Abstract
目的
构建髋关节置换的三维有限元模型,模拟关节囊修复和术后康复活动,比较两种关节囊修复方法的生物力学差异。
方法
以骨-囊-骨方式采集6个冷冻髋关节的后关节囊韧带复合体标本,用万能材料试验机测定标本的载荷-应变曲线等力学特性。采集一名志愿者骨盆及下肢薄层CT扫描数据导入Mimics软件,构建髋关节的三维模型,在CATIA软件中建立臼杯、股骨假体、关节囊的三维数字模型导入Mimics,模拟行全髋关节置换手术(THA),装配后数据导入ABAQUS软件中,根据解剖研究、力学结果、本构方程设定关节囊属性,测量、比较屈髋过程中,解剖和传统修复关节囊的生物力学差别。
结果
关节囊韧带复合体标本测试平均极限拉伸应变(39.21±5.23)%、极限拉伸强度(1.65±0.38)MPa。有限元模型应力-应变曲线与标本力学测试的结果相似,符合关节囊的力学特征,屈髋活动时解剖修复的关节囊应力分布均匀,均在极限拉伸强度范围内,传统修复关节囊应力分布不均,屈髋90°时下部关节囊的拉伸应力达到关节囊标本的拉伸强度极限。
结论
有限元模型可用于动态、量化、可视化分析髋关节囊应力分布,解剖修复比传统修复更符合生物力学特点。
Keywords: 全髋关节置换术, 髋关节, 关节囊, 有限元分析
Abstract
Objective
To construct a three-dimensional (3D) finite element mechanical model of total hip arthroplasty for comparison of biomechanical differences of the hip joint following capsule repair and postoperative rehabilitation.
Methods
Six frozen specimens of hip joint posterior capsule ligament complex were collected in a bone-capsule-bone manner, and the load-strain curve and other mechanical properties of the specimens were tested using a universal material testing machine. Thin-section CT data of the pelvis and lower limbs obtained from a volunteer were imported into Mimics software to construct a 3D model of the hip joint. Digital models of the cup, femoral prosthesis and joint capsule were created in CATIA software and imported into Mimics to simulate total hip arthroplasty; the assembled data were imported into ABAQUS software. The properties of the capsule were set according to results of the mechanical test, anatomical studies, and constitutive equations, and the biomechanics of the anatomically repaired and conventionally repaired capsules were compared during hip flexion.
Results
The results of testing on the 6 capsule specimens showed a mean ultimate tensile strain of (39.21±5.23)% and a mean of ultimate tensile strength of 1.65±0.38 MPa. The stress-strain curve of the finite element model was consistent with the results of mechanical test on the specimens and the biochemical characteristics of the capsule. The stress was distributed evenly in the anatomically repaired capsule during hip flexion but not in the capsule repaired through the conventional approach; the tensile stress in the lower part of the conventionally repaired capsule reached the ultimate tensile stress measured on the capsule specimens at a 90° flexion.
Conclusion
The finite element model allows dynamic, quantitative and visual assessment of stress distribution in the hip joint capsule, and compared with the conventional approach, anatomical repair can achieve better biomechanical properties of the capsule.
Keywords: total hip arthroplasty, hip joint, capsule, finite element analysis
近年来,流行病学调查显示假体脱位已成为髋关节翻修第一位原因[1-2]。生物力学研究证明关节囊能增加关节稳定性[3-4],所以部分学者主张经后路行髋关节置换应修复关节囊以降低脱位率[5-7]。但近来有研究认为传统修复方法术后组织拉伸应力过大,失败率很高[8-10]。由于以上研究多基于术后影像学观察,受摄片角度、判读等主观因素影响较大,导致研究结果难以比较,结论完全相反。因此,临床亟需客观、直接的生物力学数据以分析修复的预后。但受限于技术和伦理,关节囊在体受力分析难以实现,传统生物力学试验也不能显示关节囊内部应力分布[11]。而三维有限元仿真模型在量化分析关节囊内部应力分布、结果重复性、可视化方面有显著优势[12-16]。但是,髋关节囊三维有限元模型是典型的非线性、大位移、大变形、几何、力学特性复杂的模型,构建具有相当难度。所以,既往研究多采用一维、二维有限元模型,或将关节囊离散为几部分、简化为韧带[11, 17-19],但均不能反映关节囊整体的应力传导和分布差异[20],无法用于修复预后分析。因此,本研究通过构建髋关节三维有限元模型,量化比较屈髋过程中传统和解剖修复关节囊的动态应力分布差异,为研究两种关节囊修复的预后提供客观力学依据,报告如下。
1. 材料和方法
1.1. 关节囊拉伸力学性能测定
1.1.1. 标本来源及制备
选取6个髋关节冷冻新鲜标本,年龄65~78岁,由扬州大学医学院解剖教研室提供,排除有髋部疾病、畸形、受伤或手术的标本,本研究经苏北人民医院伦理委员会审查批准,严格遵循人体标本研究的伦理标准。于梨状肌上缘、股骨颈下缘,沿股骨颈纵行切开后关节囊,距离关节囊髋臼和股骨附着点1 cm处,以摆锯截取后关节囊及其附着点处1 cm宽骨条,将骨条修成0.5 cm厚,形成骨-关节囊-骨结构[21]。
1.1.2. 方法及观测指标
将关节囊标本装载于美国Instron 3367型双立柱台式万能材料试验机进行实验(图 1),标本正式测试前,先置于0.98 N的拉伸载荷下,使关节囊完全伸展,测量其长度、宽度和厚度,再以0.5 mm/s的速率,进行10次预拉伸处理,每次加载拉力至5%应变,以使载荷-应变之间关系达到稳定。然后以0.25 mm/s的速率加载应力,直至标本发生撕裂[21-22]。拉力和关节囊拉伸位移通过传感器传送到记录仪,电脑记录载荷-应变曲线、应力-应变曲线。记录发生断裂时的拉伸应力、拉伸应变、载荷。
1.

标本装载
Specimen loading.
1.1.3. 统计学分析
极限拉伸应变、极限拉伸载荷、拉伸强度等数据以SPSS 20.0进行描述性统计分析。
1.2. 有限元模型构建及分析
1.2.1. 主要设备和软件
GE公司64排CT机; Windows 7 64位操作系统; 软件包括MIMICS16.0,Geomagic Studio12.0,CATIA V5,ABAQUS 6.14等。
1.2.2. 髋关节三维有限元模型的建立
采集一名27岁,身高175 cm,体质量65公斤的健康成年男性志愿者双下肢螺旋CT扫描DICOM数据(层厚0.625 mm,分辨率512×512),将数据导入Mimics,通过阈值划分、轮廓跟踪、3d合成,形成点云格式三维图像。利用CATIA软件正向建模功能构建人工髋假体三维模型导入Mimics,在小转子上方1.5 cm处模拟截骨并进行装配。设置坐标系原点于髋臼中心,参考轴方向如下:Y轴向前,X轴向内,Z轴向上。装配前在Mimics系统调整、检查髋关节矢状面、冠状面、横断面分别与系统坐标轴三个轴向一致,设置股骨头球心约束,调整、检查股骨处于中立位,标准为下肢力线、insall线分别与对应坐标轴平行,矢状面骨盆股骨角50°(图 2A、B)[23]。将以上文件以stl格式导入Geomagic Studio软件,逆向生成stp格式几何文件,导入CATIA软件,根据关节囊标本测量和文献记录解剖结果,使用CATIA软件投影功能形成股骨颈和髋臼附着点轮廓线,设置长度、厚度,生成关节囊模型[24-25](图 2C),把以上文件导入ABAQUS软件,骨骼、假体划分成四面体,关节囊划分成六面体单元,采用网格加密处理,根据网格收敛检测,将关节囊划分为11521个六面体,共21 210个结点,在精度和计算效率之间取得平衡。生成髋关节有限元三维模型。材料属性根据文献设定,臼杯为高分子聚乙烯,弹性模量1.083 GPa、泊松比0.45、股骨假体材料设定为钴铬合金,弹性模量210 GPa、泊松比0.3,皮质骨弹性模量16.5 Gpa,泊松比0.29、松质骨1.6 Gpa,泊松比0.26,关节囊本构模型按文献记载选择[11],将关节囊拉伸力学测试数据输入本构模型,以拟合关节囊的力学特征。
2.

髋关节三维有限元模型
3D finite element mechanical model of total hip arthroplasty. A: Neutral rotation of hip; B: Neutral flextion of hip; C: Geometric model.
1.2.3. 屈髋运动分析的边界条件、载荷设定和结果分析方法
因为骨骼等弹性模量远大于关节囊,在屈髋过程中假体和髋臼的形变可以忽略不计,所以为节约计算量,参照既往研究设定边界条件为:骨盆、关节囊的髋臼止点的各节点X、Y、Z轴的位移为0。定义球心原点为股骨屈髋动作的参考节点,关节囊股骨侧止点、股骨与球心参考点建立屈髋运动耦合关系。因为髋关节囊修复失败大多数发生于术后早期[8],而术后早期康复计划多限制髋关节屈髋不大于90°,不做内外旋活动[9, 26],所以实验设置屈髋至90°模拟术后早期康复。计算开始于解剖止点的关节囊,股骨相对髋臼屈髋0°中立位,通过输入随时间逐步增加髋关节屈曲角位移进行,载荷持续施加直到屈髋达到90°时终止(图 4A、B),绘制关节囊模型的应力-应变关系曲线图,并与万能试验机生物力学测试结果对比(图 3B),检查模型的仿真度,记录屈髋90°时关节囊应力云图(图 4C),根据云图在后关节囊的上、下部各选择一个典型单元,记录单元编号,绘制每个单元屈髋过程的屈髋角度-应力曲线图。传统修复关节囊的载荷施加分为两步,先通过拉伸分析步,对后关节囊股骨端施加拉伸载荷,将关节囊拉伸至修复后的止点(图 4D),模拟术中经粗隆钻孔修复关节囊,再重复屈髋90°载荷,记录屈髋90°时重建关节囊的应力云图(图 4E、F),并绘制记录编号的单元屈髋过程的屈髋角度-应力曲线图作对比(图 5)
4.

解剖修复以及传统修复关节囊应力云图
Anatomical repair of the hip joint capsule. A: Anatomical insertion; B: 90° flexion; C: Stress cloud diagram of traditional repaired capsule at 90° flexion; D: Insertion of traditionally repaired capsule; E: 90 °flexion; F: Stress cloud diagram of capsule at 90° flexion.
3.

力学测试结果
Results of mechanical test. A: Load-strain curve; B: Stress-strain curve.
5.

屈髋角度-应力曲线
Flexion angle-stress curves. S: Superior element of anatomical repaired capsule; I: Inferior element of anatomical repaired; SR: Superior element of traditional repaired; SI: Inferior element of traditional repaired.
2. 结果
2.1. 拉伸力学实验结果
后关节囊标本载荷-应变曲线关系如图 3A所示,符合关节囊的粘弹性和流变学特性,极限拉伸应变(39.21±5.23)%、极限拉伸载荷(142.06±34.15)N,极限拉伸强度(1.65±0.38)MPa。
2.2. 有限元分析结果
关节囊模型的应力-应变关系曲线图符合流变学特性,与标本生物力学测试结果一致性良好(图 3B),模型仿真度较好。由于采用显式分析,屈髋角度-应力曲线呈波浪状,但应力变化趋势明确(图 5),屈髋角度-应力曲线及应力云图显示:解剖和传统修复关节囊均表现为屈髋过程后下部分关节囊应力增加大于后上部分,但解剖修复关节囊应力分布较均匀,传统修复关节囊应力后下部分较集中。屈髋至90°时传统修复关节囊后下部分拉伸应力达到关节囊极限拉伸强度上限,而后上部分在极限值范围内。解剖修复关节囊屈髋至90°过程中拉伸应力均在极限值范围内(图 4、5)。
