To date, three coronaviruses have caused major human outbreaks in the 21st century. In 2002–2003, SARS-CoV (the severe acute respiratory syndrome-associated coronavirus) caused 8447 reported SARS cases and 813 deaths, with a case fatality rate of ∼10% (Park, 2020, Cleri et al., 2010, Lin et al., 2006, Satija and Lal, 2007). MERS-CoV (the Middle East respiratory syndrome coronavirus) was first reported in 2012 in Saudi Arabia, caused several outbreaks in Middle Eastern countries and South Korea (Cui et al., 2019, da Costa et al., 2020, Majumder et al., 2017, Kim et al., 2017, Ramadan and Shaib, 2019, Killerby et al., 2020), and had a case fatality rate of 25–40% (Majumder et al., 2014, Al Awaidy and Khamis, 2019, Mobaraki and Ahmadzadeh, 2019). Recently, SARS-CoV-2, the etiologic agent of COVID-19, which was declared a pandemic on March 11, 2020 (Park, 2020), was reported in late 2019 (Yang et al., 2020a). As of August 27, 2020, COVID-19 caused >24,300,000 cases and >830,000 deaths worldwide (Medicine JHUSo, 2020). SARS-CoV-2 and SARS-Co-V share 79% identity at the genomic level (Lu et al., 2020), and the surface glycoprotein S, which mediates cellular entry, is 76% identical at the amino acid level between the two (Ou et al., 2020, Walls et al., 2020).
SARS-CoV and SARS-CoV-2 bind ACE2 (Walls et al., 2020, Hoffmann et al., 2020), which is also the cellular receptor for a third human respiratory coronavirus, HCoV-NL63 (Jia et al., 2005, Hofmann et al., 2005). HCoV-NL63 was first identified in a 7-month-old baby with bronchiolitis and conjunctivitis in early 2004 (van der Hoek et al., 2004) and linked to common colds in children, the elderly, and immunocompromised individuals (Fielding, 2011). HCoV-NL63 is distributed worldwide (Abdul-Rasool and Fielding, 2010), occurs seasonally (Milewska et al., 2018), and usually causes mild upper or lower respiratory infections (Abdul-Rasool and Fielding, 2010, Wang et al., 2020), but was occasionally linked to severe infection or death (Konca et al., 2017, Mayer et al., 2016, Oosterhof et al., 2010).
Biophysical assays indicate that SARS-CoV-2 binds ACE2 with a 10−20-fold higher affinity than SARS-CoV (Wrapp et al., 2020). X-ray crystallography showed that while the SARS-CoV receptor-binding motif has a sharp turn three-residue Pro-Pro-Ala motif, the receptor-binding region of SARS-CoV-2 has a four-residue Gly-Val-Glu-Gly motif that forms additional hydrogen bonds and establishes closer contact with ACE2 (Shang et al., 2020, Lanza et al., 2020).
ACE2 is differentiated from other viral receptors in that it interfaces with a major endocrine vasoactive signaling pathway, the renin-angiotensin-aldosterone system (RAAS). RAAS is a vital hormonal mechanism that controls sodium-potassium balance, hemodynamic stability, and blood pressure (Muñoz-Durango et al., 2016, Chamsi-Pasha et al., 2014), regulates neural, cardiovascular, and renal function (Li et al., 2017a), and is involved in tissue remodeling (Kaparianos and Argyropoulou, 2011, Ames et al., 2019) and immune homeostasis (Crowley and Rudemiller, 2017, Rudemiller and Crowley, 2016).
Angiotensinogen, produced primarily by the liver, is cleaved by renin, which is generated by the renal juxtaglomerular apparatus to form the inactive decapeptide angiotensin I (Ang I) (Dalan et al., 2020). Angiotensin-converting enzyme (ACE), mostly synthesized in the lungs (Xiao et al., 2020), cleaves Ang I to form the octapeptide angiotensin II (Ang II) (Perlot and Penninger, 2013, Oudit et al., 2003). Angiotensin II acts via two G-protein-coupled receptors, Ang II receptor type 1 receptor (AT1R) and Ang II receptor type 2 receptor (AT2R) (Kuba et al., 2010). Ang II binds with a high and equal affinity to AT1R and AT2R (Chow and Allen, 2016). The two receptors differ in tissue distribution, the signaling pathways they activate, and their effects (Chow and Allen, 2016, Juillerat-Jeanneret, 2020, Abadir, 2011). Most of the Ang II cardiovascular effects occur through AT1R; AT2R is less well understood (Abadir, 2011, Ichiki, 2013). Ang II mediates aldosterone release from the adrenal gland, which results in sodium retention and increased blood pressure through AT1R (Dalan et al., 2020). Ang II has additional effects that include vasoconstriction (Vukelic and Griendling, 2014, Benigni et al., 2010, Hubloue et al., 2004), fibrosis (Chamsi-Pasha et al., 2014, Hamming et al., 2007, Marshall et al., 2004, Williams, 2001), endothelial dysfunction (Gomolak and Didion, 2014), inflammation (Gomolak and Didion, 2014), and increased coagulation (Senchenkova et al., 2010, Verdecchia et al., 2020).
The discovery of human ACE2 in 2000 by two independent genomics-based approaches (Tipnis et al., 2000, Donoghue et al., 2000) unveiled the existence of a counter-regulatory arm of the RAAS (Wang et al., 2012). Even though both ACE and ACE2 are members of the RAAS (Danilczyk et al., 2003, Simoes and Teixeira, 2016), they have distinct substrate specificities (Mendoza-Torres et al., 2015, Kuba et al., 2006). Evolutionarily, ACE2 is a chimeric protein (Perlot and Penninger, 2013). Its amino-terminal region harbors a metalloprotease catalytic domain that has a 42% identity with the metalloprotease catalytic domain of ACE (Donoghue et al., 2000). Its carboxy-terminal region has a nearly 48% identity with human collectrin (Zhang et al., 2001). While ACE is located on human chromosome 17, ACE2 is on the X chromosome, possibly explaining some of the gender differences in the physiology of the RAAS (Oudit et al., 2003).
A key role for ACE2 is to convert the octapeptide Ang II into the heptapeptide angiotensin-(1-7) ((Ang-(1-7)) (Turner et al., 2004). ACE2 also cleaves a single residue from Ang I to generate angiotensin-(1-9) ((Ang-(1-9)) (Tipnis et al., 2000, Donoghue et al., 2000), but its affinity for Ang II is 400-fold higher (Lazartigues et al., 2007). Ang-(1-7) binds to the Mas receptor (Santos et al., 2003) and negatively regulates the RAAS (Kuba et al., 2010) causing vasodilation, cell growth inhibition (Lazartigues et al., 2007), and exerting anti-proliferative (Wang et al., 2012), anti-thrombotic (Fraga-Silva et al., 2008, Fraga-Silva et al., 2010), and anti-arrhythmogenic effects (Simões e Silva et al., 2013). Thus, the ACE2/Ang-(1-7)/Mas axis, as a negative regulator of the RAAS, opposes the ACE/Ang II/AT1R axis (Perlot and Penninger, 2013).
After its discovery, ACE2 was thought to have a narrow tissue distribution (Lazartigues et al., 2007), but subsequent studies documented its wide presence across many cell types (Borriello and Ianniello, 2020). This is another characteristic that makes ACE2 unique among viral receptors. ACE2 is present in type II alveolar cells (Xu et al., 2020) and alveolar macrophages (Magrone et al., 2020, Kai and Kai, 2020), salivary glands (Song et al., 2020), the conjunctiva (Zhang et al., 2020), the gastrointestinal tract (Wong et al., 2020), neurons, glial cells (Zhou et al., 2020, Bostanciklioglu, 2020), adipose tissue (Gheblawi et al., 2020), arterial and venous endothelial cells (Hamming et al., 2004), arterial smooth muscle cells (Hamming et al., 2004), cells in the heart, kidney, liver, (Patel et al., 2014), uterus, vagina (Jing et al., 2020), and the mucosa of the oral cavity (Xu et al., 2020). In addition, several endocrine organs express ACE2, including cells of the pancreas (Liu et al., 2020), thyroid (Li et al., 2020a), testis (Pal and Banerjee, 2020, Leal et al., 2009), ovary (Reis et al., 2011, Pan et al., 2013), adrenal glands (Li et al., 2020a), pituitary (Wang et al., 2017, Alenina and Bader, 2019), and the human placenta (Valdés et al., 2006).
ACE2 levels change in obesity, diabetes, heart disease, hypertension, and kidney and lung disease, which is another differentiating characteristic of this viral receptor (Hamming et al., 2007, Gheblawi et al., 2020, Sriramula et al., 2011, Úri et al., 2016, Moon, 2011). It has been debated whether this relationship is causative or compensatory (Ingraham et al., 2020, Chu and Leung, 2009, Koka et al., 2008, Shi et al., 2010). ACE2 is upregulated in the adipocytes of individuals with type 2 diabetes mellitus and obesity (Kruglikov and Scherer, 2020) and in several animal models of obesity (Patel et al., 2016a, Patel et al., 2016b, Gupte et al., 2008). Acute hyperglycemia upregulates, and chronic hyperglycemia downregulates ACE2 (Bornstein et al., 2020). ACE2 expression also changes in malignancies (Fu et al., 2020, Yang et al., 2020b), a finding that has implications for assessing the risk of severe COVID-19 in cancer patients (Dai et al., 2020, Chai et al., 2020, Yamaguchi et al., 2017). Obesity, diabetes, and hypertension were recognized early during the COVID-19 pandemic among the conditions that increase the risk of severe disease and complications (Pan et al., 2020, Huang et al., 2020, Lippi et al., 2020, Singh et al., 2020, Caussy et al., 2020, Dietz and Santos-Burgoa, 2020, Kassir, 2020). For example, in a retrospective cohort study of obese patients admitted to intensive care, COVID-19 severity increased with BMI (Simonnet et al., 2020). Other conditions that increase COVID-19 severity include chronic respiratory diseases and cancer (Puig-Domingo et al., 2020, Ofori-Asenso et al., 2020). Some of the same comorbidities were identified during the MERS (Hajjar et al., 2013, Kulcsar et al., 2019, Alqahtani et al., 2018, Assiri et al., 2013) and SARS (Chan-Yeung and Xu, 2003, Yang et al., 2006, Chan et al., 2003, Gu and Korteweg, 2007) outbreaks as risk factors for more severe coronavirus disease.
By increasing viral internalization, ACE2 upregulation may enhance the viral load and increase disease severity. At the same time, ACE2 is protective in experimental models of lung failure (Kuba et al., 2006), and its downregulation accelerates tissue-specific pathologies. In a mouse model of acute respiratory distress syndrome, Ace2 deficiency worsened acute lung injury, increased vascular permeability, caused edema and inflammatory infiltrates, and impaired lung function. ACE deficiency on this genetic background, or treatment with exogenous ACE2 protein, markedly protected from acute lung injury (Imai et al., 2005). SARS-CoV and the SARS-CoV spike protein downregulated ACE2 lung expression without changing ACE levels, indicating that the infected wild-type mice resemble ace2 knockout mice (Kuba et al., 2005). It appears that during SARS-CoV or SARS-CoV-2 infection, ACE2 downregulation decreases signaling through the ACE2-angiotensin-(1-7)-Mas receptor (Verdecchia et al., 2020, Kai and Kai, 2020, Li et al., 2020b) and amplifies signaling through the ACE-angiotensin II-AT1R receptor axis (Kai and Kai, 2020, Deshotels et al., 2014). Ang II is known to increase IL-6 expression in a dose-dependent manner (Funakoshi et al., 1999, Senchenkova et al., 2019, Skurk et al., 2004). The other two axes activated by ACE2 downregulation are the ACE2/DABK/bradykinin/B1R axis and the complement signaling pathways (Mahmudpour et al., 2020). ACE2 cleaves a terminal residue in des-Arg9 bradykinin (DABK) (Sodhi et al., 2018), an inflammatory factor in the lung, leading to its inactivation. Reduced ACE2 activity would, therefore, cause increased DABK activity and inflammation (Mahmudpour et al., 2020).
A feature that is shared by several medical conditions that increase COVID-19 severity is the presence of low-grade systemic inflammation (Chiappetta et al., 2020, Zabetakis et al., 2020, Ciornei, 2020). In several studies, elevated IL-6 was associated with increased COVID-19 severity or case fatality rate (Chen et al., 2020, Ulhaq and Soraya, 2020, Aziz et al., 2020). Obesity is an established cause of low-grade systemic inflammation (Ellulu et al., 2017, Xu, 2013, O’Rourke, 2009, Calder et al., 2011), which contributes to a heightened risk of several chronic degenerative diseases, including hypertension (Chamarthi et al., 2011), cardiovascular disease (Lopez-Candales et al., 2017, Guarner and Rubio-Ruiz, 2015, Moore, 2019), and diabetes (Qu et al., 2014, Akbari and Hassan-Zadeh, 2018, Pitsavos et al., 2007).
Another observation about patient groups at risk for severe COVID-19 is the presence of underlying medical conditions characterized by endothelial dysfunction. A consequence of inflammation (Castellon and Bogdanova, 2016, Steyers and Miller, 2014, Huang and Vita, 2006, Daiber et al., 2017), endothelial dysfunction also promotes and maintains inflammation (Hadi et al., 2005, Sun et al., 2019) and was described in aging (Higashi et al., 2012) and chronic degenerative conditions such as diabetes mellitus (Shi and Vanhoutte, 2017, Kaur et al., 2018), hypertension (Higashi et al., 2012, Ghiadoni et al., 2012, Bernatova, 2014), and obesity (Engin, 2017, Virdis et al., 2019, Bhatta et al., 2017). Other viruses that cause endothelial activation include Ebola and Marburg viruses, dengue virus, hantaviruses, and influenza A virus (Spiropoulou and Srikiatkhachorn, 2013, Armstrong et al., 2013). ACE2 protects endothelial function (Li et al., 2017b, Li et al., 2013, Paz Ocaranza et al., 2020) and exerts anti-inflammatory effects (Zhang et al., 2015, Rodrigues Prestes et al., 2017), and ACE2/ACE imbalances accelerate endothelial dysfunction and worsen the progression of vascular disease (Tikellis and Thomas, 2012, Olkowicz et al., 2015). With a surface comparable to that of six tennis courts, and a total length of ∼100,000 km, or ∼2.5 times the Earth circumference (Higashi et al., 2012, Higashi et al., 2009), the human vascular endothelium is a large (Higashi et al., 2012, Anggård, 1990, Talman and Kivelä, 2018), diffuse (Anggård, 1990, Henderson and Henderson, 1995, Krüger-Genge et al., 2019), and very active (Baumgartner-Parzer and Waldhäusl, 2001) endocrine organ. Vascular endothelium activation and damage occur as part of COVID-19 (Varga et al., 2020, De Lorenzo et al., 2020, Escher et al., 2020, Huertas et al., 2020), resulting in a microvascular injury syndrome that may create a procoagulant state (Magro et al., 2020, O’Sullivan et al., 2020) and explain the systemic nature of the disease.
ACE2-Ang-(1-7)-Mas signaling induces antithrombotic effects (Verdecchia et al., 2020, Fraga-Silva et al., 2010) as a result of the Mas-mediated nitric oxide release from platelets (Fraga-Silva et al., 2008, Fang et al., 2013). ACE2 down-regulation in COVID-19 (Kai and Kai, 2020, Kuba et al., 2005, Vaduganathan et al., 2020), induced by internalization of the virus-receptor complex, could be particularly detrimental in individuals with already existing ACE2 deficiency and further dysregulate the balance between the ACE-Ang II-AT1R and the ACE2-Ang-(1-7)-Mas axes (Verdecchia et al., 2020). It was proposed that two hits to the RAAS could drive COVID-19 progression. The first one is the chronic inflammation that activates the ACE-Ang II axis, and the second one is the viral infection, which inactivates the ACE2-Ang-(1,7) axis (Tseng et al., 2020). This imbalance may explain the systemic coagulation and thrombotic events reported in COVID-19 patients (Middeldorp et al., 2020). The cumulative incidence of thrombotic complications in patients with COVID-19 in intensive care units reached 31–49% in one study, even among those who received pharmacological thromboprophylaxis (Klok et al., 2020a, Klok et al., 2020b). In another study that examined consecutive patients who died of COVID-19, 58% had deep venous thrombosis (Wichmann et al., 2020). Studies of pregnant women with COVID-19 documented an increased prevalence of decidual arteriopathy (Shanes et al., 2020) and fetal vascular thrombosis (Baergen and Heller, 2020).
SARS-CoV-2 binding to a cellular receptor that belongs to an endocrine signaling pathway, and the subsequent dysregulation in inflammation (Henry et al., 2020, Mehta et al., 2020, Kadkhoda, 2020), endothelial function (Bermejo-Martin et al., 2020), and coagulation (Henry et al., 2020), define the framework that underlies COVID-19 pathogenesis. Not only does SARS-CoV-2 affect all three of these domains by inducing an inflammatory cytokine storm (Mehta et al., 2020, Ye et al., 2020, Sun et al., 2020), multiorgan endothelial dysfunction (Varga et al., 2020), and thrombotic complications (Giannis et al., 2020, Frydman et al., 2020, Vivas et al., 2020), but perturbations in these three major axes are also intimately interconnected. For example, chronic inflammation may result in endothelial dysfunction (Castellon and Bogdanova, 2016) and thrombotic events (Aksu et al., 2012, Branchford and Carpenter, 2018, Prasad et al., 2016), endothelial dysfunction promotes thrombosis (Yau et al., 2015), and acute thrombosis can accelerate endothelial dysfunction (Kashyap et al., 2001). An acute need in the wake of the current pandemic is to better understand the physiological interconnectedness among these three major pathways, interrogate their relative contribution to pathogenesis, and unveil the manner and the extent to which SARS-CoV-2 individually modulates each of them. This will provide a valuable set of tools indispensable for understanding a novel viral infection that is fundamentally different, and markedly more complex, than all the infectious diseases that we have studied to date.
References
- Abadir P.M. The frail renin-angiotensin system. Clin Geriatr Med. 2011;27:53–65. doi: 10.1016/j.cger.2010.08.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abdul-Rasool S., Fielding B.C. Understanding human coronavirus HCoV-NL63. Open Virol J. 2010;4:76–84. doi: 10.2174/1874357901004010076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akbari M., Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology. 2018;26:685–698. doi: 10.1007/s10787-018-0458-0. [DOI] [PubMed] [Google Scholar]
- Aksu K., Donmez A., Keser G. Inflammation-induced thrombosis: mechanisms, disease associations and management. Curr Pharm Des. 2012;18:1478–1493. doi: 10.2174/138161212799504731. [DOI] [PubMed] [Google Scholar]
- Al Awaidy S.T., Khamis F. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Oman: current situation and going forward. Oman Med J. 2019;34:181–183. doi: 10.5001/omj.2019.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alenina N., Bader M. ACE2 in brain physiology and pathophysiology: evidence from transgenic animal models. Neurochem Res. 2019;44:1323–1329. doi: 10.1007/s11064-018-2679-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alqahtani F.Y., Aleanizy F.S., Ali El Hadi Mohamed R., Alanazi M.S., Mohamed N., Alrasheed M.M. Prevalence of comorbidities in cases of Middle East respiratory syndrome coronavirus: a retrospective study. Epidemiol Infect. 2018;147:1–5. doi: 10.1017/S0950268818002923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ames M.K., Atkins C.E., Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med. 2019;33:363–382. doi: 10.1111/jvim.15454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anggård E.E. The endothelium–the body’s largest endocrine gland? J Endocrinol. 1990;127:371–375. doi: 10.1677/joe.0.1270371. [DOI] [PubMed] [Google Scholar]
- Armstrong S.M., Darwish I., Lee W.L. Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection. Virulence. 2013;4:537–542. doi: 10.4161/viru.25779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assiri A., Al-Tawfiq J.A., Al-Rabeeah A.A., Al-Rabiah F.A., Al-Hajjar S., Al-Barrak A. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013;13:752–761. doi: 10.1016/S1473-3099(13)70204-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aziz M., Fatima R., Assaly R. Elevated interleukin-6 and severe COVID-19: a meta-analysis. J Med Virol. 2020 doi: 10.1002/jmv.25948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baergen R.N., Heller D.S. Placental pathology in Covid-19 positive mothers: preliminary findings. Pediatr Dev Pathol. 2020;23:177–180. doi: 10.1177/1093526620925569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumgartner-Parzer S.M., Waldhäusl W.K. The endothelium as a metabolic and endocrine organ: its relation with insulin resistance. Exp Clin Endocrinol Diabetes. 2001;109 Suppl 2:S166–S179. doi: 10.1055/s-2001-18579. [DOI] [PubMed] [Google Scholar]
- Benigni A., Cassis P., Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2:247–257. doi: 10.1002/emmm.201000080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bermejo-Martin J.F., Almansa R., Torres A. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc Res. 2020 doi: 10.1093/cvr/cvaa140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernatova I. Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? Biomed Res Int. 2014;2014:598271. doi: 10.1155/2014/598271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhatta A., Yao L., Xu Z., Toque H.A., Chen J., Atawia R.T. Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1. Cardiovasc Res. 2017;113:1664–1676. doi: 10.1093/cvr/cvx164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornstein S.R., Rubino F., Khunti K., Mingrone G., Hopkins D., Birkenfeld A.L. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8:546–550. doi: 10.1016/S2213-8587(20)30152-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borriello G., Ianniello A. COVID-19 occurring during Natalizumab treatment: a case report in a patient with extended interval dosing approach. Mult Scler Relat Disord. 2020;41:102165. doi: 10.1016/j.msard.2020.102165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bostanciklioglu M. Severe acute respiratory syndrome coronavirus 2 is penetrating to dementia research. Curr Neurovasc Res. 2020 doi: 10.2174/1567202617666200522220509. [DOI] [PubMed] [Google Scholar]
- Branchford B.R., Carpenter S.L. The role of Inflammation in venous thromboembolism. Front Pediatr. 2018;6:142. doi: 10.3389/fped.2018.00142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calder P.C., Ahluwalia N., Brouns F., Buetler T., Clement K., Cunningham K. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106 Suppl 3:S5–S78. doi: 10.1017/S0007114511005460. [DOI] [PubMed] [Google Scholar]
- Castellon X., Bogdanova V. Chronic inflammatory diseases and endothelial dysfunction. Aging Dis. 2016;7:81–89. doi: 10.14336/AD.2015.0803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caussy C., Wallet F., Laville M., Disse E. Obesity is associated with severe forms of COVID-19. Obesity (Silver Spring) 2020 doi: 10.1002/oby.22842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai P., Yu J., Ge S., Jia R., Fan X. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. J Hematol Oncol. 2020;13:43. doi: 10.1186/s13045-020-00883-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamarthi B., Williams G.H., Ricchiuti V., Srikumar N., Hopkins P.N., Luther J.M. Inflammation and hypertension: the interplay of interleukin-6, dietary sodium, and the renin-angiotensin system in humans. Am J Hypertens. 2011;24:1143–1148. doi: 10.1038/ajh.2011.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamsi-Pasha M.A., Shao Z., Tang W.H. Angiotensin-converting enzyme 2 as a therapeutic target for heart failure. Curr Heart Fail Rep. 2014;11:58–63. doi: 10.1007/s11897-013-0178-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan J.W., Ng C.K., Chan Y.H., Mok T.Y., Lee S., Chu S.Y. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS) Thorax. 2003;58:686–689. doi: 10.1136/thorax.58.8.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan-Yeung M., Xu R.H. SARS: epidemiology. Respirology. 2003;8 Suppl:S9–S14. doi: 10.1046/j.1440-1843.2003.00518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X., Zhao B., Qu Y., Chen Y., Xiong J., Feng Y. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis. 2020 doi: 10.1093/cid/ciaa449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiappetta S., Sharma A.M., Bottino V., Stier C. COVID-19 and the role of chronic inflammation in patients with obesity. Int J Obes (Lond) 2020:1–3. doi: 10.1038/s41366-020-0597-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chow B.S., Allen T.J. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci (Lond) 2016;130:1307–1326. doi: 10.1042/CS20160243. [DOI] [PubMed] [Google Scholar]
- Chu K.Y., Leung P.S. Angiotensin II in type 2 diabetes mellitus. Curr Protein Pept Sci. 2009;10:75–84. doi: 10.2174/138920309787315176. [DOI] [PubMed] [Google Scholar]
- Ciornei R.T. Prevention of severe coronavirus disease 2019 outcomes by reducing low-grade inflammation in high-risk categories. Front Immunol. 2020;11:1762. doi: 10.3389/fimmu.2020.01762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleri D.J., Ricketti A.J., Vernaleo J.R. Severe acute respiratory syndrome (SARS) Infect Dis Clin North Am. 2010;24:175–202. doi: 10.1016/j.idc.2009.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowley S.D., Rudemiller N.P. Immunologic effects of the renin-angiotensin system. J Am Soc Nephrol. 2017;28:1350–1361. doi: 10.1681/ASN.2016101066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- da Costa V.G., Moreli M.L., Saivish M.V. The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. Arch Virol. 2020:1–10. doi: 10.1007/s00705-020-04628-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dai Y.J., Hu F., Li H., Huang H.Y., Wang D.W., Liang Y. A profiling analysis on the receptor ACE2 expression reveals the potential risk of different types of cancers vulnerable to SARS-CoV-2 infection. Ann Transl Med. 2020;8:481. doi: 10.21037/atm.2020.03.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daiber A., Steven S., Weber A., Shuvaev V.V., Muzykantov V.R., Laher I. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174:1591–1619. doi: 10.1111/bph.13517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalan R., Bornstein S.R., El-Armouche A., Rodionov R.N., Markov A., Wielockx B. The ACE-2 in COVID-19: foe or friend? Horm Metab Res. 2020;52:257–263. doi: 10.1055/a-1155-0501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danilczyk U., Eriksson U., Crackower M.A., Penninger J.M. A story of two ACEs. J Mol Med (Berl) 2003;81:227–234. doi: 10.1007/s00109-003-0419-x. [DOI] [PubMed] [Google Scholar]
- De Lorenzo A., Escobar S., Tibiriçá E. Systemic endothelial dysfunction: a common pathway for COVID-19, cardiovascular and metabolic diseases. Nutr Metab Cardiovasc Dis. 2020 doi: 10.1016/j.numecd.2020.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deshotels M.R., Xia H., Sriramula S., Lazartigues E., Filipeanu C.M. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension. 2014;64:1368–1375. doi: 10.1161/HYPERTENSIONAHA.114.03743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietz W., Santos-Burgoa C. Obesity and its implications for COVID-19 mortality. Obesity (Silver Spring) 2020 doi: 10.1002/oby.22818. [DOI] [PubMed] [Google Scholar]
- Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:E1–E9. doi: 10.1161/01.res.87.5.e1. [DOI] [PubMed] [Google Scholar]
- Ellulu M.S., Patimah I., Khaza’ai H., Rahmat A., Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13:851–863. doi: 10.5114/aoms.2016.58928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engin A. Endothelial dysfunction in obesity. Adv Exp Med Biol. 2017;960:345–379. doi: 10.1007/978-3-319-48382-5_15. [DOI] [PubMed] [Google Scholar]
- Escher R., Breakey N., Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. doi: 10.1016/j.thromres.2020.04.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang C., Stavrou E., Schmaier A.A., Grobe N., Morris M., Chen A. Angiotensin 1-7 and mas decrease thrombosis in Bdkrb2-/- mice by increasing NO and prostacyclin to reduce platelet spreading and glycoprotein VI activation. Blood. 2013;121:3023–3032. doi: 10.1182/blood-2012-09-459156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fielding B.C. Human coronavirus NL63: a clinically important virus? Future Microbiol. 2011;6:153–159. doi: 10.2217/fmb.10.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraga-Silva R.A., Pinheiro S.V., Gonçalves A.C., Alenina N., Bader M., Santos R.A. The antithrombotic effect of angiotensin-(1-7) involves mas-mediated NO release from platelets. Mol Med. 2008;14:28–35. doi: 10.2119/2007-00073.Fraga-Silva. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraga-Silva R.A., Sorg B.S., Wankhede M., Dedeugd C., Jun J.Y., Baker M.B. ACE2 activation promotes antithrombotic activity. Mol Med. 2010;16:210–215. doi: 10.2119/molmed.2009.00160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frydman G.H., Boyer E.W., Nazarian R.M., Van Cott E.M., Piazza G. Coagulation status and venous thromboembolism risk in African Americans: a potential risk factor in COVID-19. Clin Appl Thromb Hemost. 2020;26 doi: 10.1177/1076029620943671. 1076029620943671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu J., Zhou B., Zhang L. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 2020:1–10. doi: 10.1007/s11033-020-05478-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funakoshi Y., Ichiki T., Ito K., Takeshita A. Induction of interleukin-6 expression by angiotensin II in rat vascular smooth muscle cells. Hypertension. 1999;34:118–125. doi: 10.1161/01.hyp.34.1.118. [DOI] [PubMed] [Google Scholar]
- Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.C., Turner A.J. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126:1456–1474. doi: 10.1161/CIRCRESAHA.120.317015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghiadoni L., Taddei S., Virdis A. Hypertension and endothelial dysfunction: therapeutic approach. Curr Vasc Pharmacol. 2012;10:42–60. doi: 10.2174/157016112798829823. [DOI] [PubMed] [Google Scholar]
- Giannis D., Ziogas I.A., Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. doi: 10.1016/j.jcv.2020.104362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomolak J.R., Didion S.P. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation. Front Physiol. 2014;5:396. doi: 10.3389/fphys.2014.00396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu J., Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170:1136–1147. doi: 10.2353/ajpath.2007.061088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guarner V., Rubio-Ruiz M.E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol. 2015;40:99–106. doi: 10.1159/000364934. [DOI] [PubMed] [Google Scholar]
- Gupte M., Boustany-Kari C.M., Bharadwaj K., Police S., Thatcher S., Gong M.C. ACE2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol. 2008;295:R781–R788. doi: 10.1152/ajpregu.00183.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadi H.A., Carr C.S., Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1:183–198. [PMC free article] [PubMed] [Google Scholar]
- Hajjar S.A., Memish Z.A., McIntosh K. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): a perpetual challenge. Ann Saudi Med. 2013;33:427–436. doi: 10.5144/0256-4947.2013.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637. doi: 10.1002/path.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamming I., Cooper M.E., Haagmans B.L., Hooper N.M., Korstanje R., Osterhaus A.D. The emerging role of ACE2 in physiology and disease. J Pathol. 2007;212:1–11. doi: 10.1002/path.2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson J., Henderson I.W. The endocrine function of the vascular endothelium. J Biol Ed. 1995;29:104–109. [Google Scholar]
- Henry B.M., Vikse J., Benoit S., Favaloro E.J., Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: a novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020;507:167–173. doi: 10.1016/j.cca.2020.04.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higashi Y., Noma K., Yoshizumi M., Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73:411–418. doi: 10.1253/circj.cj-08-1102. [DOI] [PubMed] [Google Scholar]
- Higashi Y., Kihara Y., Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012;35:1039–1047. doi: 10.1038/hr.2012.138. [DOI] [PubMed] [Google Scholar]
- Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181 doi: 10.1016/j.cell.2020.02.052. 271-80.e8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann H., Pyrc K., van der Hoek L., Geier M., Berkhout B., Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005;102:7988–7993. doi: 10.1073/pnas.0409465102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang A.L., Vita J.A. Effects of systemic inflammation on endothelium-dependent vasodilation. Trends Cardiovasc Med. 2006;16:15–20. doi: 10.1016/j.tcm.2005.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubloue I., Rondelet B., Kerbaul F., Biarent D., Milani G.M., Staroukine M. Endogenous angiotensin II in the regulation of hypoxic pulmonary vasoconstriction in anaesthetized dogs. Crit Care (London, England) 2004;8:R163–R171. doi: 10.1186/cc2860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huertas A., Montani D., Savale L., Pichon J., Tu L., Parent F. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Respir J. 2020:2001634. doi: 10.1183/13993003.01634-2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichiki T. Regulation of angiotensin II receptor expression. Curr Pharm Des. 2013;19:3013–3021. doi: 10.2174/1381612811319170007. [DOI] [PubMed] [Google Scholar]
- Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116. doi: 10.1038/nature03712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingraham N.E., Barakat A.G., Reilkoff R., Bezdicek T., Schacker T., Chipman J.G. Understanding the renin-angiotensin-aldosterone-SARS-CoV-Axis: a comprehensive review. Eur Respir J. 2020 doi: 10.1183/13993003.00912-2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jia H.P., Look D.C., Shi L., Hickey M., Pewe L., Netland J., Farzan M. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79:14614–14621. doi: 10.1128/JVI.79.23.14614-14621.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jing Y., Run-Qian L., Hao-Ran W., Hao-Ran C., Ya-Bin L., Yang G. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod. 2020 doi: 10.1093/molehr/gaaa030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Juillerat-Jeanneret L. The other angiotensin ii receptor: AT(2)R as a therapeutic target. J Med Chem. 2020;63:1978–1995. doi: 10.1021/acs.jmedchem.9b01780. [DOI] [PubMed] [Google Scholar]
- Kadkhoda K. COVID-19: an Immunopathological View. mSphere. 2020;5 doi: 10.1128/mSphere.00344-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kai H., Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons from available evidence and insights into COVID-19. Hypertens Res. 2020:1–7. doi: 10.1038/s41440-020-0455-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaparianos A., Argyropoulou E. Local renin-angiotensin II systems, angiotensin-converting enzyme and its homologue ACE2: their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Curr Med Chem. 2011;18:3506–3515. doi: 10.2174/092986711796642562. [DOI] [PubMed] [Google Scholar]
- Kashyap V.S., Reil T.D., Moore W.S., Hoang T.X., Gelabert H.A., Byrns R.E. Acute arterial thrombosis causes endothelial dysfunction: a new paradigm for thrombolytic therapy. J Vasc Surg. 2001;34:323–329. doi: 10.1067/mva.2001.115004. [DOI] [PubMed] [Google Scholar]
- Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020;21:e13034. doi: 10.1111/obr.13034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaur R., Kaur M., Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17:121. doi: 10.1186/s12933-018-0763-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Killerby M.E., Biggs H.M., Midgley C.M., Gerber S.I., Watson J.T. Middle East Respiratory Syndrome coronavirus transmission. Emerg Infect Dis. 2020;26:191–198. doi: 10.3201/eid2602.190697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim K.H., Tandi T.E., Choi J.W., Moon J.M., Kim M.S. Middle East Respiratory Syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J Hosp Infect. 2017;95:207–213. doi: 10.1016/j.jhin.2016.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. doi: 10.1016/j.thromres.2020.04.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D., Kant K.M. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–150. doi: 10.1016/j.thromres.2020.04.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koka V., Huang X.R., Chung A.C., Wang W., Truong L.D., Lan H.Y. Angiotensin II upregulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008;172:1174–1183. doi: 10.2353/ajpath.2008.070762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konca C., Korukluoglu G., Tekin M., Almis H., Bucak İ H., Uygun H. The first infant death associated with human coronavirus NL63 infection. Pediatr Infect Dis J. 2017;36:231–233. doi: 10.1097/INF.0000000000001390. [DOI] [PubMed] [Google Scholar]
- Krüger-Genge A., Blocki A., Franke R.P., Jung F. Vascular endothelial cell biology: an update. Int J Mol Sci. 2019;20 doi: 10.3390/ijms20184411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruglikov I.L., Scherer P.E. The role of adipocytes and adipocyte-like cells in the severity of COVID-19 infections. Obesity (Silver Spring) 2020 doi: 10.1002/oby.22856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–879. doi: 10.1038/nm1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuba K., Imai Y., Rao S., Jiang C., Penninger J.M. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J Mol Med (Berl) 2006;84:814–820. doi: 10.1007/s00109-006-0094-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuba K., Imai Y., Ohto-Nakanishi T., Penninger J.M. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010;128:119–128. doi: 10.1016/j.pharmthera.2010.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulcsar K.A., Coleman C.M., Beck S.E., Frieman M.B. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight. 2019;4 doi: 10.1172/jci.insight.131774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanza K., Perez L.G., Costa L.B., Cordeiro T.M., Palmeira V.A., Ribeiro V.T. Covid-19: the renin-angiotensin system imbalance hypothesis. Clin Sci (Lond) 2020;134:1259–1264. doi: 10.1042/CS20200492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazartigues E., Feng Y., Lavoie J.L. The two fACEs of the tissue renin-angiotensin systems: implication in cardiovascular diseases. Curr Pharm Des. 2007;13:1231–1245. doi: 10.2174/138161207780618911. [DOI] [PubMed] [Google Scholar]
- Leal M.C., Pinheiro S.V., Ferreira A.J., Santos R.A., Bordoni L.S., Alenina N. The role of angiotensin-(1-7) receptor Mas in spermatogenesis in mice and rats. J Anat. 2009;214:736–743. doi: 10.1111/j.1469-7580.2009.01058.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li G., Liu Y., Zhu Y., Liu A., Xu Y., Li X. ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats. Lung. 2013;191:327–336. doi: 10.1007/s00408-013-9470-8. [DOI] [PubMed] [Google Scholar]
- Li X.C., Zhang J., Zhuo J.L. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21–38. doi: 10.1016/j.phrs.2017.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li G., Zhang H., Zhao L., Zhang Y., Yan D., Liu Y. Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase. J Am Soc Hypertens. 2017;11:842–852. doi: 10.1016/j.jash.2017.10.009. [DOI] [PubMed] [Google Scholar]
- Li M.Y., Li L., Zhang Y., Wang X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9:45. doi: 10.1186/s40249-020-00662-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S.R., Tang Z.J., Li Z.H., Liu X. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. Eur J Clin Microbiol Infect Dis. 2020;39:1021–1026. doi: 10.1007/s10096-020-03883-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin C.W., Lin K.H., Hsieh T.H., Shiu S.Y., Li J.Y. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol. 2006;46:375–380. doi: 10.1111/j.1574-695X.2006.00045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lippi G., Wong J., Henry B.M. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020;130:304–309. doi: 10.20452/pamw.15272. [DOI] [PubMed] [Google Scholar]
- Liu F., Long X., Zhang B., Zhang W., Chen X., Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020;18:2128–2130.e2. doi: 10.1016/j.cgh.2020.04.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez-Candales A., Hernández Burgos P.M., Hernandez-Suarez D.F., Harris D. Linking chronic inflammation with cardiovascular disease: from normal aging to the metabolic syndrome. J Nat Sci. 2017;3 [PMC free article] [PubMed] [Google Scholar]
- Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020 doi: 10.1016/j.trsl.2020.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magrone T., Magrone M., Jirillo E. Focus on receptors for coronaviruses with special reference to angiotensin-converting enzyme 2 as a potential drug target–a perspective. Endocr Metab Immune Disord Drug Targets. 2020 doi: 10.2174/1871530320666200427112902. [DOI] [PubMed] [Google Scholar]
- Mahmudpour M., Roozbeh J., Keshavarz M., Farrokhi S., Nabipour I., Majumder M.S. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020:155151. doi: 10.1016/j.cyto.2020.155151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majumder M.S., Rivers C., Lofgren E., Fisman D. Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: insights from publicly available data. PLoS Curr. 2014;6 doi: 10.1371/currents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majumder M.S., Brownstein J.S., Finkelstein S.N. Nosocomial amplification of MERS-coronavirus in South Korea, 2015. Trans R Soc Trop Med Hyg. 2017;111:261–269. doi: 10.1093/trstmh/trx046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall R.P., Gohlke P., Chambers R.C. Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2004;286:L156–L164. doi: 10.1152/ajplung.00313.2002. [DOI] [PubMed] [Google Scholar]
- Mayer K., Nellessen C., Hahn-Ast C., Schumacher M., Pietzonka S., Eis-Hübinger A.M. Fatal outcome of human coronavirus NL63 infection despite successful viral elimination by IFN-alpha in a patient with newly diagnosed ALL. Eur J Haematol. 2016;97:208–210. doi: 10.1111/ejh.12744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medicine JHUSo . 2020. Coronavirus Resource Center. Available at: https://coronavirus.jhu.edu/map.html. [Accessed 22 August 2020] [Google Scholar]
- Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendoza-Torres E., Oyarzún A., Mondaca-Ruff D., Azocar A., Castro P.F., Jalil J.E. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis. 2015;9:217–237. doi: 10.1177/1753944715597623. [DOI] [PubMed] [Google Scholar]
- Middeldorp S., Coppens M., van Haaps T.F., Foppen M., Vlaar A.P., Müller M.C.A. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020 doi: 10.1111/jth.14888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milewska A., Nowak P., Owczarek K., Szczepanski A., Zarebski M., Hoang A. Entry of human coronavirus NL63 into the cell. J Virol. 2018;92 doi: 10.1128/JVI.01933-17. e01933-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mobaraki K., Ahmadzadeh J. Current epidemiological status of Middle East respiratory syndrome coronavirus in the world from 1.1.2017 to 17.1.2018: a cross-sectional study. BMC Infect Dis. 2019;19:351. doi: 10.1186/s12879-019-3987-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moon J.Y. ACE2 and angiotensin-(1-7) in hypertensive renal disease. Electrolyte Blood Press. 2011;9:41–44. doi: 10.5049/EBP.2011.9.2.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore K.J. Targeting inflammation in CVD: advances and challenges. Nat Rev Cardiol. 2019;16:74–75. doi: 10.1038/s41569-018-0144-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muñoz-Durango N., Fuentes C.A., Castillo A.E., González-Gómez L.M., Vecchiola A., Fardella C.E. Role of the renin-angiotensin-aldosterone system beyond blood pressure regulation: molecular and cellular mechanisms involved in end-organ damage during arterial hypertension. Int J Mol Sci. 2016;17 doi: 10.3390/ijms17070797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O’Rourke R.W. Inflammation in obesity-related diseases. Surgery. 2009;145:255–259. doi: 10.1016/j.surg.2008.08.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O’Sullivan J.M., Gonagle D.M., Ward S.E., Preston R.J.S., O’Donnell J.S. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020 doi: 10.1016/S2352-3026(20)30215-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ofori-Asenso R., Ogundipe O., Agyeman A.A., Chin K.L., Mazidi M., Ademi Z. Cancer is associated with severe disease in COVID-19 patients: a systematic review and meta-analysis. Ecancermedicalscience. 2020;14:1047. doi: 10.3332/ecancer.2020.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olkowicz M., Chlopicki S., Smolenski R.T. Perspectives for angiotensin profiling with liquid chromatography/mass spectrometry to evaluate ACE/ACE2 balance in endothelial dysfunction and vascular pathologies. Pharmacol Rep. 2015;67:778–785. doi: 10.1016/j.pharep.2015.03.017. [DOI] [PubMed] [Google Scholar]
- Oosterhof L., Christensen C.B., Sengeløv H. Fatal lower respiratory tract disease with human corona virus NL63 in an adult haematopoietic cell transplant recipient. Bone Marrow Transplant. 2010;45:1115–1116. doi: 10.1038/bmt.2009.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ou X., Liu Y., Lei X., Li P., Mi D., Ren L. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620. doi: 10.1038/s41467-020-15562-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oudit G.Y., Crackower M.A., Backx P.H., Penninger J.M. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc Med. 2003;13:93–101. doi: 10.1016/s1050-1738(02)00233-5. [DOI] [PubMed] [Google Scholar]
- Pal R., Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020:1–5. doi: 10.1007/s40618-020-01276-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan P.P., Zhan Q.T., Le F., Zheng Y.M., Jin F. Angiotensin-converting enzymes play a dominant role in fertility. Int J Mol Sci. 2013;14:21071–21086. doi: 10.3390/ijms141021071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan A., Liu L., Wang C., Guo H., Hao X., Wang Q. Association of public health interventions with the epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA. 2020;323:1–9. doi: 10.1001/jama.2020.6130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19) Clin Exp Pediatr. 2020;63:119–124. doi: 10.3345/cep.2020.00493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel S.K., Velkoska E., Freeman M., Wai B., Lancefield T.F., Burrell L.M. From gene to protein-experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Front Physiol. 2014;5:227. doi: 10.3389/fphys.2014.00227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel V.B., Basu R., Oudit G.Y. ACE2/Ang 1-7 axis: a critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity. Adipocyte. 2016;5:306–311. doi: 10.1080/21623945.2015.1131881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel V.B., Mori J., McLean B.A., Basu R., Das S.K., Ramprasath T. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes. 2016;65:85–95. doi: 10.2337/db15-0399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paz Ocaranza M., Riquelme J.A., García L., Jalil J.E., Chiong M., Santos R.A.S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17:116–129. doi: 10.1038/s41569-019-0244-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlot T., Penninger J.M. ACE2-from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013;15:866–873. doi: 10.1016/j.micinf.2013.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitsavos C., Tampourlou M., Panagiotakos D.B., Skoumas Y., Chrysohoou C., Nomikos T. Association between low-grade systemic inflammation and type 2 Diabetes mellitus among men and women from the ATTICA study. Rev Diabet Stud. 2007;4:98–104. doi: 10.1900/RDS.2007.4.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad M., McBane R., Reriani M., Lerman L.O., Lerman A. Coronary endothelial dysfunction is associated with increased risk of venous thromboembolism. Thromb Res. 2016;139:17–21. doi: 10.1016/j.thromres.2015.12.024. [DOI] [PubMed] [Google Scholar]
- Puig-Domingo M., Marazuela M., Giustina A. COVID-19 and endocrine diseases. A statement from the European Society of Endocrinology. Endocrine. 2020;68:2–5. doi: 10.1007/s12020-020-02294-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qu D., Liu J., Lau C.W., Huang Y. IL-6 in diabetes and cardiovascular complications. Br J Pharmacol. 2014;171:3595–3603. doi: 10.1111/bph.12713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramadan N., Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs. 2019;9:35–42. doi: 10.18683/germs.2019.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reis F.M., Bouissou D.R., Pereira V.M., Camargos A.F., dos Reis A.M., Santos R.A. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil Steril. 2011;95:176–181. doi: 10.1016/j.fertnstert.2010.06.060. [DOI] [PubMed] [Google Scholar]
- Rodrigues Prestes T.R., Rocha N.P., Miranda A.S., Teixeira A.L., Simoes-E-Silva A.C., Santos R.A., Simoes e Silva A.C. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: evidence from basic and clinical research. Curr Drug Targets. 2017;18:1301–1313. doi: 10.2174/1389450117666160727142401. [DOI] [PubMed] [Google Scholar]
- Rudemiller N.P., Crowley S.D. Interactions between the immune and the renin-angiotensin systems in hypertension. Hypertension. 2016;68:289–296. doi: 10.1161/HYPERTENSIONAHA.116.06591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santos R.A., Simoes e Silva A.C., Maric C., Silva D.M., Machado R.P., de Buhr I. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100:8258–8263. doi: 10.1073/pnas.1432869100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satija N., Lal S.K. The molecular biology of SARS coronavirus. Ann N Y Acaad Sci. 2007;1102:26–38. doi: 10.1196/annals.1408.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Senchenkova E.Y., Russell J., Almeida-Paula L.D., Harding J.W., Granger D.N. Angiotensin II-mediated microvascular thrombosis. Hypertension. 2010;56:1089–1095. doi: 10.1161/HYPERTENSIONAHA.110.158220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Senchenkova E.Y., Russell J., Yildirim A., Granger D.N., Gavins F.N.E. Novel role of T cells and IL-6 (Interleukin-6) in angiotensin II-induced microvascular dysfunction. Hypertension. 2019;73:829–838. doi: 10.1161/HYPERTENSIONAHA.118.12286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shanes E.D., Mithal L.B., Otero S., Azad H.A., Miller E.S., Goldstein J.A. Placental Pathology in COVID-19. Am J Clin Pathol. 2020;154:23–32. doi: 10.1093/ajcp/aqaa089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581:221–224. doi: 10.1038/s41586-020-2179-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Y., Vanhoutte P.M. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9:434–449. doi: 10.1111/1753-0407.12521. [DOI] [PubMed] [Google Scholar]
- Shi L., Mao C., Xu Z., Zhang L. Angiotensin-converting enzymes and drug discovery in cardiovascular diseases. Drug Discov Today. 2010;15:332–341. doi: 10.1016/j.drudis.2010.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simoes E.S.A.C., Teixeira M.M. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res. 2016;107:154–162. doi: 10.1016/j.phrs.2016.03.018. [DOI] [PubMed] [Google Scholar]
- Simões e Silva A.C., Silveira K.D., Ferreira A.J., Teixeira M.M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169:477–492. doi: 10.1111/bph.12159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 2020 doi: 10.1002/oby.22831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh A.K., Gupta R., Ghosh A., Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14:303–310. doi: 10.1016/j.dsx.2020.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skurk T., van Harmelen V., Hauner H. Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB. Arterioscler Thromb Vasc Biol. 2004;24:1199–1203. doi: 10.1161/01.ATV.0000131266.38312.2e. [DOI] [PubMed] [Google Scholar]
- Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W.B., Wang S. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg(9) bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2018;314:L17–L31. doi: 10.1152/ajplung.00498.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song J., Li Y., Huang X., Chen Z., Li Y., Liu C. Systematic analysis of ACE2 and TMPRSS2 expression in salivary glands reveals underlying transmission mechanism caused by SARS-CoV-2. J Med Virol. 2020 doi: 10.1002/jmv.26045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiropoulou C.F., Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence. 2013;4:525–536. doi: 10.4161/viru.25569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sriramula S., Cardinale J.P., Lazartigues E., Francis J. ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res. 2011;92:401–408. doi: 10.1093/cvr/cvr242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steyers C.M., 3rd, Miller F.J., Jr. Endothelial dysfunction in chronic inflammatory diseases. Int J Mol Sci. 2014;15:11324–11349. doi: 10.3390/ijms150711324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun H.J., Wu Z.Y., Nie X.W., Bian J.S. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol. 2019;10:1568. doi: 10.3389/fphar.2019.01568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun X., Wang T., Cai D., Hu Z., Chen J., Liao H. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020;53:38–42. doi: 10.1016/j.cytogfr.2020.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talman V., Kivelä R. Cardiomyocyte-endothelial cell interactions in cardiac remodeling and regeneration. Front Cardiovasc Med. 2018;5:101. doi: 10.3389/fcvm.2018.00101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tikellis C., Thomas M.C. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294. doi: 10.1155/2012/256294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275:33238–33243. doi: 10.1074/jbc.M002615200. [DOI] [PubMed] [Google Scholar]
- Tseng Y.H., Yang R.C., Lu T.S. Two hits to the renin-angiotensin system may play a key role in severe COVID-19. Kaohsiung J Med Sci. 2020;36:389–392. doi: 10.1002/kjm2.12237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner A.J., Hiscox J.A., Hooper N.M. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004;25:291–294. doi: 10.1016/j.tips.2004.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ulhaq Z.S., Soraya G.V. Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect. 2020;50:382–383. doi: 10.1016/j.medmal.2020.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Úri K., Fagyas M., Kertész A., Borbély A., Jenei C., Bene O. Circulating ACE2 activity correlates with cardiovascular disease development. J Renin Angiotensin Aldosterone Syst. 2016;17 doi: 10.1177/1470320316668435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382:1653–1659. doi: 10.1056/NEJMsr2005760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valdés G., Neves L.A., Anton L., Corthorn J., Chacón C., Germain A.M. Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta. 2006;27:200–207. doi: 10.1016/j.placenta.2005.02.015. [DOI] [PubMed] [Google Scholar]
- van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W., Berkhout R.J., Wolthers K.C. Identification of a new human coronavirus. Nat Med. 2004;10:368–373. doi: 10.1038/nm1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30937-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verdecchia P., Cavallini C., Spanevello A., Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020 doi: 10.1016/j.ejim.2020.04.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virdis A., Masi S., Colucci R., Chiriacò M., Uliana M., Puxeddu I. Microvascular endothelial dysfunction in patients with obesity. Curr Hypertens Rep. 2019;21:32. doi: 10.1007/s11906-019-0930-2. [DOI] [PubMed] [Google Scholar]
- Vivas D., Roldán V., Esteve-Pastor M.A., Roldán I., Tello-Montoliu A., Ruiz-Nodar J.M. Recommendations on antithrombotic treatment during the COVID-19 pandemic. Position statement of the Working Group on Cardiovascular Thrombosis of the Spanish Society of Cardiology. Rev Esp Cardiol (Engl Ed) 2020;73:749–757. doi: 10.1016/j.rec.2020.04.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vukelic S., Griendling K.K. Angiotensin II, from vasoconstrictor to growth factor: a paradigm shift. Circ Res. 2014;114:754–757. doi: 10.1161/CIRCRESAHA.114.303045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181 doi: 10.1016/j.cell.2020.02.058. 281-92.e6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W., Bodiga S., Das S.K., Lo J., Patel V., Oudit G.Y. Role of ACE2 in diastolic and systolic heart failure. Heart Fail Rev. 2012;17:683–691. doi: 10.1007/s10741-011-9259-x. [DOI] [PubMed] [Google Scholar]
- Wang K., Xu Y., Yang W., Zhang Y. Insufficient hypothalamic angiotensin-converting enzyme 2 is associated with hypertension in SHR rats. Oncotarget. 2017;8:20244–20251. doi: 10.18632/oncotarget.15666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Li X., Liu W., Gan M., Zhang L., Wang J. Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerg Microbes Infect. 2020;9:246–255. doi: 10.1080/22221751.2020.1717999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wichmann D., Sperhake J.P., Lütgehetmann M., Steurer S., Edler C., Heinemann A. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med. 2020;173:268–277. doi: 10.7326/M20-2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams B. Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol. 2001;87 doi: 10.1016/s0002-9149(01)01507-7. 10c-7c. [DOI] [PubMed] [Google Scholar]
- Wong S.H., Lui R.N., Sung J.J. Covid-19 and the digestive system. J Gastroenterol Hepatol. 2020;35:744–748. doi: 10.1111/jgh.15047. [DOI] [PubMed] [Google Scholar]
- Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao L., Sakagami H., Miwa N. ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: demon or angel? Viruses. 2020;12 doi: 10.3390/v12050491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu H. Obesity and metabolic inflammation. Drug Discov Today Dis Mech. 2013;10 doi: 10.1016/j.ddmec.2013.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12:8. doi: 10.1038/s41368-020-0074-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi M., Hirai S., Sumi T., Tanaka Y., Tada M., Nishii Y. Angiotensin-converting enzyme 2 is a potential therapeutic target for EGFR-mutant lung adenocarcinoma. Biochem Biophys Res Commun. 2017;487:613–618. doi: 10.1016/j.bbrc.2017.04.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang J.K., Feng Y., Yuan M.Y., Yuan S.Y., Fu H.J., Wu B.Y. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23:623–628. doi: 10.1111/j.1464-5491.2006.01861.x. [DOI] [PubMed] [Google Scholar]
- Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–481. doi: 10.1016/S2213-2600(20)30079-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang J., Li H., Hu S., Zhou Y. ACE2 correlated with immune infiltration serves as a prognostic biomarker in endometrial carcinoma and renal papillary cell carcinoma: implication for COVID-19. Aging (Albany NY) 2020;12:6518–6535. doi: 10.18632/aging.103100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yau J.W., Teoh H., Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015;15:130. doi: 10.1186/s12872-015-0124-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye Q., Wang B., Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80:607–613. doi: 10.1016/j.jinf.2020.03.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zabetakis I., Lordan R., Norton C., Tsoupras A. COVID-19: the inflammation link and the role of nutrition in potential mitigation. Nutrients. 2020;12:1466. doi: 10.3390/nu12051466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang H., Wada J., Hida K., Tsuchiyama Y., Hiragushi K., Shikata K. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem. 2001;276:17132–17139. doi: 10.1074/jbc.M006723200. [DOI] [PubMed] [Google Scholar]
- Zhang Y.H., Zhang Y.H., Dong X.F., Hao Q.Q., Zhou X.M., Yu Q.T. ACE2 and Ang-(1-7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm Res. 2015;64:253–260. doi: 10.1007/s00011-015-0805-1. [DOI] [PubMed] [Google Scholar]
- Zhang B.N., Wang Q., Liu T., Dou S.Q., Qi X., Jiang H. [A special on epidemic prevention and control: analysis on expression of 2019-nCoV related ACE2 and TMPRSS2 in eye tissues] Zhonghua Yan Ke Za Zhi. 2020;56:438–446. doi: 10.3760/cma.j.cn112142-20200310-00170. [DOI] [PubMed] [Google Scholar]
- Zhou Z., Kang H., Li S., Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol. 2020;267:2179–2184. doi: 10.1007/s00415-020-09929-7. [DOI] [PMC free article] [PubMed] [Google Scholar]