Abstract
In this paper we develop an approach for detecting entanglement, which is based on measuring quantum correlations and constructing a correlation matrix. The correlation matrix is then used for defining a family of parameters, named Correlation Minor Norms, which allow one to detect entanglement. This approach generalizes the computable cross-norm or realignment (CCNR) criterion, and moreover requires measuring a state-independent set of operators. Furthermore, we illustrate a scheme which yields for each Correlation Minor Norm a separable state that maximizes it. The proposed entanglement detection scheme is believed to be advantageous in comparison to other methods because correlations have a simple, intuitive meaning and in addition they can be directly measured in experiment. Moreover, it is demonstrated to be stronger than the CCNR criterion. We also illustrate the relation between the Correlation Minor Norm and entanglement entropy for pure states. Finally, we discuss the relation between the Correlation Minor Norm and quantum discord. We demonstrate that the CMN may be used to define a new measure for quantum discord.
Subject terms: Quantum physics, Quantum information, Quantum mechanics
Introduction
The last three decades have seen significant advancement in development of promising quantum technologies, both from theoretical and practical aspects. These technologies often utilize quantum entanglement in order to gain advantage compared to classical technologies. Thus, the practical ability to detect entanglement is essential for the advancement of quantum technologies. Entanglement detection in many-body quantum systems is also of major interest1–4, as well as quantum correlations in various physical settings such as those occurring in quantum optics5–8, solid-state physics9–11 and atomic physics12–17.
This has led researchers to seek simple ways to detect entanglement, preferably, ones which may be used in practice. For example, the Peres–Horodecki criterion18 is a necessary condition for a state to be separable; however, it is sufficient only in the and dimensional cases19,20.
Another important concept is an entanglement witness, which is a measurable quantum property (i.e. a bounded Hermitian operator), such that its expectation value is always non-negative for separable states19. For any entangled state, there is at least one entanglement witness which would achieve a negative expectation value in this state. Alas, to use an entanglement witness in order to detect entanglement, one must measure a specific operator tailored to the state. An approach to quantify entanglement using entanglement witnesses can be found in21.
In22–27, a construction of a quantum correlation matrix was demonstrated, and it was shown that this matrix may be utilized to detect entanglement. In28,29, a quantum correlation matrix has allowed the authors to derive generalized uncertainty relations, as well as a novel approach for finding bounds on nonlocal correlations. This matrix is the correlation matrix of a vector of quantum observables; thus, it may have complex entries. In30 it was demonstrated that such a matrix allows one to construct new Bell parameters and find their Tsirelson bounds. Another approach for Bell parameters based on covariance can be found in31.
Indeed, quantum correlations are subtly related to entanglement, e.g. pure product states are always uncorrelated. This is not true for mixed states: separable mixed states may admit quantum correlations between remote parties32. These correlations are due to noncommutativity of quantum operators; hence, they allude to a different quantum property aside of entanglement, known as quantum discord32–37. Since quantum discord is generally hard to compute when using its original definition, researchers have examined other discord measures which are more computationally tractable—most notably, geometric quantum discord38,39.
In40,41, an approach for detecting entanglement using symmetric polynomials of the state’s Schimdt coefficients has been studied. It was shown to be a generalization of the well-known CCNR criterion (computable cross-norm or realignment; first defined in42,43), according to which the sum of all Schmidt coefficients is no greater than 1 for any separable state. The symmetric polynomial approach equips each one of these polynomials with some upper bound, and if the polynomial exceeds its bound then it follows that the state is entangled. Therefore, the sum of all Schmidt coefficients with the upper bound 1 is a special case of this approach.
In this paper, we construct for a given quantum state its quantum correlation matrix, and examine the norms of its compound matrices. Since the compound matrix in our case is constructed from minors of a certain correlation matrix, we call the proposed entanglement detectors “Correlation Minor Norms”. Seeing that these norms are invariant under orthogonal transformations of the observables, they can be regarded as a family of physical scalars which can be readily derived from bipartite correlations. Next, for each Correlation Minor Norm (CMN) we find an upper bound, such that if the CMN exceeds this bound it is implied that the state is entangled. Our proposed method is shown to generalize the symmetric polynomial approach. We also provide results and conjectures regarding the states that saturate the bounds. Moreover, we explore how the CMN relates to entanglement entropy. Next, we construct a novel measure for quantum discord based on the CMN. In a particular case, it is identical to geometric quantum discord. We conclude by discussing possible generalizations for multipartite scenarios.
Construction of the correlation matrix
Let two remote parties, Alice and Bob, share a quantum system in , the tensor product of Hilbert spaces. Denote , and let be an orthonormal basis of the (real) vector space of Hermitian operators, w.r.t. the Hilbert-Schmidt inner product. Similarly, is an orthonormal basis of the Hermitian matrices. Note that such a basis always exists, since the real vector space of Hermitian matrices is simply the real Lie algebra , which is known to have dimension . Here we regard simply as inner product spaces, ignoring their Lie algebraic properties. Consequentially, we require the normalization (and similarly for Bob)—without the factor of 2, which is normally taken to make the structure constants more convenient. For example, for one could take and for all , where are the (“standard-normalization”) Gell–Mann matrices.
The (cross-)correlation matrix of , denoted by , is defined by:
1 |
where is the density matrix shared by Alice and Bob.
As we shall see in the next section, the information contained in regarding the strength of nonlocal correlations is encoded entirely in its singular values. An equivalent characterization is provided by a noteworthy relation between the singular value decomposition (SVD) of and the operator-Schmidt decomposition of the underlying state, which we describe hereinafter. The operator-Schmidt decomposition of any state is defined as its unique decomposition of the form:
2 |
where each is a real scalar, and the sets and are orthonormal sets of Hermitian matrices respectively. It can be shown that the singular values of are precisely the Schmidt coefficients ; moreover, the sets and are related to the sets and through the orthogonal matrices U, V of the SVD, respectively. Extended definitions and proof may be found in Section I.A of the supplementary information.
Correlation minor norm
The goal of this work is to produce physical scalars from that would allow for entanglement detection. In the context of this paper, a scalar is considered to be physical if it is invariant under a transformation of the set of measurements. Such a transformation is described by a pair of orthogonal matrices (see discussion in Section I.B of the supplementary information):
3 |
Introducing into (3) the SVD of , written as , yields:
4 |
Since and are elements of (and similarly for the matrices with the subscript B), we may observe that a general orthogonal transformation of reduces to the substitution of and by any other elements of their respective orthogonal groups. Thus, it is clear that any physical scalar derived from should depend on its singular values, i.e. the operator-Schmidt coefficients.
The simplest candidates for scalars produced by a matrix are its trace, determinant, and any type of matrix norm. However, is not a physical scalar in the sense described above; and a broad class of matrix norms are given as special cases of the scalars constructed in this section. Thus, for now we wish to consider (where the discussion is restricted to ). The determinant of a quantum cross-correlation matrix can help detect entanglement, and may also serve as a measure of entanglement for two-qubit pure states (see Section I.D of the supplementary information) and two-mode Gaussian states44–46.
However, in more general scenarios, there are states in which the mutual information between Alice and Bob stems from specific subspaces of their respective vector spaces (in pure states, the dimension of these subspaces is given by the Schmidt rank). To accommodate these cases, one should go over all possible subspaces of some given dimension and consider the determinant of the matrix comprised of correlations between their basis elements. Then, one could construct a measure as some function of all those determinants. One way of doing so is treat them as entries of a matrix and take its norm.
In light of the observations above, we define the Correlation Minor Norm with parameters h and :
5 |
where denotes the set of b-combinations of (this notation is common in the Cauchy–Binet formula), is the matrix whose rows are the rows of at indices from R and whose columns are the columns of at indices from S, and . The meaning of the parameter p will become clear shortly, when the above definition is generalized.