3. 讨论
3.1. 本仿真模型的构建特点
本研究构建了具有完整髋关节囊的三维有限元模型,特点如下:(1)关节囊力学性能仿真:根据标本拉伸力学测试结果设定关节囊本构模型的应力、应变参数,对比模型和标本的应力-应变曲线,具有较好的一致性(图 3B)。与李永奖等18, 21]使用Hewitt的坐股韧带数据相比,标本测得的材料强度等结果低于韧带[,其均数范围和Stewart测得的关节囊标本生物力学结果相近[27],与采用韧带数据的模型相比,此模型更符合关节囊整体的力学特征;(2)修复过程仿真:因为传统经粗隆钻孔修复并非解剖修复[28-29],所以我们通过增加关节囊拉伸分析步,模拟术中将关节囊由股骨颈止点拉长至粗隆间线进行修复的过程,使模型更逼近实际情况;(3)精度较高、可视化效果更好:为提高计算精度,研究目标关节囊采用加密六面体网格划分,网格数达到Elkins关节囊模型的1.2倍[12],不同于既往研究的是我们没有舍弃髋臼、股骨[11-12, 18],而是在保证解剖形态的前提下大幅度减少网格,以保留其指示运动、解剖方向作用,增强可视化效果,同时尽量减少计算成本上升,经反复测试、比较多种模型组合,此方案在计算精度、效率和视觉效果方面取得较好的平衡。
3.2. 关节囊有限元力学分析的意义
由于关节囊深在,术后不易直接观察,目前修复预后分析多采用影像学检查,受术者放置标记方法、检查者对图像的判读等主观因素影响,研究结果差异显著,甚至完全相反[7-10, 30-31],导致临床对关节囊修复的预后存在较大争议。通过有限元力学分析可获取关节囊动态应力云图和屈髋角度-应力曲线等客观、量化数据,对研究关节囊修复预后有重要价值。
因此,本实验针对关节囊修复的预后进行了有限元分析,典型单元的动态量化分析显示传统修复的关节囊屈髋角度-应力曲线整体高于解剖修复关节囊(图 5)。此结果与Mihalko等[29]生物力学研究结果相似:他们发现关节囊修复后髋关节屈曲、内旋扭力高于正常关节,也与Stahelin、Osmani等[9, 32]修复后关节囊张力高于正常关节囊的临床经验一致。对比关节囊的应力云图分布发现传统法修复后关节囊应力集中于下部(图 4F),根据下部单元的屈髋角度-应力曲线分析,屈髋达90°时,传统修复关节囊的下部张力有超过关节囊拉伸强度上限的趋势(图 5)。Elkins等[12]模拟关节囊传统修复的有限元研究中也发现屈髋时存在局部应力集中表现,并推断在特定部位的缝线有断裂可能;Sioen等[28]进行体外髋关节囊传统修复实验研究发现,下方关节囊拉伸和张力大于上方关节囊,本实验的动态云图分析结果与之一致;Mihalko等[29]在传统修复关节囊标本抗脱位测试中发现,6个标本中有4个发生了下关节囊撕脱,我们根据力学曲线和极限拉伸强度判断的传统修复预后趋势与之相同。而李永奖等[33]临床研究认为,后下关节囊修复不易成功,所以放弃修复后下关节囊,也印证了本实验关于传统修复预后趋势的判断。
综上所述,我们通过仿真有限元模型力学分析,阐明了修复和早期康复对关节囊应力分布的影响,为研究关节囊修复的预后探索了一条新的途径,并证明在屈髋90°过程中,传统修复后下关节囊应力显著高于解剖修复,达到关节囊拉伸强度上限,易发生部分撕裂,解剖修复更符合生物力学特点。本实验的局限性主要有:模型没有包括髋周肌肉,与体内力学环境有一定区别;髋关节囊的解剖结构较复杂,构建完全仿真的模型尚需继续探索。
Biography
胡翰生,博士,主任医师,E-mail: doc_huhs@163.com
Funding Statement
江苏省骨科创新团队项目(CXTDB2017004);扬州市自然科学基金青年人才项目(YZ2016109)
Contributor Information
胡 翰生 (Hansheng HU), Email: doc_huhs@163.com.
范 卫民 (Weimin FAN), Email: fanweimin_vip@sina.com.
References
- 1.Gwam CU, Mistry JB, Mohamed NS, et al. Current epidemiology of revision total hip arthroplasty in the United States: national inpatient sample 2009 to 2013. http://www.sciencedirect.com/science/article/pii/S088354031730164X. J Arthroplast. 2017;32(7):2088–92. doi: 10.1016/j.arth.2017.02.046. [Gwam CU, Mistry JB, Mohamed NS, et al. Current epidemiology of revision total hip arthroplasty in the United States: national inpatient sample 2009 to 2013[J]. J Arthroplast, 2017, 32(7): 2088-92.] [DOI] [PubMed] [Google Scholar]
- 2.Bozic KJ, Kurtz SM, Lau E, et al. The epidemiology of revision total hip arthroplasty in the United States. http://europepmc.org/articles/PMC2795838/ J Bone Joint Surg Am. 2009;91(1):128–33. doi: 10.2106/JBJS.H.00155. [Bozic KJ, Kurtz SM, Lau E, et al. The epidemiology of revision total hip arthroplasty in the United States[J]. J Bone Joint Surg Am, 2009, 91(1): 128-33.] [DOI] [PubMed] [Google Scholar]
- 3.Van Arkel RJ, Amis AA, Cobb JP, et al. The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres: an experimental study. http://europepmc.org/abstract/MED/25820886?source=rss. Bone Joint J. 2015;97(4):484–91. doi: 10.1302/0301-620X.97B4.34638. [Van Arkel RJ, Amis AA, Cobb JP, et al. The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres: an experimental study[J]. Bone Joint J, 2015, 97(4): 484-91.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Takao M, Otake Y, Fukuda N, et al. The posterior capsular ligamentous complex contributes to hip joint stability in distraction. http://europepmc.org/abstract/MED/29137900. J Arthroplast. 2017;33(3):919–24. doi: 10.1016/j.arth.2017.10.026. [Takao M, Otake Y, Fukuda N, et al. The posterior capsular ligamentous complex contributes to hip joint stability in distraction [J]. J Arthroplast, 2017, 33(3): 919-24.] [DOI] [PubMed] [Google Scholar]
- 5.Kumar V, Sharma S, James J, et al. Total hip replacement through a posterior approach using a 22 mm diameter femoral head: the role of the transverse acetabular ligament and capsular repair in reducing the rate of dislocation. http://www.ncbi.nlm.nih.gov/pubmed/25183591. Bone Joint J. 2014;96(9):1202–6. doi: 10.1302/0301-620X.96B9.31831. [Kumar V, Sharma S, James J, et al. Total hip replacement through a posterior approach using a 22 mm diameter femoral head: the role of the transverse acetabular ligament and capsular repair in reducing the rate of dislocation[J]. Bone Joint J, 2014, 96 (9): 1202-6.] [DOI] [PubMed] [Google Scholar]
- 6.Sioen W, Meermans G, Lenaert A. Surgical technique description : Transosseous 'over the top' reconstruction of capsule and tendons in primary total hip arthroplasty using a posterior approach. http://europepmc.org/abstract/MED/29322900. Acta Orthop Belg. 2017;83(1):87–92. [Sioen W, Meermans G, Lenaert A. Surgical technique description : Transosseous 'over the top' reconstruction of capsule and tendons in primary total hip arthroplasty using a posterior approach[J]. Acta Orthop Belg, 2017, 83(1): 87-92.] [PubMed] [Google Scholar]
- 7.Su EP, Mahoney CR, Adler RS, et al. Integrity of repaired posterior structures after THA. http://europepmc.org/abstract/MED/16741473. Clin Orthop Relat Res. 2006;447:43–7. doi: 10.1097/01.blo.0000218744.07366.29. [Su EP, Mahoney CR, Adler RS, et al. Integrity of repaired posterior structures after THA[J]. Clin Orthop Relat Res, 2006, 447: 43-7.] [DOI] [PubMed] [Google Scholar]
- 8.Loiba V, Stucinskas J, Robertsson O, et al. The analysis of posterior soft tissue repair durability after total hip arthroplasty in primary osteoarthritis patients. http://smartsearch.nstl.gov.cn/paper_detail.html?id=4f25676fdae34437dcfe16bbdd55e2bc. Hip Int. 2015;25(5):420–3. doi: 10.5301/hipint.5000232. [Loiba V, Stucinskas J, Robertsson O, et al. The analysis of posterior soft tissue repair durability after total hip arthroplasty in primary osteoarthritis patients[J]. Hip Int, 2015, 25(5): 420-3.] [DOI] [PubMed] [Google Scholar]
- 9.Stahelin T, Drittenbass L, Hersche O, et al. Failure of capsular enhanced short external rotator repair after total hip replacement. http://europepmc.org/abstract/MED/15057098. Clin Orthop Relat Res. 2004;420(420):199–204. doi: 10.1097/00003086-200403000-00028. [Stahelin T, Drittenbass L, Hersche O, et al. Failure of capsular enhanced short external rotator repair after total hip replacement[J]. Clin Orthop Relat Res, 2004, 420(420): 199-204.] [DOI] [PubMed] [Google Scholar]
- 10.周 一新, 郭 盛杰, 陈 涛, et al. 全髋关节置换术后关节囊及外旋肌修复的B超观察. http://d.wanfangdata.com.cn/Periodical/zhgkzz98200906004. 中华骨科杂志. 2009;6:530–3. [周一新, 郭盛杰, 陈涛, 等.全髋关节置换术后关节囊及外旋肌修复的B超观察[J].中华骨科杂志, 2009, 6: 530-3.] [Google Scholar]
- 11.Stewart KJ, Pedersen DR, Callaghan JJ, et al. Implementing capsule representation in a total hip dislocation finite element model. http://pubmedcentralcanada.ca/pmcc/ptpicrender.fcgi?aid=1336499&blobtype=html&lang=en-ca. Iowa Orthop J. 2004;24:1–8. [Stewart KJ, Pedersen DR, Callaghan JJ, et al. Implementing capsule representation in a total hip dislocation finite element model[J]. Iowa Orthop J, 2004, 24: 1-8.] [PMC free article] [PubMed] [Google Scholar]
- 12.Elkins JM, Stroud NJ, James Rudert M, et al. The capsule's contribution to total hip construct stability-A finite element analysis. http://pubmedcentralcanada.ca/pmcc/articles/PMC3160501/ J Orthop Res. 2011;29(11):1642–8. doi: 10.1002/jor.21435. [Elkins JM, Stroud NJ, James Rudert M, et al. The capsule's contribution to total hip construct stability-A finite element analysis [J]. J Orthop Res, 2011, 29(11): 1642-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Menegaz GL, Gomide LC, de Araujo CA. Biomechanical evaluation of acromioclavicular joint reconstructions using a 3-dimensional model based on the finite element method. http://www.sciencedirect.com/science/article/pii/S026800331830233X. Clin Biomech. 2019;70:170–6. doi: 10.1016/j.clinbiomech.2019.09.002. [Menegaz GL, Gomide LC, de Araujo CA. Biomechanical evaluation of acromioclavicular joint reconstructions using a 3-dimensional model based on the finite element method[J]. Clin Biomech, 2019, 70: 170-6.] [DOI] [PubMed] [Google Scholar]
- 14.Ellis BJ, Drury NJ, Moore SM, et al. Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam. http://europepmc.org/articles/PMC3769951. Comp Meth Biomech Biomed Engin. 2010;13(3):413–8. doi: 10.1080/10255840903317378. [Ellis BJ, Drury NJ, Moore SM, et al. Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam[J]. Comp Meth Biomech Biomed Engin, 2010, 13(3): 413-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Novotny JE, Beynnon BD, Nichols CE. Modeling the stability of the human glenohumeral joint during external rotation. http://www.ncbi.nlm.nih.gov/pubmed/10673118. J Biomech. 2000;33(3):345–54. doi: 10.1016/s0021-9290(99)00142-6. [Novotny JE, Beynnon BD, Nichols CE. Modeling the stability of the human glenohumeral joint during external rotation[J]. J Biomech, 2000, 33(3): 345-54.] [DOI] [PubMed] [Google Scholar]
- 16.Drury NJ, Ellis BJ, Weiss JA, et al. Finding consistent strain distributions in the glenohumeral capsule between two subjects: Implications for development of physical examinations. http://pubmedcentralcanada.ca/pmcc/articles/PMC3042532/ J Biomech. 2011;44(4):607–13. doi: 10.1016/j.jbiomech.2010.11.018. [Drury NJ, Ellis BJ, Weiss JA, et al. Finding consistent strain distributions in the glenohumeral capsule between two subjects: Implications for development of physical examinations[J]. J Biomech, 2011, 44(4): 607-13.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Abdel RE, Hefzy MS. A two-dimensional dynamic anatomical model of the human knee joint. http://europepmc.org/abstract/med/8309229. J Biomech Eng. 1993;115(4A):357–65. doi: 10.1115/1.2895498. [Abdel RE, Hefzy MS. A two-dimensional dynamic anatomical model of the human knee joint[J]. J Biomech Eng, 1993, 115(4A): 357-65.] [DOI] [PubMed] [Google Scholar]
- 18.李 永奖, 杨 国敬, 张 力成, et al. 计算机辅助髋关节囊韧带重建三维有限元分析及其生物力学意义. 中华创伤杂志. 2008;12:985–9. [李永奖, 杨国敬, 张力成, 等.计算机辅助髋关节囊韧带重建三维有限元分析及其生物力学意义[J].中华创伤杂志, 2008, 12: 985-9.] [Google Scholar]
- 19.Blankevoort L, Kuiper JH, Huiskes R, et al. Articular contact in a three-dimensional model of the knee. http://www.ncbi.nlm.nih.gov/pubmed/1761580. J Biomech. 1991;24(11):1019–31. doi: 10.1016/0021-9290(91)90019-j. [Blankevoort L, Kuiper JH, Huiskes R, et al. Articular contact in a three-dimensional model of the knee[J]. J Biomech, 1991, 24(11): 1019-31.] [DOI] [PubMed] [Google Scholar]
- 20.Moore SM, Ellis B, Weiss JA, et al. The glenohumeral capsule should be evaluated as a sheet of fibrous tissue: a validated finite element model. http://www.ncbi.nlm.nih.gov/pubmed/19911278. Ann Biomed Eng. 2010;38(1):66–76. doi: 10.1007/s10439-009-9834-7. [Moore SM, Ellis B, Weiss JA, et al. The glenohumeral capsule should be evaluated as a sheet of fibrous tissue: a validated finite element model[J]. Ann Biomed Eng, 2010, 38(1): 66-76.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Hewitt JK, Guilak F, Glisson RR, et al. Regional material properties of the human hip joint capsule ligaments. http://onlinelibrary.wiley.com/doi/10.1016/S0736-0266(00)00035-8/full. J Orthop Res. 2001;19(3):359–64. doi: 10.1016/S0736-0266(00)00035-8. [Hewitt JK, Guilak F, Glisson RR, et al. Regional material properties of the human hip joint capsule ligaments[J]. J Orthop Res, 2001, 19 (3): 359-64.] [DOI] [PubMed] [Google Scholar]
- 22.胡 燕青, 蒋 海, 李 棋, et al. 不同肌腱缝合方法的生物力学比较研究. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXCW201710010.htm. 中国修复重建外科杂志. 2017;31(10):1208–13. doi: 10.7507/1002-1892.201705007. [胡燕青, 蒋海, 李棋, 等.不同肌腱缝合方法的生物力学比较研究[J].中国修复重建外科杂志, 2017, 31(10): 1208-13.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.魏 显招, 祁 敏, 汪 滋民, et al. 髋关节屈曲运动及其测量方法研究进展. http://d.wanfangdata.com.cn/Periodical/zgjxwkzz201017011. 中国矫形外科杂志. 2010;17:1443–6. [魏显招, 祁敏, 汪滋民, 等.髋关节屈曲运动及其测量方法研究进展[J].中国矫形外科杂志, 2010, 17: 1443-6.] [Google Scholar]
- 24.John Cooper H, Walters BL, Rodriguez JA. Anatomy of the hip capsule and pericapsular structures: a cadaveric study. http://www.ncbi.nlm.nih.gov/pubmed/25873416. Clin Anat. 2015;28(5):665–71. doi: 10.1002/ca.22539. [John Cooper H, Walters BL, Rodriguez JA. Anatomy of the hip capsule and pericapsular structures: a cadaveric study[J]. Clin Anat, 2015, 28(5): 665-71.] [DOI] [PubMed] [Google Scholar]
- 25.Walters BL, Cooper J, Rodriguez JA. New findings in hip capsular anatomy: dimensions of capsular thickness and pericapsular contributions. http://www.sciencedirect.com/science/article/pii/S074980631400440X. Arthroscopy. 2014;30(10):1235–45. doi: 10.1016/j.arthro.2014.05.012. [Walters BL, Cooper J, Rodriguez JA. New findings in hip capsular anatomy: dimensions of capsular thickness and pericapsular contributions [J]. Arthroscopy, 2014, 30(10): 1235-45.] [DOI] [PubMed] [Google Scholar]
- 26.White RE, Forness TJ, Allman JK, et al. Effect of posterior capsular repair on early dislocation in primary total hip replacement. http://europepmc.org/abstract/MED/11764346. Clin Orthop Relat Res. 2001;393:163–7. doi: 10.1097/00003086-200112000-00019. [White RE, Forness TJ, Allman JK, et al. Effect of posterior capsular repair on early dislocation in primary total hip replacement[J]. Clin Orthop Relat Res, 2001, 393: 163-7.] [DOI] [PubMed] [Google Scholar]
- 27.Stewart KJ, Edmonds RH, Brand RA, et al. Spatial distribution of hip capsule structural and material properties. http://www.sciencedirect.com/science/article/pii/S002192900200091X. J Biomech. 2002;35(11):1491–8. doi: 10.1016/s0021-9290(02)00091-x. [Stewart KJ, Edmonds RH, Brand RA, et al. Spatial distribution of hip capsule structural and material properties[J]. J Biomech, 2002, 35(11): 1491-8.] [DOI] [PubMed] [Google Scholar]
- 28.Sioen W, Simon JP, Labey L, et al. Posterior transosseous capsulotendinous repair in total hip arthroplasty: a cadaver study. http://test.europepmc.org/abstract/MED/12377910. J Bone Jo Surg Am Vol. 2002;84(10):1793–8. doi: 10.2106/00004623-200210000-00009. [Sioen W, Simon JP, Labey L, et al. Posterior transosseous capsulotendinous repair in total hip arthroplasty: a cadaver study[J]. J Bone Jo Surg Am Vol, 2002, 84(10): 1793-8.] [DOI] [PubMed] [Google Scholar]
- 29.Mihalko WM, Whiteside LA. Hip mechanics after posterior structure repair in total hip arthroplasty. http://www.ncbi.nlm.nih.gov/pubmed/15057097. Clin Orthop Relat Res. 2004;420(420):194–8. doi: 10.1097/00003086-200403000-00027. [Mihalko WM, Whiteside LA. Hip mechanics after posterior structure repair in total hip arthroplasty[J]. Clin Orthop Relat Res, 2004, 420 (420): 194-8.] [DOI] [PubMed] [Google Scholar]
- 30.Pellicci PM, Potter HG, Foo LF, et al. MRI shows biologic restoration of posterior soft tissue repairs after THA. http://www.ncbi.nlm.nih.gov/pubmed/18813893. Clin Orthop Relat Res. 2009;467(4):940–5. doi: 10.1007/s11999-008-0503-1. [Pellicci PM, Potter HG, Foo LF, et al. MRI shows biologic restoration of posterior soft tissue repairs after THA[J]. Clin Orthop Relat Res, 2009, 467(4): 940-5.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Khan RJK, Yao F, Li M, et al. Capsular-enhanced repair of the short external rotators after total hip arthroplasty. J Arthroplast. 2007;22(6):840–3. doi: 10.1016/j.arth.2006.08.009. [Khan RJK, Yao F, Li M, et al. Capsular-enhanced repair of the short external rotators after total hip arthroplasty[J]. J Arthroplast, 2007, 22(6): 840-3.] [DOI] [PubMed] [Google Scholar]
- 32.Osmani O, Malkani AL. Posterior capsular repair following total hip arthroplasty: a modified technique. http://europepmc.org/abstract/MED/15237893. Orthopedics. 2004;27(6):553–5. doi: 10.3928/0147-7447-20040601-10. [Osmani O, Malkani AL. Posterior capsular repair following total hip arthroplasty: a modified technique[J]. Orthopedics, 2004, 27(6): 553-5.] [DOI] [PubMed] [Google Scholar]
- 33.李 永奖, 张 力成, 杨 国敬, et al. 后方关节囊修补预防全髋关节置换术后早期脱位. http://doi.med.wanfangdata.com.cn/qk/gwyx-gkxfc200601015. 中国矫形外科杂志. 2006;12:891–4. [李永奖, 张力成, 杨国敬, 等.后方关节囊修补预防全髋关节置换术后早期脱位[J].中国矫形外科杂志, 2006, 12: 891-4.] [Google Scholar]
