Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2021 Jan 28;10(4):e00799-20. doi: 10.1128/MRA.00799-20

Draft Genome Sequences of the Black Truffles Tuber brumale Vittad. and Tuber indicum Cook & Massee

Emmanuelle Morin a,, Claude Murat a, Nicolas Cichocki a, Herminia De la Varga a,*, Annegret Kohler a, Jianping Xu b, Igor V Grigoriev c, Francis M Martin a,
Editor: Antonis Rokasd
PMCID: PMC7844066  PMID: 33509981

Tuber brumale and Tuber indicum (Pezizomycetes) are two edible black truffles establishing ectomycorrhizal symbiosis with trees and shrubs. T. brumale is ubiquitous in Europe, and T. indicum is mainly found in China. Here, we present the draft genome sequences of T. brumale and T. indicum.

ABSTRACT

Tuber brumale and Tuber indicum (Pezizomycetes) are two edible black truffles establishing ectomycorrhizal symbiosis with trees and shrubs. T. brumale is ubiquitous in Europe, and T. indicum is mainly found in China. Here, we present the draft genome sequences of T. brumale and T. indicum.

ANNOUNCEMENT

The black truffles Tuber brumale Vittadini and Tuber indicum Cook & Massee are ectomycorrhizal ascomycetes. T. brumale is widespread in Europe, except in the boreal and Arctic regions (1). This species often competes with the Périgord black truffle (Tuber melanosporum) in truffle orchards (2). T. indicum is found mainly in the Chinese provinces of Yunnan and Sichuan (3). The two species belong to the Melanosporum phylogenetic clade (4) and have morphological features similar to those of T. melanosporum, making their distinctions sometimes difficult (5). Together with the published genome sequences of T. aestivum, T. borchii, T. magnatum, and T. melanosporum (68), these newly sequenced genomes will allow a better understanding of the evolution, biology, and ecology of truffles.

For genome and RNA sequencing, a T. brumale fruiting body was harvested in Lozère (Occitanie, France) in March 2014, and a T. indicum fruiting body was purchased at a French market in 2013. For both species, genomic DNA (gDNA) was extracted from 2 g of fruiting body by using a modified cetyl trimethylammonium bromide (CTAB) protocol (9). Total RNA was extracted using the RNeasy plant minikit (Qiagen) as described earlier (6). The gDNA and the Illumina TruSeq Nano kit were used to construct paired-end libraries (2 × 100 bp for both and 2 × 125 bp for T. brumale) as well as mate pair libraries (with insert sizes of 3 and 8 kbp) using the Illumina Nextera mate pair kit. In addition, paired-end libraries (2 × 100 bp and 2 × 125 bp) were generated from total RNA using the Illumina TruSeq stranded mRNA kit. Sequencing was performed at the GeT-PlaGe sequencing facility (Toulouse, France) using the Illumina HiSeq 2500 platform. The raw Illumina reads were trimmed of adapter sequences and low-quality bases using Trimmomatic v.0.32 (10) with the following parameters: TRAILING:20, LEADING:20, SLIDINGWINDOW:4:20, and MINLEN:70. Assembly of the genomes was carried out using ALLPATHS-LG v.46154 (11) and GapCloser v.1.12.6 (12). The genome assemblies were then annotated using the Joint Genome Institute (JGI) annotation pipeline (13, 14).

The sequencing data statistics are shown in Table 1. The genome sizes of T. brumale and T. indicum are in the range of other truffle species, from 97.18 to 192 Mb (68).

TABLE 1.

Genomic features and raw data of Tuber brumale and Tuber indicum

Organism Source No. of reads Draft genome size (Mb) No. of scaffolds N50 (bp) G+C content (%) Mean coverage (×) SRA accession no. GenBank accession no. BioProject accession no.
Tuber brumale DNA 136,348,163 171.44 1,475 336,267 46.46 131.63 SRR12018987, SRR12018988, SRR12018989 JACCEG000000000 PRJNA633036
135,457,273 SRR12018993, SRR12018994,SRR12018995
RNA 128,865,953 SRR12018990, SRR12018991, SRR12018992
Tuber indicum DNA 558,521,206 110.49 734 538,733 47.41 239.48 SRR12104989, SRR12104990, SRR12104991 JACCEH000000000 PRJNA633038
RNA 86,652,466 SRR12104986, SRR12104987, SRR12104988

RepeatScout v.1.0.5 (15) was used to identify de novo repetitive DNA in the genome assemblies as reported by Peter et al. (16). RepeatMasker v.4.0.9 (17) was used to estimate the repeat element coverage in the genomes. Transposable elements constitute 61.5% and 47.1% of the T. brumale and T. indicum genomes, respectively. Default parameters were used for all software except where otherwise noted.

A total of 12,380 protein-coding genes for T. brumale and 11,870 protein-coding genes for T. indicum were predicted. The number of protein-coding genes is also in the range of other truffle species, from 9,344 to 12,346 protein-coding genes (68).

Data availability.

The draft whole-genome shotgun projects were deposited in DDBJ/ENA/GenBank. The SRA and GenBank accession numbers for T. brumale and T. indicum are listed in Table 1. The genome assemblies and annotations are also available at the JGI-DOE Mycocosm portal (13) (https://mycocosm.jgi.doe.gov/Tubbr1_1 and https://mycocosm.jgi.doe.gov/Tubin1_1).