Note that is the Frobenius norm of a matrix of size , defined by:
6 |
where we have numbered the sets’ elements:
Such a matrix is known as the h-th compound matrix of , and is denoted by . Now, recall the Schatten p-norm of any matrix M is defined by , i.e. the vector p-norm of the vector composed of the singular values of M. Schatten p-norms lead to a generalization of the definition (5): for , define the Correlation Minor Norm with parameters h and p as:
7 |
i.e., it is the Schatten p-norm of the h-th compound matrix of the correlation matrix . Substituting the known relation between the singular values of any matrix and its compound matrix (see Section II of the supplementary information), one obtains the following formula for computing the Correlation Minor Norm (CMN):
8 |
where , and denotes the k-th singular value of . This implies that is indeed a physical scalar. Note that the Schatten p-norm of itself is obtained as a special case, for . Another thing to note is that for , the CMN is equal to the product of all singular values, irregardless of p; in this case we denote it by . If , this is simply .
Entanglement detection using the correlation minor norm
For general mixed states, there are a few known links between Schmidt coefficients and entanglement detection; the best-known is probably the CCNR criterion: If , then is entangled47. The Correlation Minor Norm allows for an equivalent formulation: if , then is entangled.
The CCNR criterion has an additional immediate consequence regarding the CMN: since is a monotonically increasing function of the operator-Schmidt coefficients , there is an upper bound for the value it may obtain without violating the inequality . Thus, for all h and p, there exists some positive number with the property: if is separable, then . This implies the Correlation Minor Norm can be used to detect entanglement by the following procedure: given a state , the corresponding correlation matrix is obtained - either by computation or by direct measurement; then, the SVD of is used to find the singular values, and these are substituted in (8) to compute the desired CMN, ; and finally, is compared with . If , we cannot deduce anything. However, if , we infer the state is entangled. The remainder of this section deals with results regarding the upper bounds . A technical treatment of the operator-Schmidt decomposition for separable states appears in Section III of the supplementary information.
In40, Lupo et al. generalize the CCNR criterion in the following way: they construct all elementary symmetric polynomials of the Schmidt coefficients of , and find bounds on these assuming is separable. The h-th elementary symmetric polynomial of n variables is defined as follows:
9 |
i.e., the sum of all distinct products of h distinct variables. Clearly, .
A more recent work41 which cites40, makes the following important claim: assuming , they find a tight bound on the h-th symmetric polynomial (for separable states), and prove that as an entanglement detector it is no stronger than the CCNR criterion. Since the conjectures presented in this section imply this is true for the CMN with as well, it seems likely that for and any value of p, the CMN is no stronger than the CCNR criterion as an entanglement detector.
However, in the case where , it seems the CMN may detect entanglement in cases where CCNR does not. Let us define following48–50, a state in Filter Normal Form (FNF) as a state for which any traceless Alice-observable A and any traceless Bob-observable B have vanishing expectation values; i.e., . Then, we have the following result:
Theorem 1
Assume and . Then, for any separable state in Filter Normal Form:
10 |
where , , and is the h-th elementary symmetric polynomial in variables.
Proof may be found in Section IV.B of the supplementary information. Moreover, we conjecture the following theorem still holds with the assumption of the state being in FNF removed. If proven, this conjecture would have explained the upper bounds presented in40 for , which had been found numerically.
Before presenting the next result, let us introduce quantum designs51. A quantum design in dimension b with v elements is simply a set of v orthogonal projections on . A quantum design is regular with if all projections are pure (i.e. one-dimensional); it is coherent if the sum is proportional to the identity operator; and it has degree 1 if there exists such that . If a quantum design has all three qualities, then .
A regular, coherent, degree-1 quantum design with having v elements, is simply a set of v “equally spaced” pure states in the same space. For example, such a quantum design in dimension d containing elements is known as a symmetric, informationally complete, positive operator-valued measure (SIC-POVM)52.
The following theorem tells us how to construct a separable state saturating (10) using quantum designs.
Theorem 2
Let , be sets of pure projections comprising regular, coherent, degree-1 quantum designs with , in dimensions respectively and having elements each. Define a state:
11 |
Then, the operator-Schmidt coefficients of are with multiplicity one and with multiplicity .
The proof appears in Section IV.C of the supplementary information. Note the last two theorems have the following special case: for , they imply that the above state maximizes the product of all Schmidt coefficients; i.e., it maximizes for all p.
Furthermore, we have similar claims for .
Theorem 3
Let be a separable state in FNF, and . Then:
12 |
Proof may be found in Section IV.D of the supplementary information. As in Theorem 1, we conjecture this theorem still holds without the assumption that is in FNF. Evidence for why we believe this conjecture to be true may be found in Section IV.E of the supplementary information. The following theorem yields a way of saturating the bound (12):
Theorem 4
Let , be sets of pure projections comprising regular, coherent, degree-1 quantum designs with , in dimensions respectively and having h elements each. Define a state:
13 |
Then, the operator-Schmidt coefficients of are with multiplicity one and with multiplicity .
The proof appears in in Section IV.F of the supplementary information. Note the coherence of ensures the state (13) is in FNF. Moreover, the constants enter the operator-Schmidt coefficients (and thus the upper bound (12)) elegantly: .
We hypothesize that upper bounds over for any value of p may be characterized using quantum designs. If this hypothesis is proven, then separable states built using such quantum designs are, in a way, on the “edges” of the convex separable set. However, one should note that quantum designs in a given dimension with a given number of elements do not always exist; the above theorems hold only in the cases where they do exist.
Further results and examples
Relation to entanglement entropy for pure states
Let be a pure state, and let denote its “pure-state-Schmidt coefficients” (i.e., the ones arising when writing the Schmidt decomposition for pure states of ). Then, its operator-Schmidt coefficients are , i.e. all the pairwise products of pure-state-Schmidt coefficients (if , appears as an operator-Schmidt coefficient with multiplicity 2; for proof please refer to in Section I.C of the supplementary information.
For pure states, the Correlation Minor Norm is linked to the state’s Schmidt rank by the following observation: for all , iff the state’s pure-state-Schmidt rank is at least t. Thus, the Correlation Minor Norm may be used to find the Schmidt rank in pure states. Figure 1 illustrates a comparison between and entanglement entropy for all two-qutrit pure states.
Moreover, for any pure state of dimension , the CMN and entanglement entropy are only functions of , and both functions have the same monotonicity w.r.t. this parameter (i.e. they increase / decrease in the same domains). This may be demonstrated by noting that effectively, the qubit is only correlated with a two-dimensional subsystem of Bob’s system. Using the same reasoning that appears in Section I.D of the supplementary information, it could be argued that may indeed quantify entanglement in this scenario.
However, it is clear that not all Correlation Minor Norms are useful for this purpose; in fact, the relation between operator-Schmidt coefficients and pure-state-Schmidt coefficients implies:
14 |
Thus, for any pure state, be it separable or entangled.
Improving on the CCNR criterion
In this section, we shall present an entangled state which may be detected by the CMN, but cannot be detected by the CCNR criterion. First, let be the state (11) for ; and let , where . The state is constructed as follows:
15 |
For the state is entangled (easily verifiable by the PPT criterion). However, it is not detected by the CCNR criterion: ; and it is detected by the CMN: , exceeding the bound .
Relation to quantum discord
Since the CMN seems to capture some value related to quantum correlations, it is intriguing to ask whether it may somehow be be used to measure their strength. The geometric measure for quantum discord (GQD) with respect to Alice’s subsystem is defined38 as:
16 |
i.e. the shortest squared Euclidean distance between and any classical-quantum state (the expression for discord w.r.t. Bob’s subsystem is defined similarly, where the minimization goes over all quantum-classical states).
Motivated by this definition and by the expression for GQD derived in39, we suggest the following measure for discord w.r.t. Alice’s subsystem, based on the CMN:
17 |
where the maximization goes over all projective measurements on Alice’s subsystem , and is the state obtained from by performing the measurement and obtaining the appropriate ensemble of the projections (i.e., the state is measured but not “collapsed”). The following result suggests that may be thought of as a measure for discord:
Theorem 5
For any state and for any value of h, p, ; and iff .
Moreover, for any state , we have . The proof for this fact, as well as for the theorem above, appears in Section V of the supplementary information. As evident in the proof, for as well.
Figure 2 illustrates several of the measures for a two-parameter family of states given in53. The states appear in Section V of the supplementary information. It is also worth noting in this context, that the two-qubit separable state with maximal discord has the same operator-Schmidt coefficients as the Werner state with 37,54 (hence they are unitarily equivalent); and it is precisely the state maximizing the CMNs with . In other words—the entanglement, discord and CMNs for the two-qubit Werner states are all monotonically increasing functions of the parameter , and for the critical value of c (above which the states are entangled) the Werner state is precisely the one for which the CMN obtains its separable upper bound. This situation occurs for the two-qutrit Werner state as well, where the critical value of c is 1/4 (when constructed as in55).
Conclusions
The task of entanglement detection is important for basic quantum science, as well as various quantum technologies. The current work was motivated by the following question: since bipartite entanglement can be characterized by correlations between all of the parties’ observables, can it also be detected via some norm of these correlations? As demonstrated by our results, the answer is likely to be affirmative.
We have defined the Correlation Minor Norm and explored its characteristics. This has allowed us to propose an approach for detecting entanglement both in pure and mixed states. Furthermore, it was shown that for pure states, the Correlation Minor Norm allows one to determine the Schmidt rank, and in some cases also quantify the strength of quantum correlations. Given the dimensions of the two parties’ respective systems, one may choose a single set of operators which can be used for detecting entanglement in any state, be it pure or mixed.
Additionally, we have shown that the CMN with admits a natural relation to geometric quantum discord. This affinity motivated a definition of a more general measure for quantum discord which is based on the CMN. Some of these measures might mitigate the known issues with existing discord measures56–59.
One optional direction for future research may include development of dynamical equations for the Correlation Minor Norm. This may be interesting, as the correlation matrix contains exactly the same information as the density matrix.
Another possible generalization is considering multipartite systems. In60, the authors consider detection of genuine multipartite entanglement and non-full-separability using correlation tensors. Specifically, they consider tensors comprising all multipartite correlations between orthonormal bases to the traceless observables; and they find upper bounds on norms of matricizations of these tensors, such that exceeding these bounds implies the state is genuine multipartite entangled, or non-fully-separable.
This paper may hint as to how our work may be generalized to the multipartite case: one could consider the full correlation tensor (i.e. correlations between bases to the entire space of observables, not just the traceless ones); then, the CMN with parameters h, p may be defined as the Schatten p-norm of the hth compound matrix of a certain matricization of this tensor. The bounds shown in60 could then be utilized to find two upper bounds on each of the CMNs—one for non-genuinely-entangled states, and another for fully-separable states. The question of which matricization should be used remains to be determined. Moreover, further work is required to find the states saturating these bounds.
Supplementary Information
Acknowledgements
We thank Aharon Brodutch for insightful discussions. B.P. and A.T. also thank Ebrahim Karimi for their hospitality at the University of Ottawa and Elie Wolfe for their hospitality in Perimeter Institute. Both visits have been fruitful and advanced this work. This research was supported by grant number (FQXi-RFP-CPW-2006) from the Foundational Questions Institute and Fetzer Franklin Fund, a donor advised fund of Silicon Valley Community Foundation. E.C. acknowledges support from the Israel Innovation Authority under projects 70002 and 73795, from the Pazy Foundation and from the Quantum Science and Technology Program of the Israeli Council of Higher Education.
Author contributions
B.P. and A.T. constructed the Correlation Minor Norms and proved the results; A.C. and E.C. supervised the project; all authors wrote the manuscript together.
Competing interests
The authors declare no competing interests.
Footnotes
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
These authors contributed equally: Bar Y. Peled and Amit Te’eni.
Supplementary Information
The online version contains supplementary material available at 10.1038/s41598-021-82303-3.
References
- 1.Islam R, et al. Measuring entanglement entropy in a quantum many-body system. Nature. 2015;528:77. doi: 10.1038/nature15750. [DOI] [PubMed] [Google Scholar]
- 2.Amico L, Fazio R, Osterloh A, Vedral V. Entanglement in many-body systems. Rev. Mod. Phys. 2008;80:517. doi: 10.1103/RevModPhys.80.517. [DOI] [Google Scholar]
- 3.Jurcevic P, et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature. 2014;511:202–205. doi: 10.1038/nature13461. [DOI] [PubMed] [Google Scholar]
- 4.Kaufman AM, et al. Quantum thermalization through entanglement in an isolated many-body system. Science. 2016;353:794–800. doi: 10.1126/science.aaf6725. [DOI] [PubMed] [Google Scholar]
- 5.Braunstein SL, Van Loock P. Quantum information with continuous variables. Rev. Mod. Phys. 2005;77:513. doi: 10.1103/RevModPhys.77.513. [DOI] [Google Scholar]
- 6.Bello, L., Michael, Y., Rosenbluh, M., Cohen, E. & Pe’er, A. Complex two-mode quadratures—a unified formalism for continuous-variable quantum optics. arXiv preprintarXiv:2011.08099 (2020).
- 7.Berrada K, Abdel-Khalek S. Entanglement of atom-field interaction for nonlinear optical fields. Phys. E Low Dimens. Syst. Nanostruct. 2011;44:628–634. doi: 10.1016/j.physe.2011.10.016. [DOI] [Google Scholar]
- 8.Abdel-Khalek S, Berrada K, Ooi CR. Beam splitter entangler for nonlinear bosonic fields. Laser Phys. 2012;22:1449–1454. doi: 10.1134/S1054660X12090010. [DOI] [Google Scholar]
- 9.Chtchelkatchev NM, Blatter G, Lesovik GB, Martin T. Bell inequalities and entanglement in solid-state devices. Phys. Rev. B. 2002;66:161320. doi: 10.1103/PhysRevB.66.161320. [DOI] [Google Scholar]
- 10.Wieśniak M, Vedral V, Brukner Č. Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 2005;7:258. doi: 10.1088/1367-2630/7/1/258. [DOI] [Google Scholar]
- 11.González-Tudela A, Porras D. Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics. Phys. Rev. Lett. 2013;110:080502. doi: 10.1103/PhysRevLett.110.080502. [DOI] [PubMed] [Google Scholar]
- 12.Tichy MC, Mintert F, Buchleitner A. Essential entanglement for atomic and molecular physics. J. Phys. B. 2011;44:192001. doi: 10.1088/0953-4075/44/19/192001. [DOI] [Google Scholar]
- 13.Sackett CA, et al. Experimental entanglement of four particles. Nature. 2000;404:256–259. doi: 10.1038/35005011. [DOI] [PubMed] [Google Scholar]
- 14.Jaksch D, Briegel H-J, Cirac J, Gardiner C, Zoller P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 1999;82:1975. doi: 10.1103/PhysRevLett.82.1975. [DOI] [Google Scholar]
- 15.Yönaç M, Yu T, Eberly J. Sudden death of entanglement of two Jaynes-cummings atoms. J. Phys. B. 2006;39:S621. doi: 10.1088/0953-4075/39/15/S09. [DOI] [Google Scholar]
- 16.Berrada K, Fanchini FF, Abdel-Khalek S. Quantum correlations between each qubit in a two-atom system and the environment in terms of interatomic distance. Phys. Rev. A. 2012;85:052315. doi: 10.1103/PhysRevA.85.052315. [DOI] [Google Scholar]
- 17.Mohamed A-B, Eleuch H, Ooi CR. Non-locality correlation in two driven qubits inside an open coherent cavity: Trace norm distance and maximum bell function. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-018-37186-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Peres A. Separability criterion for density matrices. Phys. Rev. Lett. 1996;77:1413. doi: 10.1103/PhysRevLett.77.1413. [DOI] [PubMed] [Google Scholar]
- 19.Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A. 1996;223:1–8. doi: 10.1016/S0375-9601(96)00706-2. [DOI] [Google Scholar]
- 20.Horodecki P. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A. 1997;232:333–339. doi: 10.1016/S0375-9601(97)00416-7. [DOI] [Google Scholar]
- 21.Brandao FG. Quantifying entanglement with witness operators. Phys. Rev. A. 2005;72:022310. doi: 10.1103/PhysRevA.72.022310. [DOI] [Google Scholar]
- 22.Gühne O. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 2004;92:117903. doi: 10.1103/PhysRevLett.92.117903. [DOI] [PubMed] [Google Scholar]
- 23.Gühne O, Hyllus P, Gittsovich O, Eisert J. Covariance matrices and the separability problem. Phys. Rev. Lett. 2007;99:130504. doi: 10.1103/PhysRevLett.99.130504. [DOI] [PubMed] [Google Scholar]
- 24.Gühne O, Mechler M, Tóth G, Adam P. Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion. Phys. Rev. A. 2006;74:010301. doi: 10.1103/PhysRevA.74.010301. [DOI] [Google Scholar]
- 25.Gittsovich O, Gühne O, Hyllus P, Eisert J. Unifying several separability conditions using the covariance matrix criterion. Phys. Rev. A. 2008;78:052319. doi: 10.1103/PhysRevA.78.052319. [DOI] [Google Scholar]
- 26.Li J-L, Qiao C-F. A necessary and sufficient criterion for the separability of quantum state. Sci. Rep. 2018;8:1442. doi: 10.1038/s41598-018-19709-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.de Vicente JI. Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 2007;7:624–638. [Google Scholar]
- 28.Carmi A, Cohen E. On the significance of the quantum mechanical covariance matrix. Entropy. 2018;20:500. doi: 10.3390/e20070500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Carmi A, Cohen E. Relativistic independence bounds nonlocality. Sci. Adv. 2019;5:eaav8370. doi: 10.1126/sciadv.aav8370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Te’eni A, Peled BY, Cohen E, Carmi A. Multiplicative bell inequalities. Phys. Rev. A. 2019;99:040102. doi: 10.1103/PhysRevA.99.040102. [DOI] [Google Scholar]
- 31.Pozsgay V, Hirsch F, Branciard C, Brunner N. Covariance bell inequalities. Phys. Rev. A. 2017;96:062128. doi: 10.1103/PhysRevA.96.062128. [DOI] [Google Scholar]
- 32.Ollivier H, Zurek WH. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 2001;88:017901. doi: 10.1103/PhysRevLett.88.017901. [DOI] [PubMed] [Google Scholar]
- 33.Zurek WH. Einselection and decoherence from an information theory perspective. Ann. Phys. 2000;9:855–864. doi: 10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K. [DOI] [Google Scholar]
- 34.Henderson L, Vedral V. Classical, quantum and total correlations. J. Phys. A. 2001;34:6899. doi: 10.1088/0305-4470/34/35/315. [DOI] [Google Scholar]
- 35.Giorda P, Paris MG. Gaussian quantum discord. Phys. Rev. Lett. 2010;105:020503. doi: 10.1103/PhysRevLett.105.020503. [DOI] [PubMed] [Google Scholar]
- 36.Luo S. Quantum discord for two-qubit systems. Phys. Rev. A. 2008;77:042303. doi: 10.1103/PhysRevA.77.042303. [DOI] [Google Scholar]
- 37.Bera A, et al. Quantum discord and its allies: A review of recent progress. Rep. Prog. Phys. 2017;81:024001. doi: 10.1088/1361-6633/aa872f. [DOI] [PubMed] [Google Scholar]
- 38.Dakić B, Vedral V, Brukner Č. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 2010;105:190502. doi: 10.1103/PhysRevLett.105.190502. [DOI] [PubMed] [Google Scholar]
- 39.Luo S, Fu S. Geometric measure of quantum discord. Phys. Rev. A. 2010;82:034302. doi: 10.1103/PhysRevA.82.034302. [DOI] [Google Scholar]
- 40.Lupo C, Aniello P, Scardicchio A. Bipartite quantum systems: On the realignment criterion and beyond. J. Phys. A. 2008;41:415301. doi: 10.1088/1751-8113/41/41/415301. [DOI] [Google Scholar]
- 41.Li C-K, Poon Y-T, Sze N-S. A note on the realignment criterion. J. Phys. A. 2011;44:315304. doi: 10.1088/1751-8113/44/31/315304. [DOI] [Google Scholar]
- 42.Chen K, Wu L-A. A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 2002;3:193–202. [Google Scholar]
- 43.Rudolph O. Further results on the cross norm criterion for separability. Quantum Inf. Process. 2005;4:219–239. doi: 10.1007/s11128-005-5664-1. [DOI] [Google Scholar]
- 44.Simon R. Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 2000;84:2726. doi: 10.1103/PhysRevLett.84.2726. [DOI] [PubMed] [Google Scholar]
- 45.Dodonov A, Dodonov V, Mizrahi S. Separability dynamics of two-mode gaussian states in parametric conversion and amplification. J. Phys. A. 2004;38:683. doi: 10.1088/0305-4470/38/3/008. [DOI] [Google Scholar]
- 46.De Castro A, Dodonov V. Purity and squeezing exchange between coupled bosonic modes. Phys. Rev. A. 2006;73:065801. doi: 10.1103/PhysRevA.73.065801. [DOI] [Google Scholar]
- 47.Gühne O, Tóth G. Entanglement detection. Phys. Rep. 2009;474:1–75. doi: 10.1016/j.physrep.2009.02.004. [DOI] [Google Scholar]
- 48.Kent A, Linden N, Massar S. Optimal entanglement enhancement for mixed states. Phys. Rev. Lett. 1999;83:2656. doi: 10.1103/PhysRevLett.83.2656. [DOI] [Google Scholar]
- 49.Verstraete F, Dehaene J, De Moor B. Normal forms and entanglement measures for multipartite quantum states. Phys. Rev. A. 2003;68:012103. doi: 10.1103/PhysRevA.68.012103. [DOI] [Google Scholar]
- 50.Leinaas JM, Myrheim J, Ovrum E. Geometrical aspects of entanglement. Phys. Rev. A. 2006;74:012313. doi: 10.1103/PhysRevA.74.012313. [DOI] [Google Scholar]
- 51.Zauner G. Quantum designs: Foundations of a noncommutative design theory. Int. J. Quantum Inf. 2011;9:445–507. doi: 10.1142/S0219749911006776. [DOI] [Google Scholar]
- 52.Renes JM, Blume-Kohout R, Scott AJ, Caves CM. Symmetric informationally complete quantum measurements. J. Math. Phys. 2004;45:2171–2180. doi: 10.1063/1.1737053. [DOI] [Google Scholar]
- 53.Virzì S, et al. Optimal estimation of entanglement and discord in two-qubit states. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-39334-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Galve F, Giorgi GL, Zambrini R. Maximally discordant mixed states of two qubits. Phys. Rev. A. 2011;83:012102. doi: 10.1103/PhysRevA.83.012102. [DOI] [Google Scholar]
- 55.Ye B, Liu Y, Chen J, Liu X, Zhang Z. Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf. Process. 2013;12:2355–2369. doi: 10.1007/s11128-013-0531-y. [DOI] [Google Scholar]
- 56.Piani M. Problem with geometric discord. Phys. Rev. A. 2012;86:034101. doi: 10.1103/PhysRevA.86.034101. [DOI] [Google Scholar]
- 57.Tufarelli T, Girolami D, Vasile R, Bose S, Adesso G. Quantum resources for hybrid communication via qubit-oscillator states. Phys. Rev. A. 2012;86:052326. doi: 10.1103/PhysRevA.86.052326. [DOI] [Google Scholar]
- 58.Paula F, de Oliveira TR, Sarandy M. Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A. 2013;87:064101. doi: 10.1103/PhysRevA.87.064101. [DOI] [Google Scholar]
- 59.Roga W, Spehner D, Illuminati F. Geometric measures of quantum correlations: Characterization, quantification, and comparison by distances and operations. J. Phys. A. 2016;49:235301. doi: 10.1088/1751-8113/49/23/235301. [DOI] [Google Scholar]
- 60.de Vicente JI, Huber M. Multipartite entanglement detection from correlation tensors. Phys. Rev. A. 2011;84:062306. doi: 10.1103/PhysRevA.84.062306. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.