Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Feb 3;2021(2):41. doi: 10.1007/JHEP02(2021)041

Momentum amplituhedron meets kinematic associahedron

David Damgaard 1,, Livia Ferro 1,2, Tomasz Łukowski 2, Robert Moerman 2
PMCID: PMC7857933  PMID: 33558799

Abstract

In this paper we study a relation between two positive geometries: the momen- tum amplituhedron, relevant for tree-level scattering amplitudes in N = 4 super Yang-Mills theory, and the kinematic associahedron, encoding tree-level amplitudes in bi-adjoint scalar φ3 theory. We study the implications of restricting the latter to four spacetime dimensions and give a direct link between its canonical form and the canonical form for the momentum amplituhedron. After removing the little group scaling dependence of the gauge theory, we find that we can compare the resulting reduced forms with the pull-back of the associahedron form. In particular, the associahedron form is the sum over all helicity sectors of the reduced momentum amplituhedron forms. This relation highlights the common sin- gularity structure of the respective amplitudes; in particular, the factorization channels, corresponding to vanishing planar Mandelstam variables, are the same. Additionally, we also find a relation between these canonical forms directly on the kinematic space of the scalar theory when reduced to four spacetime dimensions by Gram determinant constraints. As a by-product of our work we provide a detailed analysis of the kinematic spaces relevant for the four-dimensional gauge and scalar theories, and provide direct links between them.

Keywords: Scattering Amplitudes, Supersymmetric Gauge Theory

Footnotes

ArXiv ePrint: 2010.15858

Despite Coronavirus.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

David Damgaard, Email: d.damgaard@lmu.de.

Livia Ferro, Email: livia.ferro@lmu.de.

Tomasz Łukowski, Email: t.lukowski@herts.ac.uk.

Robert Moerman, Email: r.moerman@herts.ac.uk.

References

  • [1].Cachazo F, He S, Yuan EY. Scattering of massless particles in arbitrary dimensions. Phys. Rev. Lett. 2014;113:171601. doi: 10.1103/PhysRevLett.113.171601. [DOI] [PubMed] [Google Scholar]
  • [2].Cachazo F, He S, Yuan EY. Scattering of massless particles: scalars, gluons and gravitons. JHEP. 2014;07:033. doi: 10.1007/JHEP07(2014)033. [DOI] [PubMed] [Google Scholar]
  • [3].Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor strings in four dimensions, Phys. Rev. Lett.113 (2014) 081602 [arXiv:1404.6219] [INSPIRE]. [DOI] [PubMed]
  • [4].F. Cachazo and G. Zhang, Minimal basis in four dimensions and scalar blocks, arXiv:1601.06305 [INSPIRE].
  • [5].Arkani-Hamed N, Trnka J. The amplituhedron. JHEP. 2014;10:030. doi: 10.1007/JHEP10(2014)030. [DOI] [Google Scholar]
  • [6].Arkani-Hamed N, Bai Y, Lam T. Positive geometries and canonical forms. JHEP. 2017;11:039. doi: 10.1007/JHEP11(2017)039. [DOI] [Google Scholar]
  • [7].Damgaard D, Ferro L, Lukowski T, Parisi M. The momentum amplituhedron. JHEP. 2019;08:042. doi: 10.1007/JHEP08(2019)042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Arkani-Hamed N, Bai Y, He S, Yan G. Scattering forms and the positive geometry of kinematics, color and the worldsheet. JHEP. 2018;05:096. doi: 10.1007/JHEP05(2018)096. [DOI] [Google Scholar]
  • [9].He S, Zhang C. Notes on scattering amplitudes as differential forms. JHEP. 2018;10:054. doi: 10.1007/JHEP10(2018)054. [DOI] [Google Scholar]
  • [10].L. Ferro and T. Lukowski, Amplituhedra, and beyond, J. Phys. A54 (2021) 033001 [arXiv:2007.04342] [INSPIRE].
  • [11].T. Lukowski, M. Parisi and L.K. Williams, The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron, arXiv:2002.06164 [INSPIRE].
  • [12].N. Arkani-Hamed, T. Lam and M. Spradlin, Non-perturbative geometries for planarN = 4 SYM amplitudes, arXiv:1912.08222 [INSPIRE].
  • [13].V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. I.H.E.S.103 (2006) 1 [math/0311149].
  • [14].Britto R, Cachazo F, Feng B. New recursion relations for tree amplitudes of gluons. Nucl. Phys. B. 2005;715:499. doi: 10.1016/j.nuclphysb.2005.02.030. [DOI] [Google Scholar]
  • [15].Britto R, Cachazo F, Feng B, Witten E. Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 2005;94:181602. doi: 10.1103/PhysRevLett.94.181602. [DOI] [PubMed] [Google Scholar]
  • [16].J.L. Bourjaily, Efficient tree-amplitudes in N = 4: automatic BCFW recursion in Mathematica, arXiv:1011.2447 [INSPIRE].
  • [17].N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge U.K. (2016).
  • [18].Ferro L, Łukowski T, Moerman R. From momentum amplituhedron boundaries toamplitude singularities and back. JHEP. 2020;07:201. doi: 10.1007/JHEP07(2020)201. [DOI] [Google Scholar]

Articles from Journal of High Energy Physics are provided here courtesy of Nature Publishing Group

RESOURCES