ACKNOWLEDGMENTS

This research was supported by the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01), the Region Lorraine, and the European Regional Development Fund. The project was also funded by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, and supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 within the framework of the Mycorrhizal Genomics Initiative (CSP no. 305), Metatranscriptomics of Forest Soil Ecosystems project (CSP no. 570), and the 1000 Fungal Genomes Project (CSP no. 1974).

We are grateful to Jean-Yves Magaud for providing the T. brumale ascocarp and to François Le Tacon for purchasing the T. indicum ascocarps. We thank Alan Kuo, Sajeet Haridas, and Stephen Mondo from JGI for their advice on gene annotation.

REFERENCES

  • 1.Merényi Z, Varga T, Bratek Z. 2016. Tuber brumale: a controversial tuber species, p 49–68. In Zambonelli A, Iotti M, Murat C (ed), True truffle (Tuber spp.) in the world. Springer International Publishing, Cham, Switzerland. [Google Scholar]
  • 2.Olivier J-M, Savignac J-C, Sourzat P. 2012. Truffe et trufficulture FANLAC Editions, Périgueux, France. [Google Scholar]
  • 3.Chen J, Murat C, Oviatt P, Wang Y, Le Tacon F. 2016. The black truffles Tuber melanosporum and Tuber indicum, p 19–32. In Zambonelli A, Iotti M, Murat C (ed), True truffle (Tuber spp.) in the world. Springer International Publishing, Cham, Switzerland. [Google Scholar]
  • 4.Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, Kinoshita A, Nouhra ER, Dominguez LS, Tedersoo L, Murat C, Wang Y, Moreno BA, Pfister DA, Nara K, Zambonelli A, Trappe JM, Vilgalys R. 2013. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 81:e52765. doi: 10.1371/journal.pone.0052765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Murat C. 2015. Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza 25:77–81. doi: 10.1007/s00572-014-0593-4. [DOI] [PubMed] [Google Scholar]
  • 6.Murat C, Payen T, Noel B, Kuo A, Morin E, Chen J, Kohler A, Krizsán K, Balestrini R, Da Silva C, Montanini B, Hainaut M, Levati E, Barry KW, Belfiori B, Cichocki N, Clum A, Dockter RB, Fauchery L, Guy J, Iotti M, Le Tacon F, Lindquist EA, Lipzen A, Malagnac F, Mello A, Molinier V, Miyauchi S, Poulain J, Riccioni C, Rubini A, Sitrit Y, Splivallo R, Traeger S, Wang M, Žifčáková L, Wipf D, Zambonelli A, Paolocci F, Nowrousian M, Ottonello S, Baldrian P, Spatafora JW, Henrissat B, Nagy LG, Aury J-M, Wincker P, Grigoriev IV, Bonfante P, Martin FM. 2018. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nat Ecol Evol 2:1956–1965. doi: 10.1038/s41559-018-0710-4. [DOI] [PubMed] [Google Scholar]
  • 7.Murat C, Kuo A, Barry KW, Clum A, Dockter RB, Fauchery L, Iotti M, Kohler A, LaButti K, Lindquist EA, Lipzen A, Morin E, Wang M, Grigoriev IV, Zambonelli A, Martin FM. 2018. Draft genome sequence of Tuber borchii Vittad., a whitish edible truffle. Genome Announc 6:e00537-18. doi: 10.1128/genomeA.00537-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury J-M, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, et al. 2010. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038. doi: 10.1038/nature08867. [DOI] [PubMed] [Google Scholar]
  • 9.Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja H-R, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Mycorrhizal Genomics Initiative Consortium , et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415. doi: 10.1038/ng.3223. [DOI] [PubMed] [Google Scholar]
  • 10.Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518. doi: 10.1073/pnas.1017351108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18. doi: 10.1186/2047-217X-1-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I. 2014. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704. doi: 10.1093/nar/gkt1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kuo A, Bushnell B, Grigoriev IV. 2014. Fungal genomics: sequencing and annotation, p 1–52. In Martin F. (ed), Advances in botanical research: fungi, vol 70 Elsevier Academic Press, Cambridge, MA. [Google Scholar]
  • 15.Price AL, Jones NC, Pevzner PA. 2005. De novo identification of repeat families in large genomes. Bioinformatics 21:i351–i358. doi: 10.1093/bioinformatics/bti1018. [DOI] [PubMed] [Google Scholar]
  • 16.Peter M, Kohler A, Ohm RA, Kuo A, Krützmann J, Morin E, Arend M, Barry KW, Binder M, Choi C, Clum A, Copeland A, Grisel N, Haridas S, Kipfer T, LaButti K, Lindquist E, Lipzen A, Maire R, Meier B, Mihaltcheva S, Molinier V, Murat C, Pöggeler S, Quandt CA, Sperisen C, Tritt A, Tisserant E, Crous PW, Henrissat B, Nehls U, Egli S, Spatafora JW, Grigoriev IV, Martin FM. 2016. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat Commun 7:12662. doi: 10.1038/ncomms12662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Smit AFA, Hubley R, Green P. 2015. RepeatMasker Open 4.0. http://www.repeatmasker.org.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The draft whole-genome shotgun projects were deposited in DDBJ/ENA/GenBank. The SRA and GenBank accession numbers for T. brumale and T. indicum are listed in Table 1. The genome assemblies and annotations are also available at the JGI-DOE Mycocosm portal (13) (https://mycocosm.jgi.doe.gov/Tubbr1_1 and https://mycocosm.jgi.doe.gov/Tubin1_1).


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES