I-Ein Beitrag zur kenntnis des genus Haemogregarina Danilewsky. Z. Wiss. Zool. Abt. A. 1901;69:398–416. [Google Scholar]
  • 104.Pessôa S.B., De Biasi P. Nota taxonomica sobre cistos esporôgônicos de algumas espécies de Hepatozoon (Sporozoa, Haemogregarinidae) parasites de serpents brasileiras. Mem. Inst. Butantan (Sâo Paulo) 1973;37:299–307. [Google Scholar]
  • 105.Hoare C.A. On protozoal blood parasites collected in Uganda with an account of the life cycle of the croccdile haemogregarines. Parasitology. 1932;24:210–224. doi: 10.1017/S0031182000020564. [DOI] [Google Scholar]
  • 106.Viana L.A., Marques E.J. Haemogregarine parasites (Apicomplexa: Hepatozoidae) in Caiman crocodilus yacare (Crocodilia: Alligatoridae) from Pantanal, Corumba, MS, Brazil. Rev. Bras. Parasitol. Vet. 2005;14:173–175. [PubMed] [Google Scholar]
  • 107.Viana L.A., Paiva F., Coutinho M.E., Lourenço-de-Oliveira R. Hepatozoon caimani (Apicomplexa: Hepatozoidae) in Wild Caiman, Caiman yacare, from the Pantanal region, Brazil. J. Parasitol. 2010;96:83–88. doi: 10.1645/GE-2150.1. [DOI] [PubMed] [Google Scholar]
  • 108.Bennett G.F., Earle R.A., Penzhorn B. Ornithodoros peringueyi (Argasidae) and Xenopsylla trispinis (Siphonaptera), probable intermediate hosts of Hepatozzon atticoare of the South African Cliff swallow, Hirundo spilodera. Can. J. Zool. 1992;70:188–190. doi: 10.1139/z92-028. [DOI] [Google Scholar]
  • 109.Bennett G.F., Earle R.A. New species of Haemoproteus, Hepatozoon and Leucocytozoon from South African birds. S. Afr. J. Wildl. Res. 1992;22:114–118. [Google Scholar]
  • 110.Desser S.S. Tissue “Cyst” of Hepatozoon griseisciuri in the Grey Squirrel, Sciurus carolinensis: The significance of these cysts in species of Hepatozoon. J. Parasitol. 1990;76:257–259. doi: 10.2307/3283027. [DOI] [PubMed] [Google Scholar]
  • 111.Göbel E., Krampitz H.E. Histologische Untersuchungean zur Gamogonie und Sporogonie von Hepatozoon erhardovae in experimental infizierten rattenflohen (Xenopsylla cheopis) Z. Parasitenkd. 1982;67:261–271. doi: 10.1007/BF00927661. [DOI] [PubMed] [Google Scholar]
  • 112.Frank C. Über die Bedeutung von Laelaps agilis CL Koch 1836 (Mosostigmata: Parasitiformae) fur die Ubertragung von Hepatozoon sylvatici Coles 1914 (Sporozoa: Haemogregarinidae) Z. Parasitenkd. 1977;53:307–310. doi: 10.1007/BF00389948. [DOI] [PubMed] [Google Scholar]
  • 113.Forlano M.D., Teixeira K.R.S., Scolfield A., Elisei C., Yotoko K.S.C., Fernandes K.R., Linhares G.F.C., Ewing S.A., Massard C.L. Molecular characterization of Hepatozoon sp. from Brazilian dogs and its phylogenetic relationship with other Hepatozoon spp. Vet. Parasitol. 2007;145:21–30. doi: 10.1016/j.vetpar.2006.10.023. [DOI] [PubMed] [Google Scholar]
  • 114.Otranto D., Dantas-Torres F., Weigl S., Latrofa M.S., Stanneck D., Decaprariis D., Capelli G., Baneth G. Diagnosis of Hepatozoon canis in young dogs by cytology and PCR. Parasite. Vector. 2011;4:55. doi: 10.1186/1756-3305-4-55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Baneth G., Sheiner A., Eyal O., Hahn S., Beaufils J.P., Anug Y., Talmi-Frank D. Redescription of Hepatozoon felis (Apicomplexa: Hepatozoidae) based on phylogenetic analysis, tissue and blood form morphology, and possible transplacental transmission. Parasite. Vector. 2013;6:102. doi: 10.1186/1756-3305-6-102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Ramos C.A.N., Babo-Terra V.J., Pedroso T.C., Filho A.F.S., Araújo F.R., Cleveland H.P.K. Molecular identification of Hepatozoon canis in dogs from Campo Grande, Mato Grosso do Sul, Brazil. Braz. J. Vet. Parasitol. Jaboticabal. 2015;24:247–250. doi: 10.1590/S1984-29612015019. [DOI] [PubMed] [Google Scholar]
  • 117.Paiz L.M., Silva R.C., Satake F., Fraga T.L. Hematological disorders detected in dogs infected by Hepatozoon canis in a municipality in Mato Grosso do Sul State, Brazil. Arq. Bras. Med. Vet. Zootec. 2016;68:1187–1194. doi: 10.1590/1678-4162-8350. [DOI] [Google Scholar]
  • 118.De Sousa K.C.M., Fernandes M.P., Herrera H.M., Benevenute J.L., Santos F.M., Rocha F.L., Barreto W.T.G., Macedo G.C., Campos J.B., Martins T.F., et al. Molecular detection of Hepatozoon spp. in domestic dogs and wild mammals in southern Pantanal, Brazil with implications in the transmission route. Vet. Parasitol. 2017;237:37–46. doi: 10.1016/j.vetpar.2017.02.023. [DOI] [PubMed] [Google Scholar]
  • 119.Bhusri B., Sariya L., Mongkolphan C., Suksai P., Kaewchot S., Changbunjong T. Molecular characterization of Hepatozoon felis in Rhipicephalus sanguineus ticks infested on captive lions (Panthera leo) J. Parasit. Dis. 2017;41:903–907. doi: 10.1007/s12639-017-0902-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Mitkova B., Hrazdilova K., Novotna M., Jurankova J., Hofmannova L., Forejtek P., Modry D. Autochthonous Babesia canis, Hepatozoon canis and imported Babesia gibsoni infection in dogs in the Czech Republic. Vet. Med. 2017;62:138–146. doi: 10.17221/152/2016-VETMED. [DOI] [Google Scholar]
  • 121.Barati A., Razmi G.R. A parasitologic and molecular survey of Hepatozoon canis infection in stray dogs in northeastern Iran. J. Parasitol. 2018;104:413–417. doi: 10.1645/17-105. [DOI] [PubMed] [Google Scholar]
  • 122.Tuna G.E., Bakırcı S., Dinler C., Battal G., Ulutaş B. Molecular Identification and Clinicopathological Findings of Hepatozoon sp. Infection in a Cat: First Report from Turkey. Turkiye Parazitol. Derg. 2018;42:286–289. doi: 10.5152/tpd.2018.5886. [DOI] [PubMed] [Google Scholar]
  • 123.Attipa C., Maguire D., Solano-Gallego L., Szladovits B., Barker E.N., Farr A., Baneth G., Tasker S. Hepatozoon canis in three imported dogs: A new tickborne disease reaching the United Kingdom. Vet. Rec. 2018;183:716. doi: 10.1136/vr.105087. [DOI] [PubMed] [Google Scholar]
  • 124.Harris D.J., Sergiadou D., Halajian A., Swanepoel L., Roux F. Molecular screening indictes high prevalence and mixed infections of Hepatozoon parasites in wild felines from South Africa. J. S. Afr. Vet. Assoc. 2020;91:a2055. doi: 10.4102/jsava.v91i0.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Van As M., Netherlands E.C., Smit N.J. Molecular characterization and morphological description of two new species of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina: Hepatozoidae) infecting leukocytes of African leopards Panthera pardus pardus (L.) Parasite. Vector. 2020;13:222. doi: 10.1186/s13071-020-3933-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Baticados A.M., Baticados W.N., Carlos E.T., Carlos S.M., Villarba L.A., Subiaga S.G., Magcalas J.M. Parasitological detection and molecular evidence of Hepatozoon canis from canines in Manila, Philippines. Vet. Med. Res. Rep. 2011;1:7–10. doi: 10.2147/VMRR.S16529. [DOI] [Google Scholar]
  • 127.Bray R.S. A check-list of the parasitic protozoa of West Africa with some notes on their classification. Bull. Inst. Fr. Afr. Noire. 1964;26:238–315. [Google Scholar]
  • 128.Yanai T., Tomita A., Masegi T., Ishikawa K., Iwasaki T., Yamazoe K., Ueda K. Histopathologic features of naturally occurring hepatozoonosis in wild martens (Martes melampus) in Japan. J. Wildl. Dis. 1996;31:233–237. doi: 10.7589/0090-3558-31.2.233. [DOI] [PubMed] [Google Scholar]
