Abstract
从2019年12月~2020年11月19日,COVID-19大流行已导致全球55 928 327例确诊病例,造成1 344 003人死亡。但是,我们对这次疫情的病原体-新型冠状病毒(SARS-CoV-2)的来源仍然未了解清楚。本综述总结和分析SARS-CoV-2溯源研究进展,为进一步的研究提供启示。现有证据表明SARS-CoV-2有可能是在40~70年前由蝙蝠冠状病毒分化而来;该病毒在进化过程中同时存在多种变异及自然选择现象,病毒基因不同区域可能发生不同变异并受到不同的选择压力,这些都增加了病毒溯源的困难性;有多种动物被认为可能是SARS-CoV-2的宿主,包括猫、狮子、老虎、狗、水貂等;SARS-CoV-2可能可由人类传播给动物,且该病毒也可以在动物间互相传播;现有证据不支持该病毒的源头是中国。我们仍未清楚该病毒如何传播到人类,仍然需要更多的研究去探索SARS-CoV-2的来源、宿主、中间宿主及其跨物种传播的机制。
Keywords: SARS-CoV-2, 宿主, 溯源, 进化, 变异
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has caused a total of 55 928 327 confirmed cases and 1 344 003 deaths as of November 19, 2020. But so far the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes this pandemic has remained undetermined. The purpose of this study is to review the current research of SARS-CoV-2 and the existing problems therein, which may provide inspiration for further researches. Existing evidence suggested that SARS-CoV-2 may be derived from bat coronavirus 40-70 years ago. During the evolution, this virus underwent extensive variations in the process of mutations and natural selection. Different genomic regions of SARS-CoV-2 may have different selection pressures, but all of which increase the difficulty of tracing the origin of this virus. A wide variety of animals have been considered as potential hosts of SARS-CoV-2, including cats, lions, tigers, dogs and minks. SARS-CoV-2 has a chance to transmit from humans to animals and can be transmitted among animals. Current research evidence has shown that China is not the original source of SARS-CoV-2. It is still unclear how the virus spreads to human, and efforts are still need to be made to explore the origin of SARS-CoV-2, its hosts and intermediate hosts, and the mechanism of its transmission across different species of animals.
Keywords: SARS-CoV-2, host, origin, evolution, mutation
2019年12月,中国湖北省武汉市报道了不明原因肺炎疫情[1]。随后,在病人的呼吸道分泌物中发现引起该病的病原体为一种新型的冠状病毒[2]。在2020年1月12日,世界卫生组织(WHO)将该病原体命名为“2019年新型冠状病毒”(2019-nCoV)。我国也将“不明原因肺炎”更名为“新型冠状病毒肺炎”,简称“新冠肺炎” [3]。在2020年2月11日,WHO正式将新冠肺炎命名为“2019年冠状病毒疾病(COVID-19)”,同日,国际病毒分类学委员会(ICTV)基于病毒的病原学研究结果,将2019-nCoV重新命名为“严重急性呼吸综合症冠状病毒2型(SARS-CoV-2)”。2020年3月11日,世界卫生组织(WHO)宣布COVID-19为全球大流行疾病[4]。
至2020年11月19日,全球一共有55 928 327例COVID-19确诊病例,造成1 344 003人死亡,美国、印度、巴西、俄罗斯等国家疫情较为严重[5]。
但是迄今,我们对SARS-CoV-2的来源尚未完全了解。本综述的目的是总结和分析SARS-CoV-2溯源研究现状及存在的问题,为病毒的进一步溯源研究提供参考。
1. 冠状病毒的病毒分类
冠状病毒属于巢病毒目(Nidovirales),冠状病毒科(Coronaviridae)。根据基因组的特点,冠状病毒科可以分为冠状病毒亚科(Coronavirinae)和环曲病毒亚科(Torovirinae)。冠状病毒亚科又包括4个病毒属:α冠状病毒属(Alphacoronavirus)、β冠状病毒属(Betacoronavirus)、γ冠状病毒属(Gammacoronavirus)和δ冠状病毒属(Deltacoronavirus)[6]。α和β冠状病毒属病毒只感染哺乳类动物,而γ和δ冠状病毒属病毒则主要感染禽类,偶尔可感染人类[6-7]。
1965年首次报道冠状病毒可以导致人类普通感冒,但是由于病情较轻,冠状病毒并未引起人类的重视[8]。在2002年,中国爆发了严重急性呼吸系统综合征(SARS)疫情,而冠状病毒作为一种可以导致人类重大疾病的病原体,受到了人们的广泛关注及研究[9]。至今,共发现7种冠状病毒与人类疾病相关,包括HCoV-229E、HCoV-OC43、SARS-CoV、HCoV-NL63、HCoV-HKU1、中东呼吸综合症冠状病毒(MERS-CoV)和SARS-CoV-2 [10]。其中SARS-CoV、MERS-CoV和SARS-CoV-2可以引起人类严重的疾病[11]。在这七种病毒中,HCoV-OC43、HCoV-HKU1、SARS-CoV、MERS-CoV和SARS-CoV-2都属于β冠状病毒属;另外两种病毒(HCoV-229E和HCoV-NL63)属于α冠状病毒属[8, 12]。
2. SARS-CoV-2的基因组结构
冠状病毒是单正链、非分段的RNA病毒,基因组全长约为30 kb;SARS-CoV-2的全基因组约有29.9 kb,包括13~15个开放阅读区,至少可以编码29个蛋白,其中包括16个非结构蛋白,9个辅助蛋白和4个结构蛋白:N蛋白(核衣壳蛋白),M蛋白(膜糖蛋白),E蛋白(小包膜蛋白)和S蛋白(刺突糖蛋白)[13-14]。N蛋白在病毒复制和感染宿主的过程中发挥重要作用;M蛋白可以参与新病毒颗粒的形成;E蛋白是最小的结构蛋白,它也与病毒的复制相关;而S蛋白则主要决定了病毒的宿主类型和组织嗜性,在病毒跨物种传播的过程中起着非常重要的作用[16, 18]。S蛋白的氨基端和羧基端有不同的功能区域:S1区和S2区,其中S1区有受体结合域(RBD),可以识别和结合宿主相关的受体;S2区则介导病毒和细胞膜的融合[13-17]。SARS-CoV-2在S蛋白中有一个独特的多元切割位点(polybasic cleavage sites, RRAR),在现已知的其他冠状病毒中并没有发现该位点,该位点与SARS-CoV-2的传播能力密切相关[19-20]。
3. SARS-CoV-2可能的祖先
Rajeev等[21]对53株病毒株进行了基因分析,结果表明猪繁殖与呼吸综合症病毒2(Arteriviridae科,β Arterivirus属)可能是SARS-CoV-2和其他冠状病毒科病毒的最古老的祖先。
对SARS-CoV-2的不同基因区域进行分析后发现其S蛋白区域的多样性较为丰富,与其他β冠状病毒的相似程度最低[12]。对SARS-CoV-2、SARS-CoV及MERS-CoV进行基因比较分析后发现,SARS-CoV-2和SARS-CoV的核酸序列一致性程度较高(79.6%),但它们两者之间S蛋白的氨基酸序列同源性仅为76.5%[22-23]。有研究在来自于云南的菊头蝠体内发现了一株与SARS-CoV-2相似程度很高的冠状病毒(RaTG13),两者之间核酸相似程度可高达96.2%,且它们的S蛋白氨基酸序列相似性也高达97%,因此认为SARS-CoV-2可能是由蝙蝠冠状病毒变化而来[22]。但随后有研究对SARS-CoV-2与RaTG13进行比较后发现有1136个核苷酸存在变异,其中大部分的变异(60%左右)为C>U和U>C置换(C>U and U>C substitutions),而高频的C>U置换意味着SARS-CoV-2在引起人类大流行之前已经经历了相当长时间的进化[24]。SARS-CoV-2不同的基因区域在进化的过程中受到的选择压力不一样,绝大多数区域受到纯化选择,而在S蛋白的受体结合域中可能存在正向选择,不过这些改变也可能是由于病毒与RaTG13重组而导致[25]。也有研究表明SARS-CoV-2和RaTG13的受体结合域不一样,在对SARS-CoV-2和RaTG13进行时间进化分析后,发现两者不具有正性时间进化信号,推测SARS-CoV-2来源于RaTG13病毒的可能性不大,而SARS-CoV-2可能与另一株蝙蝠冠状病毒株bat-SLCoVZC45,存在着一定的正性时间进化关系[26]。也有研究证据表明RaTG13和SARS-CoV-2均是由蝙蝠中的其他冠状病毒在40~70年前进化而来的,并且已经在蝙蝠中循环了数十年[27-28]。一些研究认为蝙蝠中还可能存在一些与SARS-CoV-2及RaTG13有共同祖先的、未知的、具有人畜共患性的冠状病毒[28]。但现已知的蝙蝠冠状病毒都没有SARS-CoV-2中独特的多元切割位点(RRAR),因此有学者认为蝙蝠虽然是SARS-CoV-2的宿主,但是该病毒直接由蝙蝠向人类传播的可能性小,病毒在传播的过程中可能需要中间宿主[27]。
在穿山甲中也发现了与SARS-CoV-2(91.02%)和RaTG13(90.55%)核酸相似程度非常高的穿山甲冠状病毒(Pangolin-CoV),并且在来自马来西亚的穿山甲中检出的冠状病毒拥有与SARS-CoV-2相似的受体结合域,因此曾有猜测SARS-CoV-2可能是由Pangolin-CoV与RaTG13重组而形成的[29-31]。但是Pangolin-CoV也没有RRAR位点,现有证据来看SARS-CoV-2直接来源于穿山甲的可能性也不大[29]。
SARS-CoV-2在进化的过程中经历了非常复杂的改变,其中可能包括自然选择与基因重组等[32]。但是,对SARS-CoV-2和与其较为相似的一些冠状病毒(包括蝙蝠冠状病毒、穿山甲冠状病毒等)进行比较后,并未发现SARS-CoV-2存在任何潜在的基因组重组事件,证明SARS-CoV-2可能不是一个重组病毒[33]。
4. SARS-CoV-2可能的宿主
目前已知不同的冠状病毒结合的宿主受体不一样:HCoV-OC43和HCoV-HKU1主要结合宿主细胞表面糖蛋白和糖脂上的5-N-乙酰基-9-O-乙酰基唾液酸苷;MERS-CoV则通过识别宿主细胞上的非乙酰化唾液苷附着受体进入宿主细胞;而SARS-CoV和SARS-CoV-2可以识别并结合宿主细胞上的血管紧张素转化酶2(ACE2)[34-36]。与SARS-CoV比较后发现,SARS-CoV-2的S蛋白在N端区域存在三个短插入(GTNGTKR,NNKSWM和RSYLTPGD),在受体结合域也有4个突变[37];而在S蛋白的S1区和S2区的连接处也存在4个氨基酸的插入:PRRA,这一插入构成了RRAR这一多元酶切位点,这些改变使得SARS-CoV-2的受体结合域与宿主细胞ACE2的亲和力比SARS-CoV增强约10~20倍,导致了SARS-CoV-2在人类中的高传染性[19, 36]。
SARS-CoV-2的宿主范围尚未明确。与SARS-CoV一样,SARS-CoV-2也可以在实验条件下感染多种动物,如非人灵长类动物、啮齿动物等[38]。不同动物ACE2的基因序列、结构等都影响着冠状病毒的感染力和致病力,了解动物中的ACE2对SARS-CoV-2的宿主范围、中间宿主的鉴定及跨物种传播的可能性都有非常重要的意义[39-40]。
有研究对410种脊椎动物(包括252种哺乳动物)中ACE2的核酸序列、氨基酸位点进行了分析,并采用综合评分法评价了不同动物中ACE2与SARS-CoV-2结合的可能性,这一评分主要基于:不同动物ACE2中25个重要的氨基酸与人类ACE2相应氨基酸的相似性,对其中的一些氨基酸位点(K353、K31、E35、M82、N53、N90和N322)还设有针对性规则。若在动物中发现大于23个氨基酸残基与人类一致(其中包括K353、K31、E35、M82、N53、N90和N322位点),其余两个非一致的位点只存在同义突变,则认为该动物的ACE2有极高可能性与SARS-CoV-2结合,结果发现18种旧世界灵长动物或猿类的ACE2有极高的可能性与SARS-CoV-2结合;若在动物中发现大于20个氨基酸残基与人类一致(其中包括K353),另外5个非一致的位点中只存在一个非同义突变,且若K31和E35两个位点中发生突变,只能为同义突变,则认为该动物ACE2有高可能性与SARS-CoV-2结合,其中有28种动物归为此类(包括12种鲸类:如鲸鱼、海豚等;7种啮齿动物;3种鹿;2种披毛目动物及1种旧世界灵长类动物)[39]。这一些具有极高或者高结合可能性的动物都有可能是SARS-CoV-2的宿主,但值得注意的是,该研究发现蝙蝠、穿山甲、鱼、龟等动物结合SARS-CoV-2的可能性低[39]。另外有研究模拟了215种脊椎动物的S蛋白-ACE2复合体,并与人类的ACE2比较,计算了每个动物物种复合体突变引起的能量变化,并将这些变化与COVID-19感染数据相关联,研究结果表明SARS-CoV-2有广泛的哺乳动物宿主,但鱼类、鸟类和爬行动物感染能力低。
多种动物可以在自然条件下感染SARS-CoV-2,并成为SARS-CoV-2的宿主,其中包括猫、狮子、老虎、狗等[42-44]。在动物园中发现人向狮子和老虎传播SARSCoV-2的现象,狗在接触病人之后可以感染SARSCoV-2,这些现象都说明该病毒有从人类传播给动物的可能性[43-44]。猫、狗和老虎中检出的SARS-CoV-2与人类SARS-CoV-2相似程度非常高,虽然暂时没有证据指出SARS-CoV-2可以由动物传播给人类,但是SARSCoV-2可以在动物间相互传播[45-46]。猫和狗是最为常见的宠物,它们与人类接触的机会非常多,而且这些动物拥有与人类相似的ACE2,所以,需要防止SARS-CoV-2由这些动物传播给人类[44, 46]。
有研究提出了SARS-CoV-2存在由动物传播给人类的可能性:对不同动物的ACE2中较为保守的5个氨基酸残基(353-KGDFR-357)的三维结构进行分析后,发现这一三维结构为蛋白质环,直接参与到SARSCoV-2的受体结合域与宿主细胞结合的过程中,而水貂中的这一结构与人非常相似;2020年5月和11月,荷兰研究人员报道了由水貂传播的SARS-CoV-2造成人感染的现象,表明水貂很可能是SARS-CoV-2的宿主,并且存在向人类传播该病毒的可能性[47-49]。
未来,我们仍然需要更多的研究去探索SARSCoV-2的宿主范围、传播过程中可能的中间宿主及其人畜共患的可能性。
5. SARS-CoV-2在流行过程中发生的变异
SARS-CoV-2在人群中引起大流行的过程中也发生了变异,大流行初期,SARS-CoV-2的遗传多样性比较低,但是随着流行的发展,其多样性逐渐增强[50]。不同地区、不同时期流行的病毒株不一样。有研究根据核酸序列,将不同病毒株分为A、B两系(lineages A和B);也有研究根据病毒中某一个氨基酸位点的突变(G614、S84、V251、I378和D392)将病毒分为5系,而G614为目前全球流行主要的病毒株;还有研究通过分析160条病毒全序后,将SARS-CoV-2分为A、B、C三组(type A-C)[6, 50-52]。在A、B、C三组病毒株中,A组中的序列是祖先序列,B组序列是A组序列发生同义突变(T8782C)和非同义突变(C28144T)而来,而C组序列则是由B组序列发生非同义突变衍生而来(G26144T)[51]。A组和C组病毒株主要分布在于欧洲和美国,而B组病毒株主要存在于东亚[51]。另一研究纳入了更多的序列进行基因分析,将序列分为SS1~SS4四组,该研究表明,SS1和SS4病毒株在传播竞争中胜过SS2和SS3,并可能成为SARS-CoV-2未来传播的超级传播株[53]。
对人群中流行的320株SARS-CoV-2的全基因组进行同源分析后发现这些病毒株间有483处发生了变异[34]。病毒的变异既分布在蛋白编码区又分布在非编码区[54-55]。在对全球71 703条基因序列进行分析后发现:发生变异最多的区域为非结构区域中的NSP1和NSP2以及结构区域中的ORF7a和ORF3a,在结构区域中发生的非同义突变多受到正向选择,这一些正向选择可能推动着该病毒的进化,而发生突变最活跃的区域有可能为病毒带来更多的生物物理选择,使病毒逃离宿主的先天免疫系统,从而以提高病毒的传播和致病的效率,如ORF3a中的Q57H突变可以使得病毒毒力和亲和力增强[56-57]。S蛋白在病毒感染宿主和跨物种传播中起着非常重要的作用。有多个实验室的研究报告了SARS-CoV-2 S蛋白的第614位氨基酸由天冬氨酸(D)变成甘氨酸(G)可以使得病人体内的病毒载量增大,并且大大增强SARS-CoV-2的传播力[55, 58]。对引起休斯顿第二波新冠疫情的一些病毒株进行基因分析后,发现这一些病毒株的S蛋白中第614位氨基酸均为G,证实该突变可以导致SARS-CoV-2的传播力增强这一观点[59]。
最近也有研究显示病毒可以发生使其传染力或致病力下降的变异:通过分子模拟发现了在病毒S蛋白中两种可以使病毒受体结合域与宿主ACE2的结合能力下降的变异:缺失N679SPRRA684,R682R683变异为E682E683 [60];在轻症患者和部分重症患者中发现SARS-CoV-2中RRAR多元切割位点的上游存在缺失,这一改变导致了移码突变并伴有终止密码子的出现,从而降低了病毒致病性,但是其传染性不受影响[61];在RRAR这一酶切位点序列不变的情况下,其他的位点的改变(肽链上的25-27位氨基酸被取代或缺失)会导致该酶切位点三维结构和静电势改变,从而可能导致SARS-CoV-2的临床症状更接近HKU-1和OC43,引起轻度的流感样症状[62]。这些研究均显示随着SARS-CoV-2在流行过程中的变异,该病毒有分化为引起轻度症状的亚型的潜力。
在COVID-19流行的初期,曾有人认为该疾病是由武汉市华南海鲜市场交易的野生或饲养的野生动物传播给人类,但是经过研究发现,COVID-19的首例确诊病例并未到过该海鲜市场,且在海鲜市场交易的动物体内并未检测到SARS-CoV-2,证明武汉市华南海鲜市场并非COVID-19的起源地[63]。此外,在欧洲及美国中流行的病毒株与中国流行的病毒株不一样;西班牙病毒学家在2019年3月收集的废水样本中检出SARS-CoV-2;意大利国家高等卫生研究院也在米兰和都灵2019年12月的废水样本中检测出了SARS-CoV-2核酸片段[64],污水中SARS-CoV-2的检出情况可以反映当地人群中COVID-19的流行情况[65],有研究指出含有SARS-CoV-2的污水可以引起人类感染[66],而SARS-CoV-2也可以通过废水排放系统进入水生系统,从而感染水生生物,并可能对人类产生危害[67]。在对意大利2019年9月~2020年3月间招募的959名健康志愿者的血清样本进行SARS-CoV-2受体结合域特异性抗体(anti-SARS-CoV-2 RBD antibody)的检出后,发现检出率高达11.6%(111/959),其中有记录的最早的阳性样本于2019年9月3日收集;在111份阳性样本中,6份样本含有SARS-CoV-2中和抗体,这些结果表明该病毒早在2020年2月意大利官方报道首例患者(2020年2月20日)之前就已在意大利传播,而且这些感染者无明显症状,证明在感染SARS-CoV-2的人当中,许多为无症状感染者,而真正感染SARS-CoV-2的人数有可能比官方报道的数字高5倍[68]。2019年11月~12月,意大利许多全科医生报告在老年人和体弱者中出现严重的呼吸道症状,可是由于当时没有发现SARS-CoV-2,这些病人全部归因于季节性流感,但是其中有可能存在SARS-CoV-2引起的病人[68]。现有证据表明SARS-CoV-2在武汉报告疫情之前就存在于一些国家中,可能在特殊的情况下,病毒发生了变异,导致传播能力变强并且引起大流行,中国只是最早的报道了该疾病的流行。
至今,SARS-CoV-2仍然在多个国家中广泛传播,并且在传播的过程中不断地变异和进化,仍需要更多的研究去探索SARS-CoV-2的来源、进化、宿主及其跨物种传播的机制。
6. 结语
对目前SARS-CoV-2溯源研究的进展可以归纳为以下几点:SARS-CoV-2的祖先是蝙蝠冠状病毒,SARS-CoV-2可能是在40~70年前由蝙蝠冠状病毒分化出来;SARS-CoV-2在进化过程中同时存在多种变异及自然选择现象,增加了溯源的困难性;SARS-CoV-2的部分基因存在较强的变异能力且对病毒的传染力、致病力等有较大的影响,病毒基因不同区域可能受到不同选择压力;目前尚不清楚该病毒是从蝙蝠直接传播到人类,还是通过其他动物作为中间宿主传播给人类;早期该病毒的传染力从弱变强,最近又发现其有传染力和致病力下降的趋势,但这一过程和关键的因素尚不清楚;目前的证据不支持该病毒的源头是中国,该病毒在武汉疫情暴发前1~2年已经在世界范围内存在;目前对于SARS-CoV-2的源头仍有很多未知。
Biography
何文巧,在读博士研究生,E-mail: wenqiaohe@163.com
Contributor Information
何 文巧 (Wenqiao HE), Email: wenqiaohe@163.com.
陈 清 (Qing CHEN), Email: qch.2009@163.com.
References
- 1.Wang DW, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. http://www.researchgate.net/publication/339112553_Clinical_Characteristics_of_138_Hospitalized_Patients_With_2019_Novel_Coronavirus-Infected_Pneumonia_in_Wuhan_China. JAMA. 2020;323(11):1061. doi: 10.1001/jama.2020.1585. [Wang DW, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Cohen J, Normile D. New SARS-like virus in China triggers alarm. http://www.researchgate.net/publication/338654040_New_SARS-like_virus_in_China_triggers_alarm. Science. 2020;367(6475):234–5. doi: 10.1126/science.367.6475.234. [Cohen J, Normile D. New SARS-like virus in China triggers alarm [J]. Science, 2020, 367(6475): 234-5.] [DOI] [PubMed] [Google Scholar]
- 3.缪 蓬. 从"非典"和"新冠"看疾病新名词的定名策略. http://d.wanfangdata.com.cn/periodical/kjsyyj202005008. 中国科技术语. 2020;22(5):42–45. [缪蓬.从"非典"和"新冠"看疾病新名词的定名策略[J].中国科技术语, 2020, 22(5): 42-45.] [Google Scholar]
- 4.WHO. Rolling updates on coronavirus disease (COVID-19)[N]. 2020, <a href="https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen" target="_blank">https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen</a>
- 5.WHO. WHO coronavirus disease (COVID-19) dashboard[N]. 2020, <a href="https://covid19.who.int/" target="_blank">https://covid19.who.int/</a>.
- 6.Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_detail_thesis/040006499134.html. Nat Rev Microbiol. 2019;17(3):181–92. doi: 10.1038/s41579-018-0118-9. [Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17(3): 181-92.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Woo PCY, Lau SKP, Lam CSF, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. http://europepmc.org/abstract/MED/22278237. J Virol. 2012;86(7):3995–4008. doi: 10.1128/JVI.06540-11. [Woo PCY, Lau SKP, Lam CSF, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus[J]. J Virol, 2012, 86(7): 3995-4008.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005;24(11 Suppl):S223–7, discussion S226. doi: 10.1097/01.inf.0000188166.17324.60. [Kahn JS, McIntosh K. History and recent advances in coronavirus discovery[J]. Pediatr Infect Dis J, 2005, 24(11 Suppl): S223-7, discussion S226.] [DOI] [PubMed] [Google Scholar]
- 9.Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003;362(9393):1353–8. doi: 10.1016/S0140-6736(03)14630-2. [Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003[J]. Lancet, 2003, 362(9393): 1353-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Su S, Wong G, Shi WF, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. http://www.ncbi.nlm.nih.gov/pubmed/27012512. Trends Microbiol. 2016;24(6):490–502. doi: 10.1016/j.tim.2016.03.003. [Su S, Wong G, Shi WF, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses[J]. Trends Microbiol, 2016, 24 (6): 490-502.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Costa VG, Moreli ML, Saivish MV. The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. http://link.springer.com/article/10.1007/s00705-020-04628-0. Arch Virol. 2020;165(7):1517–26. doi: 10.1007/s00705-020-04628-0. [Costa VG, Moreli ML, Saivish MV. The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century[J]. Arch Virol, 2020, 165(7): 1517-26.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Malik YS, Sircar S, Bhat S, et al. Emerging novel coronavirus (2019-nCoV): current scenario, evolutionary perspective based on genome analysis and recent developments. http://www.tandfonline.com/doi/abs/10.1080/01652176.2020.1727993. Vet Q. 2020;40(1):68–76. doi: 10.1080/01652176.2020.1727993. [Malik YS, Sircar S, Bhat S, et al. Emerging novel coronavirus (2019-nCoV): current scenario, evolutionary perspective based on genome analysis and recent developments[J]. Vet Q, 2020, 40(1): 68-76.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Zhu G, Zhu C, Zhu Y, et al. Minireview of progress in the structural study of SARS-CoV-2 proteins. Curr Res Microb Sci. 2020;9(1):53–61. doi: 10.1016/j.crmicr.2020.06.003. [Zhu G, Zhu C, Zhu Y, et al. Minireview of progress in the structural study of SARS-CoV-2 proteins[J]. Curr Res Microb Sci, 2020, 9 (1): 53-61.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Hasöksüz M, Kiliç S, Saraç F. Coronaviruses and SARS-COV-2. Turk J Med Sci. 2020;50(si-1):549–56. doi: 10.3906/sag-2004-127. [Hasöksüz M, Kiliç S, Saraç F. Coronaviruses and SARS-COV-2[J]. Turk J Med Sci, 2020, 50(si-1): 549-56.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Chen Y, Liu QY, Guo DY. Emerging coronaviruses: Genome structure, replication, and pathogenesis. http://onlinelibrary.wiley.com/doi/10.1002/jmv.26234. J Med Virol. 2020;92(10):2249. doi: 10.1002/jmv.26234. [Chen Y, Liu QY, Guo DY. Emerging coronaviruses: Genome structure, replication, and pathogenesis[J]. J Med Virol, 2020, 92(10): 2249.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. http://virologyj.biomedcentral.com/articles/10.1186/s12985-019-1182-0. Virol J. 2019;16(1):69. doi: 10.1186/s12985-019-1182-0. [Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge[J]. Virol J, 2019, 16(1): 69.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Hasoksuz M, Sreevatsan S, Cho KO, et al. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. http://www.ncbi.nlm.nih.gov/pubmed/11900843. Virus Res. 2002;84(1/2):101–9. doi: 10.1016/S0168-1702(02)00004-7. [Hasoksuz M, Sreevatsan S, Cho KO, et al. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates[J]. Virus Res, 2002, 84(1/2): 101-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11–22. doi: 10.1016/j.jsb.2010.11.021. [Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology[J]. J Struct Biol, 2011, 174(1): 11-22] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Wang Q, Qiu Y, Li JY, et al. A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol Sin. 2020;35(3):337–9. doi: 10.1007/s12250-020-00212-7. [Wang Q, Qiu Y, Li JY, et al. A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility[J]. Virol Sin, 2020, 35(3): 337-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78(4):779–84. doi: 10.1016/j.molcel.2020.04.022. [Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells[J]. Mol Cell, 2020, 78(4): 779-84.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Rajeev R, Prathiviraj R, Kiran GS, et al. Zoonotic evolution and implications of microbiome in viral transmission and infection. http://www.sciencedirect.com/science/article/pii/S0168170220310820. Virus Res. 2020;290:198175. doi: 10.1016/j.virusres.2020.198175. [Rajeev R, Prathiviraj R, Kiran GS, et al. Zoonotic evolution and implications of microbiome in viral transmission and infection[J]. Virus Res, 2020, 290: 198175.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_npg-open-access_thesis/040006354700.html. Nature. 2020;579(7798):270–3. doi: 10.1038/s41586-020-2012-7. [Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-3.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-science_thesis/0201278792143.html. Sci China Life Sci. 2020;63(3):457–60. doi: 10.1007/s11427-020-1637-5. [Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China Life Sci, 2020, 63(3): 457-60.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Matyášek R, Kovařík A. Mutation patterns of human SARS-CoV-2 and bat RaTG13 coronavirus genomes are strongly biased towards C>U transitions, indicating rapid evolution in their hosts. Genes. 2020;11(7):761. doi: 10.3390/genes11070761. [Matyášek R, Kovařík A. Mutation patterns of human SARS-CoV-2 and bat RaTG13 coronavirus genomes are strongly biased towards C>U transitions, indicating rapid evolution in their hosts[J]. Genes, 2020, 11(7): 761.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Cagliani R, Forni D, Clerici M, et al. Computational inference of selection underlying the evolution of the novel coronavirus, severe acute respiratory syndrome coronavirus 2. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM32238584. J Virol. 2020;94(12):e00411–20. doi: 10.1128/JVI.00411-20. [Cagliani R, Forni D, Clerici M, et al. Computational inference of selection underlying the evolution of the novel coronavirus, severe acute respiratory syndrome coronavirus 2[J]. J Virol, 2020, 94(12): e00411-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.周 烨真, 张 世豪, 陈 嘉仪, et al. 新型冠状病毒SARS-CoV-2的变异和进化分析. http://www.j-smu.com/oa/DArticle.aspx?type=view&id=202002152. 南方医科大学学报. 2020;40(2):152–8. doi: 10.12122/j.issn.1673-4254.2020.02.02. [周烨真, 张世豪, 陈嘉仪, 等.新型冠状病毒SARS-CoV-2的变异和进化分析[J].南方医科大学学报, 2020, 40(2): 152-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. http://www.sciencedirect.com/science/article/pii/S1567134820303336. Infect Genet Evol. 2020;85:104502. doi: 10.1016/j.meegid.2020.104502. [Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses[J]. Infect Genet Evol, 2020, 85: 104502.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. http://www.nature.com/articles/s41564-020-0771-4?proof=t. Nat Microbiol. 2020;5(11):1408–17. doi: 10.1038/s41564-020-0771-4. [Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic[J]. Nat Microbiol, 2020, 5(11): 1408-17.] [DOI] [PubMed] [Google Scholar]
- 29.Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020;30(8):1578. doi: 10.1016/j.cub.2020.03.063. [Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak[J]. Curr Biol, 2020, 30(8): 1578。] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Xiao K, Zhai J, Feng Y, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020;583(7815):286–9. doi: 10.1038/s41586-020-2313-x. [Xiao K, Zhai J, Feng Y, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins[J]. Nature, 2020, 583(7815): 286-9.] [DOI] [PubMed] [Google Scholar]
- 31.Li X, Giorgi EE, Marichannegowda MH. Emergence of sars-cov-2 through recombination and strong purifying selection. http://www.researchgate.net/publication/340093348_Emergence_of_SARS-CoV-2_through_Recombination_and_Strong_Purifying_Selection/download. Sci Adv. 2020;6:27. doi: 10.1126/sciadv.abb9153. [Li X, Giorgi EE, Marichannegowda MH. Emergence of sars-cov-2 through recombination and strong purifying selection[J]. Sci Adv, 2020, 6: 27] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Tang XL, Wu CC, Li X, et al. On the origin and continuing evolution of sars-cov-2. http://www.researchgate.net/publication/344133235_On_the_origin_and_continuing_evolution_of_SARS-CoV-2. Microbiology. 2020;7:1012–23. doi: 10.1093/nsr/nwaa036. [Tang XL, Wu CC, Li X, et al. On the origin and continuing evolution of sars-cov-2[J]. Microbiology, 2020, 7: 1012-23.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Zhang RH, Ai X, Liu Y, et al. Genomic characterization and phylogenetic evolution of the SARS-CoV-2[J]. Acta Virol, 2020, [Epub ahead of print].
- 34.Lokman SM, Rasheduzzaman M, Salauddin A, et al. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: a computational biology approach. http://www.researchgate.net/publication/340591160_Exploring_the_genomic_and_proteomic_variations_of_SARS-CoV-2_spike_glycoprotein_a_computational_biology_approach. Infect Genet Evol. 2020;84:104389. doi: 10.1016/j.meegid.2020.104389. [Lokman SM, Rasheduzzaman M, Salauddin A, et al. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: a computational biology approach[J]. Infect Genet Evol, 2020, 84: 104389.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Satija N, Lal SK. The molecular biology of sars coronavirus. Ann N Y Acad Sci. 2007;1102(1):26–38. doi: 10.1196/annals.1408.002. [Satija N, Lal SK. The molecular biology of sars coronavirus[J]. Ann N Y Acad Sci, 2007, 1102(1): 26-38] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. http://www.researchgate.net/publication/339396633_structure_function_and_antigenicity_of_the_sars-cov-2_spike_glycoprotein. Cell. 2020;181(2):281–92. doi: 10.1016/j.cell.2020.02.058. [Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-92.e6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv; 2020, [Epub ahead of print].
- 38.Yuan L, Tang Q. Animal models for emerging coronavirus: progress and new insights. http://www.tandfonline.com/doi/full/10.1080/22221751.2020.1764871. Emerg Microbes Infect. 2020;9(1):949961. doi: 10.1080/22221751.2020.1764871. [Yuan L, Tang Q. Animal models for emerging coronavirus: progress and new insights[J]. Emerg Microbes Infect, 2020, 9(1): 949961.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Damas J, Hughes GM, Keough KC, et al. Broad host range of sars-cov-2 predicted by comparative and structural analysis of ace2 in vertebrates. http://www.researchgate.net/publication/343802101_broad_host_range_of_sars-cov-2_predicted_by_comparative_and_structural_analysis_of_ace2_in_vertebrates. Proc Natl Acad Sci USA. 2020;117(36):22311–22. doi: 10.1073/pnas.2010146117. [Damas J, Hughes GM, Keough KC, et al. Broad host range of sars-cov-2 predicted by comparative and structural analysis of ace2 in vertebrates[J]. Proc Natl Acad Sci USA, 2020, 117(36): 22311-22.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Sarkar J, Guha R. Infectivity, virulence, pathogenicity, host-pathogen interactions of SARS and SARS-CoV-2 in experimental animals: a systematic review. http://link.springer.com/article/10.1007/s11259-020-09778-9. Vet Res Commun. 2020;44(3/4):101–10. doi: 10.1007/s11259-020-09778-9. [Sarkar J, Guha R. Infectivity, virulence, pathogenicity, host-pathogen interactions of SARS and SARS-CoV-2 in experimental animals: a systematic review[J]. Vet Res Commun, 2020, 44(3/4): 101-10.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Lam SD, Bordin N, Waman VP, et al. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals. http://www.researchgate.net/publication/344471903_sars-cov-2_spike_protein_predicted_to_form_complexes_with_host_receptor_protein_orthologues_from_a_broad_range_of_mammals. Sci Rep. 2020;10(1):16471. doi: 10.1038/s41598-020-71936-5. [Lam SD, Bordin N, Waman VP, et al. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals[J]. Sci Rep, 2020, 10(1): 16471.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Gaudreault NN, Trujillo JD, Carossino M, et al. Sars-cov-2 infection, disease and transmission in domestic cats. http://www.researchgate.net/publication/345108891_SARS-CoV-2_infection_disease_and_transmission_in_domestic_cats. Emerg Microbes Infect. 2020;9:2322–32. doi: 10.1080/22221751.2020.1833687. [Gaudreault NN, Trujillo JD, Carossino M, et al. Sars-cov-2 infection, disease and transmission in domestic cats[J]. Emerg Microbes Infect, 2020, 9: 2322-32.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.McAloose D, Laverack M, Wang L, et al. From people to panthera: Natural sars-cov-2 infection in tigers and lions at the bronx zoo. http://www.researchgate.net/publication/346089445_From_People_to_Panthera_Natural_SARS-CoV-2_Infection_in_Tigers_and_Lions_at_the_Bronx_Zoo. mBio. 2020;11(5):e02220. doi: 10.1128/mBio.02220-20. [McAloose D, Laverack M, Wang L, et al. From people to panthera: Natural sars-cov-2 infection in tigers and lions at the bronx zoo[J]. mBio, 2020, 11(5): e02220.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Sit THC, Brackman CJ, Ip SM, et al. Infection of dogs with sars-cov-2. http://www.nature.com/articles/s41586-020-2334-5. Nature. 2020;586(7831):776–8. doi: 10.1038/s41586-020-2334-5. [Sit THC, Brackman CJ, Ip SM, et al. Infection of dogs with sars-cov-2[J]. Nature, 2020, 586 (7831):776-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Salajegheh TS, Magalhães DP, Rahimi P, et al. Transmission of severe acute respiratory syndrome coronavirus 2 (sars-cov-2) to animals: An updated review. http://www.researchgate.net/publication/344332625_Transmission_of_severe_acute_respiratory_syndrome_coronavirus_2_SARS-CoV-2_to_animals_an_updated_review. J Transl Med. 2020;18(1):358. doi: 10.1186/s12967-020-02534-2. [Salajegheh TS, Magalhães DP, Rahimi P, et al. Transmission of severe acute respiratory syndrome coronavirus 2 (sars-cov-2) to animals: An updated review[J]. J Transl Med, 2020, 18(1): 358.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Kiros M, Andualem H, Kiros T, et al. COVID-19 pandemic: current knowledge about the role of pets and other animals in disease transmission. http://www.researchgate.net/publication/344584296_Exploring_the_role_and_mechanism_of_COVID-19_apps_in_fighting_the_current_pandemic. Virol J. 2020;17:143. doi: 10.1186/s12985-020-01416-9. [Kiros M, Andualem H, Kiros T, et al. COVID-19 pandemic: current knowledge about the role of pets and other animals in disease transmission[J]. Virol J, 2020, 17: 143.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Hayashi T, Abiko K, Mandai M, et al. Highly conserved binding region of ace2 as a receptor for sars-cov-2 between humans and mammals. http://www.tandfonline.com/doi/full/10.1080/01652176.2020.1823522. Vet Q. 2020;40:243–9. doi: 10.1080/01652176.2020.1823522. [Hayashi T, Abiko K, Mandai M, et al. Highly conserved binding region of ace2 as a receptor for sars-cov-2 between humans and mammals[J]. Vet Q, 2020, 40: 243-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Oreshkova N, Molenaar RJ, Vreman S, et al. Sars-cov-2 infection in farmed minks, the netherlands, april and may 2020. http://www.researchgate.net/publication/342113764_SARS-CoV-2_infection_in_farmed_minks_the_Netherlands_April_and_May_2020. Euro Surveill. 2020;25(23):2001005. doi: 10.2807/1560-7917.ES.2020.25.23.2001005. [Oreshkova N, Molenaar RJ, Vreman S, et al. Sars-cov-2 infection in farmed minks, the netherlands, april and may 2020[J]. Euro Surveill, 2020, 25(23): 2001005.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Oude MB, Sikkema RS, Nieuwenhuijse DF. Transmission of sars-cov-2 on mink farms between humans and mink and back to humans[J]. Science, 2020, [Epub ahead of print].
- 50.Rambaut A, Holmes EC, O'Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. http://www.researchgate.net/publication/343725195_Rapid_communication_Geographical_and_temporal_distribution_of_SARS-CoV-2_clades_in_the_The_WHO_European_Region_sequencing_laboratories_and_GISAID_EpiCoV_group. Nat Microbiol. 2020;5(11):1403–7. doi: 10.1038/s41564-020-0770-5. [Rambaut A, Holmes EC, O'Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology [J]. Nat Microbiol, 2020, 5(11): 1403-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Forster P, Forster L, Renfrew C, et al. Phylogenetic network analysis of sars-cov-2 genomes. http://www.researchgate.net/publication/340529453_phylogenetic_network_analysis_of_sars-cov-2_genomes. Proc Natl Acad Sci USA. 2020;117:9241–3. doi: 10.1073/pnas.2004999117. [Forster P, Forster L, Renfrew C, et al. Phylogenetic network analysis of sars-cov-2 genomes[J]. Proc Natl Acad Sci USA, 2020, 117: 9241-3.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Guan QT, Sadykov M, Mfarrej S, et al. A genetic barcode of SARS-CoV-2 for monitoring global distribution of different clades during the COVID-19 pandemic. http://www.sciencedirect.com/science/article/pii/S1201971220306810. Int J Infect Dis. 2020;100:216–23. doi: 10.1016/j.ijid.2020.08.052. [Guan QT, Sadykov M, Mfarrej S, et al. A genetic barcode of SARS-CoV-2 for monitoring global distribution of different clades during the COVID-19 pandemic[J]. Int J Infect Dis, 2020, 100: 216-23.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Yang X, Dong N, Chan EW, et al. Genetic cluster analysis of SARS-CoV-2 and the identification of those responsible for the major outbreaks in various countries. http://www.researchgate.net/publication/343818151_Impact_of_SARS-CoV-2_COVID_19_on_the_indigenous_language-speaking_population_in_Mexico. Emerg Microbes Infect. 2020;9(1):1287–99. doi: 10.1080/22221751.2020.1773745. [Yang X, Dong N, Chan EW, et al. Genetic cluster analysis of SARS-CoV-2 and the identification of those responsible for the major outbreaks in various countries[J]. Emerg Microbes Infect, 2020, 9(1): 1287-99.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Phan T. Genetic diversity and evolution of sars-cov-2. http://www.sciencedirect.com/science/article/pii/S1567134820300915. Infect Genet Evol. 2020;81:104260. doi: 10.1016/j.meegid.2020.104260. [Phan T. Genetic diversity and evolution of sars-cov-2[J]. Infect Genet Evol, 2020, 81: 104260.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Daniloski Z, Guo X, Sanjana NE. The d614g mutation in sars-cov-2 spike increases transduction of multiple human cell types[J]. bioRxiv, 2020, [Epub ahead of print].
- 56.Roy C, Mandal SM, Mondal SK, et al. Trends of mutation accumulation across global sars-cov-2 genomes: Implications for the evolution of the novel coronavirus[J]. Genomics, 2020, [Epub ahead of print].
- 57.Wu S, Tian C, Liu P, et al. Effects of sars-cov-2 mutations on protein structures and intraviral protein-protein interactions[J]. J Med Virol, 2020, [Epub ahead of print].
- 58.Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in sars-cov-2 spike: Evidence that d614g increases infectivity of the covid-19 virus. http://www.sciencedirect.com/science/article/pii/S0092867420308205. Cell. 2020;182:812–27. doi: 10.1016/j.cell.2020.06.043. [Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in sars-cov-2 spike: Evidence that d614g increases infectivity of the covid-19 virus[J]. Cell, 2020, 182: 812-27.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Long SW, Olsen RJ, Christensen PA, et al. Molecular architecture of early dissemination and massive second wave of the sars-cov-2 virus in a major metropolitan area. http://www.researchgate.net/publication/345426471_Molecular_Architecture_of_Early_Dissemination_and_Massive_Second_Wave_of_the_SARS-CoV-2_Virus_in_a_Major_Metropolitan_Area. mBio. 2020;11(6):e02707–20. doi: 10.1128/mBio.02707-20. [Long SW, Olsen RJ, Christensen PA, et al. Molecular architecture of early dissemination and massive second wave of the sars-cov-2 virus in a major metropolitan area[J]. mBio, 2020, 11(6): e02707-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Qiao B, Olvera de la Cruz M. Enhanced binding of SARS-CoV-2 spike protein to receptor by distal polybasic cleavage sites. http://www.researchgate.net/publication/343397816_Enhanced_Binding_of_SARS-CoV-2_Spike_Protein_to_Receptor_by_Distal_Polybasic_Cleavage_Sites. ACS Nano. 2020;14(8):10616–23. doi: 10.1021/acsnano.0c04798. [Qiao B, Olvera de la Cruz M. Enhanced binding of SARS-CoV-2 spike protein to receptor by distal polybasic cleavage sites[J]. ACS Nano, 2020, 14(8): 10616-23.] [DOI] [PubMed] [Google Scholar]
- 61.Andrés C, Garcia-Cehic D, Gregori J, et al. Naturally occurring SARS-CoV-2 gene deletions close to the spike S1/S2 cleavage site in the viral quasispecies of COVID19 patients. http://www.tandfonline.com/doi/full/10.1080/22221751.2020.1806735?cookieSet=1. Emerg Microbes Infect. 2020;9(1):1900–11. doi: 10.1080/22221751.2020.1806735. [Andrés C, Garcia-Cehic D, Gregori J, et al. Naturally occurring SARS-CoV-2 gene deletions close to the spike S1/S2 cleavage site in the viral quasispecies of COVID19 patients[J]. Emerg Microbes Infect, 2020, 9(1): 1900-11.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Jin X, Xu KL, Jiang PL, et al. Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to Furin cleavage site. Emerg Microbes Infect. 2020;9(1):1474–88. doi: 10.1080/22221751.2020.1781551. [Jin X, Xu KL, Jiang PL, et al. Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to Furin cleavage site[J]. Emerg Microbes Infect, 2020, 9(1): 1474-88.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM31986264. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5. [Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Xinhua. Spain's top researchers discover coronavirus in waste water collected on march 12, 2019[N]. 2020, <a href="http://www.xinhuanet.com/english/2020-06/27/c_139169290.htm" target="_blank">http://www.xinhuanet.com/english/2020-06/27/c_139169290.htm</a>.
- 65.Martin J, Klapsa D, Wilton T, et al. Tracking SARS-CoV-2 in sewage: evidence of changes in virus variant predominance during COVID-19 pandemic. http://www.researchgate.net/publication/344942992_Tracking_SARS-CoV-2_in_Sewage_Evidence_of_Changes_in_Virus_Variant_Predominance_during_COVID-19_Pandemic. Viruses. 2020;12(10):1144. doi: 10.3390/v12101144. [Martin J, Klapsa D, Wilton T, et al. Tracking SARS-CoV-2 in sewage: evidence of changes in virus variant predominance during COVID-19 pandemic[J]. Viruses, 2020, 12(10): 1144.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Yuan J, Chen ZQ, Gong CH, et al. Sewage as a possible transmission vehicle during a coronavirus disease 2019 outbreak in a densely populated community: Guangzhou, China, April 2020[J]. Clin Infect Dis, 2020, [Epub ahead of print].
- 67.Mordecai GJ, Hewson I. Coronaviruses in the sea. http://www.researchgate.net/publication/343195109_Coronaviruses_in_the_Sea. Front Microbiol. 2020;11:1795. doi: 10.3389/fmicb.2020.01795. [Mordecai GJ, Hewson I. Coronaviruses in the sea[J]. Front Microbiol, 2020, 11: 1795.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Apolone G, Montomoli E, Manenti A, et al. Unexpected detection of SARS-CoV-2 antibodies in the prepandemic period in Italy[J]. Tumori, 2020, [Epub ahead of print].