Sr. Director:
La tiroiditis subaguda (tiroiditis De Quervain's, granulomatosa o viral) se ha relacionado con numerosos virus (coxsackie, de la gripe, adenovirus, echovirus…). Sin embargo, no se suele identificar al virus causante, al no suponer cambios en el tratamiento. Se ha descrito una predisposición genética y una asociación con ciertos haplotipos del antígeno leucocitario humano (HLA) del complejo mayor de histocompatibilidad1, 2, 3.
Esta entidad es más frecuente en mujeres entre los 30 y 50 años de edad. Los síntomas se caracterizan por: dolor cervical, malestar general y disfunción tiroidea, que pueden confundirse con procesos inflamatorios faríngeos3.
La enfermedad por coronavirus (COVID-19), ocasionada por el coronavirus tipo 2 causante del síndrome respiratorio agudo severo (SARS-CoV-2), se describió inicialmente en diciembre de 2019 en Wuhan (China) y se extendió rápidamente al mundo entero4. Se han descrito disfunciones tiroideas en pacientes (sin historia previa de enfermedad tiroidea) causadas por otros coronavirus distintos al SARS-CoV-25, 6.
El 9 de junio de 2020, una mujer de 36 años sin antecedentes personales relevantes, acude a nuestra consulta refiriendo clínica de dolor cervical anterior, que irradiaba a mandíbula, de dos semanas de evolución. Asimismo, refería febrícula, palpitaciones y fatiga. No presentaba temblor ni signos oculares de tirotoxicosis. La exploración física revelaba un tiroides no aumentado, sensible a la palpación, sin adenopatías.
Durante la segunda semana de abril, la paciente había presentado fiebre, dolor de cabeza y garganta y mialgias. Esta clínica fue compatible con infección por SARS-CoV-2; a su marido, médico de atención primaria con el que vive, le habían diagnosticado COVID-19 unos días antes. A ella no se le tomó hisopo orofaríngeo para SARS-CoV-2 por la disponibilidad limitada de pruebas en ese momento. Un mes después, un test serológico confirmó el diagnóstico (positivo IgG; negativo IgM), mediante un ensayo inmunocromatográfico para la detección cualitativa de IgG e IgM.
En la analítica de junio, la tiroxina libre (FT4) estaba elevada con tirotropina (TSH) suprimida. La velocidad de sedimentación globular (VSG) y la proteína C reactiva (PCR) eran altas y los leucocitos, normales. Se midieron anticuerpos antireceptor TSH (TRAb), anti-tiroglobulina (TGAc) y anti-peroxidasa (TPOAc), todos negativos. La tabla 1 resume los resultados del laboratorio.
Tabla 1.
*Día 45 10/06/2020 |
*Día 58 23/06/2020 |
*Día 67 02/07/2020 |
*Día 151 23/09/2020 |
|
---|---|---|---|---|
TSH [RR: 0,3-4,2 μU/mL] | 0,008 | 0,05 | 8,57 | 3,57 |
Total T3 [1,3-3,1 nmol/L] | 2,57 | 1,13 | ||
T4 libre [12-22 pmol/L] | 27,93 | 13,32 | 7,33 | 12,9 |
PCR [0-0,55 mg/dL] | 1,05 | 0,02 | ||
VSG [mm/h] | 31 | 2 | ||
Leucocitos [3.890-9.230/μL] | 7.970 | |||
TRAb [0-0,55 UI/L] | < 0,10 | |||
TGAc [0-75 UI/mL] | 3,4 | |||
TPOAc [0-25 UI/mL] | 15,5 |
RR: rango de referencia; TSH: hormona estimulante del tiroides; T3: triyodotironina; T4: tiroxina; VSG: velocidad sedimentación globular; PCR: proteína C reactiva; TRAb: Anticuerpos anti receptor tirotropina; TGAc: Anticuerpos anti Tiroglobulina; TPOAc: Anticuerpos anti peroxidasa.
Días tras infección COVID-19.
En cuanto a pruebas de imagen, tanto la ecografía como la gammagrafía tiroidea, fueron compatibles con la sospecha de tiroiditis subaguda. Como tratamiento inicial se usó un antinflamatorio no esteroideo (AINE) (ibuprofeno 600 mg), un betabloqueador (propanolol 10 mg) y un protector gástrico (omeprazol 20 mg). Las dosis de los fármacos se fueron reduciendo conforme a la evolución clínica y analítica. Tras 15 días, los parámetros inflamatorios disminuyeron significativamente con normalización de T4 libre y TSH suprimida. La paciente no refería ningún síntoma.
A principios de julio, la paciente presentaba analítica compatible con hipotiroidismo, sin clínica alguna. Se volvió a reducir la dosis de ibuprofeno, manteniendo la protección gástrica. No se prescribió levotiroxina por estar asintomática. En la revisión posterior de septiembre, la función tiroidea y los parámetros inflamatorios se normalizaron y, finalmente, se suspendió el tratamiento.
En otros países se han reportado cuadros de tiroiditis subaguda tras infección por SARS-CoV-2: Italia (Brancatella et al. 7, Ippolito et al.8, Ruggeri et al.9), Turquía (Asfuroglu et al.10), Estados Unidos (Chong et al.11), México (Campos et al.12) y Singapur (Mattar et al.13). Esta patología, relacionada con una infección viral o una reacción inflamatoria posviral en sujetos con predisposición genética, se suele desarrollar de dos a ocho semanas después de dicha infección1.
Se ha demostrado que la glándula tiroidea contiene una cantidad significativa de receptor de la enzima convertidora de la angiotensina 2 (ACE2), esencial para que el SARS-CoV-2 invada las células humanas. Este podría ser un mecanismo plausible para la fisiopatología de la tiroiditis en COVID-1914. Existen casos similares publicados recientemente7, 8, 9, 10, 11, 12, 13 que permiten considerar al SARS-CoV-2 como el probable desencadenante viral de nuestro caso en particular.
La tiroiditis subaguda es un proceso inflamatorio autolimitado caracterizado por una alteración de los folículos tiroideos con infiltración inflamatoria de células gigantes, linfocitos y neutrófilos3. Su incidencia es de 12,1 casos por 100.000/año, y es más frecuente en mujeres. Los casos reportados de tiroiditis tras infección por SARS-CoV-2 son todos de mujeres entre 18 y 69 años7, 8, 9, 10, 11, 12, 13. Las pacientes refirieron dolor cervical, fiebre leve y síntomas generales. En los casos descritos, incluyendo el nuestro, los síntomas comenzaron de una a seis semanas después de la infección. Solo en dos casos ocurrieron al mismo tiempo8, 10.
La disfunción tiroidea en esta entidad se caracteriza por tres fases: tirotoxicosis, hipotiroidismo y eutiroidismo3. Durante la fase inicial de destrucción folicular, se liberan hormonas tiroideas en la sangre, lo que se acompaña de los síntomas típicos de hiperfunción tiroidea (palpitaciones, pérdida de peso, fatiga…) y hallazgos de laboratorio característicos (elevación de VSG y PCR, T3 no desproporcionalmente elevada, y autoinmunidad tiroidea [TPO y anti-tiroglobulina] indetectable o presente en títulos bajos)3. La ecografía tiroidea se caracteriza por áreas hipoecoicas bilaterales y difusas, y vascularización baja o ausente en el doppler-color. En la gammagrafía se aprecia bloqueo o disminución de captación del radiotrazador15.
Varias semanas después del inicio de los síntomas, la reserva de hormonas tiroideas se agota y se establece una fase hipotiroidea, que será permanente en una proporción pequeña de casos3, 9. La recuperación al estado de eutiroidismo puede tardar de uno a seis meses.
El tratamiento aceptado para esta entidad incluye antiinflamatorios no esteroideos (AINE) o esteroides. Los pacientes con palpitaciones, temblores o nerviosismo mejoran con betabloqueadores3. No se deben usar tionamidas.
A diferencia de la mayoría de los casos reportados, tratamos a nuestra paciente con AINE y propanolol, cediendo los síntomas tras dos semanas de tratamiento. De manera similar, Chong et al.11 usaron ácido acetilsalicílico y propranolol.
Todavía tenemos mucho que aprender sobre las manifestaciones clínicas de la infección por SARS-CoV-2. Consideramos que hay que tener en cuenta la posible afectación tiroidea ya que puede pasar desapercibida ante la magnitud de esta pandemia. De igual modo, se debe considerar el SARS-CoV-2 como posible agente causal de los cuadros de tiroiditis que vemos en nuestra práctica clínica.
Financiación
Este trabajo no ha recibido ningún tipo de financiación.
Conflicto de intereses
Los autores declaran no tener ningún conflicto de intereses.
Bibliografía
- 1.Ohsako N., Tamai H., Sudo T., Mukuta T., Tanaka H., Kuma K. Clinical characteristics of subacute thyroiditis classified according to human leukocyte antigen typing. J Clin Endocrinol Metab. 1995;80:3653–3656. doi: 10.1210/jcem.80.12.8530615. [DOI] [PubMed] [Google Scholar]
- 2.Desailloud R., Hober D. Viruses and thyroiditis: an update. Virology Journal. 2009;6:5. doi: 10.1186/1743-422X-6-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Pearce E.N., Farwell A.P., Braverman L.E. Thyroiditis. N Engl J Med. 2003;348:2646–2655. doi: 10.1056/NEJMra021194. [DOI] [PubMed] [Google Scholar]
- 4.Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Wei L., Sun S., Xu C.H., Zhang J., Xu Y., Zhu H. Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol. 2007;38:95–102. doi: 10.1016/j.humpath.2006.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Dworakowska D., Grossman A.B. Thyroid disease in the time of COVID-19. Endocrine. 2020;68:471–474. doi: 10.1007/s12020-020-02364-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Brancatella A., Ricci D., Viola N., Sgrò D., Santini F., Latrofa F. Subacute Thyroiditis After Sars-COV-2 Infection. J Clin Endocrinol Metab. 2020;105:dgaa276. doi: 10.1210/clinem/dgaa276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Ippolito S., Dentali F., Tanda M.L. SARS-CoV-2: a potential trigger for subacute thyroiditis? Insights from a case report. J Endocrinol Invest. 2020;43:1171–1172. doi: 10.1007/s40618-020-01312-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Ruggeri R.M., Campennì A., Siracusa M., Frazzetto G., Gullo D. Subacute thyroiditis in a patient infected with SARS-COV-2: an endocrine complication linked to the COVID-19 pandemic. Hormones (Athens). 2020:1–3. doi: 10.1007/s42000-020-00230-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Asfuroglu Kalkan E., Ates I. A case of subacute thyroiditis associated with Covid-19 infection. J Endocrinol Inves. 2020:1–2. doi: 10.1007/s40618-020-01316-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Chong W.H., Shkolnik B., Saha B., Beegle S. Subacute Thyroiditis in the Setting of Coronavirus Disease 2019. Am J Med Sci. 2020;S0002–9629 doi: 10.1016/j.amjms.2020.09.011. [published online ahead of print, 2020 Sep 16] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Campos-Barrera E., Alvarez-Cisneros T., Davalos-Fuentes M. Subacute Thyroiditis Associated with COVID-19. Case Rep Endocrinol. 2020 doi: 10.1155/2020/8891539. 8891539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Mattar S.A.M., Koh S.J.Q., Rama Chandran S., Cherng B.P.Z. Subacute thyroiditis associated with COVID-19. BMJ Case Rep. 2020;13:e237336. doi: 10.1136/bcr-2020-237336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Li M.-Y., Li L., Zhang Y., Wang X.-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9:45. doi: 10.1186/s40249-020-00662-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Meier D.A., Kaplan M.M. Radioiodine uptake and thyroid scintiscanning. Endocrinol Metab Clin North Am. 2001;30:291–313. doi: 10.1016/s0889-8529(05)70188-2. [DOI] [PubMed] [Google Scholar]