  • 129.Saoud M.F.A., Ramadan N.F., Mohammed S.H., Fawzi S.M. Haemogregarines of geckos in Egypt, together with a description of Haemogregarina helmymohammedi n. sp. Qatar Univ. Sci. J. 1995;15:131–146. [Google Scholar]
  • 130.Smith T.G., Desser S.S. Ultrastructural features of cystic and merogonic stages of Hepatozoon sipedon (Apicomplexa: Adeleorina) in northern leopard frogs (Rana pipiens) and northern water snakes (Narodia sipedon) from Ontario, Canada. J. Eukaryot. Microbiol. 1998;45:419–425. doi: 10.1111/j.1550-7408.1998.tb05093.x. [DOI] [PubMed] [Google Scholar]
  • 131.Nadler S.A., Miller J.H. A redescription of Hepatozoon mocassini (Laveran, 1902) n. comb. from Agkistrodon piscivorus leucostoma Troost 1836. J. Protozool. 1984;31:321–324. doi: 10.1111/j.1550-7408.1984.tb02970.x. [DOI] [Google Scholar]
  • 132.Abdel-Baki A.S., Mansour L., Al-Malki E.S., Al-Quraishy S., Abdel-Halim H.M. Morphometric and molecular characterisation of Hepatozoon bashtari n. sp. in painted saw-scaled viper, Echis coloratus (Ophidia, Viperidae) Parasitol. Res. 2020;119:3793–3801. doi: 10.1007/s00436-020-06886-y. [DOI] [PubMed] [Google Scholar]
  • 133.Hussein A.N.A. Light and transmission electron microscopic studies of a haemogregarine in naturally infected fan-footed gecko (Ptyodactylus hasselquistii ) Parasitol. Res. 2006;98:468–471. doi: 10.1007/s00436-005-0084-9. [DOI] [PubMed] [Google Scholar]
  • 134.Reichenow E. Karyolysus lacerate, ein wirtwechselndes Coccidium der Eidechse Laverta muralis und der Milbe Liponyssus saurarum. Arb. Gesundh. Amt. Berl. 1913;45:317–363. [Google Scholar]
  • 135.Honigberg B.M., Chairman of Committee A revised classification of the phylum Protozoa. J. Protozool. 1964;11:7–20. doi: 10.1111/j.1550-7408.1964.tb01715.x. [DOI] [PubMed] [Google Scholar]
  • 136.Rubini D.S., Paduan K.S., Perez R.R., Ribolla P.E.M., O’Dwyer L.H. Molecular characterization of feline Hepatozoon species from Brazil. Vet. Parasitol. 2006;137:168–171. doi: 10.1016/j.vetpar.2005.12.008. [DOI] [PubMed] [Google Scholar]
  • 137.Ortuño A., Castella J., Criado-Fornelio A., Buling A., Barba-Carretero J.C. Molecular detection of a Hepatozoon species in stray cats from a feline colony in North-eastern Spain. Vet. J. 2008;177:134–135. doi: 10.1016/j.tvjl.2007.04.009. [DOI] [PubMed] [Google Scholar]
  • 138.Vilcins I.E., Ujvari B., Old J.M., Deane E. Molecular and morphological description of a Hepatozoon species in reptiles and their ticks in the Northern Territory, Australia. J. Parasitol. 2009;95:434–442. doi: 10.1645/GE-1725.1. [DOI] [PubMed] [Google Scholar]
  • 139.Maia J.P.M.C., Perera A., Harris D.J. Molecular survey and microscopic examination of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) in lacertid lizards from the western Mediterranean. Folia Parasitol. 2012;59:241–248. doi: 10.14411/fp.2012.033. [DOI] [PubMed] [Google Scholar]
  • 140.Tomé B.M., Maia J.P.M.C., Harris D.J. Molecular assessment of apicomplexan parasites in the snake Psammophis from north Africa: Do multiple parasite lineages reflect the final vertebrate host diet? J. Parasitol. 2013;99:883–887. doi: 10.1645/12-95.1. [DOI] [PubMed] [Google Scholar]
  • 141.Xavier R., Severino R., Pérez-Losada M., Gestal C., Freitas R., Harris D.J., Verissino A., Rosado D., Cable J. Phylogenetic analysis of apicomplexan parasites infecting commercially valuable species from the North-East Atlantic reveals high levels of diversity and insights into the evolution of the group. Parasite. Vector. 2018;11:63. doi: 10.1186/s13071-018-2645-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Waeschenbach A., Webster B.L., Bray R.A., Littlewood D.T.J. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Mol. Phylogenet. Evol. 2007;45:311–325. doi: 10.1016/j.ympev.2007.03.019. [DOI] [PubMed] [Google Scholar]
  • 143.Ahmad A.S., Saeed M.A., Rashid I., Ashraf K., Shehzad W., Traub R.J., Baneth G., Jabbar A. Molecular characterization of Hepatozoon canis from farm dogs in Pakistan. Parasitol. Res. 2018;117:1131–1138. doi: 10.1007/s00436-018-5790-1. [DOI] [PubMed] [Google Scholar]
  • 144.Hayes P.M., Smit N.J. Molecular insights into the identification and phylogenetics of the cosmopolitan marine fish blood parasite, Haemogregarina bigemina (Adeleorina: Haemogregarinidae) Int. J. Parasitol. Parasites. Wildl. 2019;8:216–220. doi: 10.1016/j.ijppaw.2019.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Nordmeyer S.C., Henry G., Guerra T., Rodriquez D., Forstner M.R.J., Hahn D. Identification of blood parasites in individuals fromsix families of freshwater turtles. Chelonian Conserv. Biol. 2020;19:85–94. doi: 10.2744/CCB-1411.1. [DOI] [Google Scholar]
  • 146.Mathew J.S., Van Den Bussche R.A., Ewing S.A. Phylogenetic relationships of Hepatozoon (Apicomplexa Adeleorina) based on molecular, morphologic, and life-cycle characters. J. Parasitol. 2000;86:366–372. doi: 10.1645/0022-3395(2000)086[0366:PROHAA]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 147.Perkins S.L., Keller A.K. Phylogeny of nuclear small subunit rRNA genes of haemogregarines amplified with specific primers. J. Parasitol. 2001;87:870–876. doi: 10.1645/0022-3395(2001)087[0870:PONSSR]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 148.Inokuma H., Okuda M., Ohno K., Shimoda K., Onishi T. Analysis of the 18S rRNA gene sequence of a Hepatozoon detected in two Japanese dogs. Vet. Parasitol. 2002;106:265–271. doi: 10.1016/S0304-4017(02)00065-1. [DOI] [PubMed] [Google Scholar]
  • 149.Criado-Fornelio A., Buling A., Cunha-Filho N.A., Ruas J.L., Farias N.A., Rey-Valeiron C., Pingret J.L., Etievant M., Barba-Carretero M.J.C. Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp. Vet. Parasitol. 2007;150:352–356. doi: 10.1016/j.vetpar.2007.09.025. [DOI] [PubMed] [Google Scholar]
  • 150.Tabar M.D., Altet L., Francino O., Sánchez A., Ferrer L., Roura X. Vector-borne infections in cats: Molecular study in Barcelona area (Spain) Vet. Parasitol. 2008;151:332–336. doi: 10.1016/j.vetpar.2007.10.019. [DOI] [PubMed] [Google Scholar]
  • 151.Kledmanee K., Suwanpakdee S., Krajangwong S., Chatsiriwech J., Suksai P., Suwannachat P., Sariya L., Buddhirongawatr R., Charoonrut P., Chaichoun K. Development of multiplex polymerase chain reaction for detection of Ehrlichia canis, Babesia spp. and Hepatozoon canis in canine blood. Southeast Asian J. Trop. Med. Public Health. 2009;40:35–39. [PubMed] [Google Scholar]
  • 152.Zintl A., Finnerty E.J., Murphy T.M., De Waal T., Gray J.S. Babesias of red deer (Cervus elaphus) in Ireland. Vet. Res. 2011;42:7. doi: 10.1186/1297-9716-42-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Hodžić A., Alić A., Fuehrer H.P., Harl J., Wille-Piazzai W., Duscher G.G. A molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasite. Vector. 2015;8:88. doi: 10.1186/s13071-015-0692-x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All data generated or analysed during this study are included in this published article.


Articles from Animals : an Open Access Journal from MDPI are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES