Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2021 Jan 19:2021.01.16.426970. [Version 1] doi: 10.1101/2021.01.16.426970

A trans -complementation system for SARS-CoV-2

Xianwen Zhang, Yang Liu, Jianying Liu, Adam L Bailey, Kenneth S Plante, Jessica A Plante, Jing Zou, Hongjie Xia, Nathen Bopp, Patricia Aguilar, Ping Ren, Vineet D Menachery, Michael S Diamond, Scott C Weaver, Xuping Xie, Pei-Yong Shi
PMCID: PMC7836106  PMID: 33501436

ABSTRACT

The biosafety level-3 (BSL-3) requirement to culture severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a bottleneck for research and countermeasure development. Here we report a trans -complementation system that produces single-round infectious SARS-CoV-2 that recapitulates authentic viral replication. We demonstrate that the single-round infectious SARS-CoV-2 can be used at BSL-2 laboratories for high-throughput neutralization and antiviral testing. The trans -complementation system consists of two components: a genomic viral RNA containing a deletion of ORF3 and envelope gene, and a producer cell line expressing the two deleted genes. Trans- complementation of the two components generates virions that can infect naive cells for only one round, but does not produce wild-type SARS-CoV-2. Hamsters and K18-hACE2 transgenic mice inoculated with the complementation-derived virions exhibited no detectable disease, even after intracranial inoculation with the highest possible dose. The results suggest that the trans -complementation platform can be safely used at BSL-2 laboratories for research and countermeasure development.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES