Abstract
目的
探讨限制性液体管理策略对重型颅脑损伤患者的应用效果。
方法
采用前瞻性随机对照研究,选择蚌埠医学院第一附属医院2019年1月~2020年6月收治的预计ICU住院时间≥7 d的重型颅脑损伤术后患者,按随机数字表法,分为治疗组(行限制性液体管理策略,n=25),对照组(行常规液体管理策略,n=26)。收集手术时间、术中液体平衡数据,分别在术后入ICU时和入ICU 1、3、7 d行超声测量视神经鞘直径(ONSD)、大脑中动脉搏动指数(MCA-PI)、下腔静脉直径(IVC),并收集相应时间点格拉斯哥昏迷评分(GCS)、神经元特异性烯醇化酶(NSE)、瞳孔直径、平均动脉压、心率、累计液体平衡等资料,记录机械通气时间、ICU住院时间和28 d病死率。
结果
两组患者在手术时间、术中液体平衡、入ICU时ONSD、MCA-PI、IVC等方面差异没有统计学意义(P>0.05)。累计液体平衡:两组1 d均为正平衡,3~7 d为负平衡,相同时间点,治疗组负平衡量显著大于对照组(P < 0.05),且随治疗时间延长,负平衡量不断加大。ONSD、MCA-PI均呈现先高后低的趋势,两组1 d就较基线增大(P < 0.05),组间无差异(P>0.05),3 d达到峰值,7 d下降,相同时间点治疗组明显低于对照组(P < 0.05)。NSE在1 d两组无差异(P>0.05),在3 d升高到峰值,对照组更高(P < 0.05),7 d治疗组回落至1 d水平,对照组仍高于1 d。两组28 d病死率无明显差异(P>0.05),治疗组机械通气时间、ICU住院时间、气管切开数量均少于对照组(P < 0.05)。
结论
应用限制性液体管理策略能更好地实现液体负平衡,减轻脑水肿,降低ONSD、MCA-PI,改善NSE、GCS等预后指标,减少机械通气时间和ICU住院时间,降低气管切开率,但对28 d病死率无影响。
Keywords: 重型颅脑损伤, 限制性液体管理策略, 视神经鞘直径, 大脑中动脉搏动指数, 神经元特异性烯醇化酶
Abstract
Objective
To investigate the effects of restrictive fluid management in patients with severe traumatic brain injury (sTBI).
Methods
Between January, 2019 and June, 2020, we randomly assigned 51 postoperative patients (stay in the ICU of no less than 7 days) with sTBI into treatment group (n=25) with restrictive fluid management and the control group (n=26) with conventional fluid management. The data of optic nerve sheath diameter (ONSD), middle cerebral artery pulsatility index (MAC- PI), neuron-specific enolase (NSE) level, inferior vena cava (IVC) diameter, Glascow Coma Scale (GCS) score, mean arterial blood pressure, heart rate, and fluid balance of the patients were collected at ICU admission and at 1, 3 and 7 days after ICU admission, and the duration of mechanical ventilation, ICU stay, and 28-day mortality were recorded.
Results
The cumulative fluid balance of the two groups were positive on day 1 and negative on days 3 and 7 after ICU admission; at the same time points, the patients in the treatment group had significantly greater negative fluid balance than those in the control group (P < 0.05). In both of the groups, the ONSD and MCA-PI values were significantly higher on day 1 than the baseline (P < 0.05), reached the peak levels on day 3, and decreased on day 7; at the same time point, these values were significantly lower in the treatment group than in the control group (P < 0.05). No significant difference was found in NSE level on day 1 between the two groups (P>0.05); on day 3, NSE level reached the peak level and was significantly higher in the control group (P < 0.05); on day 7, NSE level was lowered the level of day 1 in the treatment group but remained higher than day 1 level in the control group. The 28-day mortality rate did not differ significantly between the two groups (16.00% vs 23.08%, P>0.05); the duration of mechanical ventilation, length of ICU stay, and the number of tracheotomy were all significantly shorter or lower in the treatment group than in the control group (P < 0.05).
Conclusions
Restrictive fluid management can reduce cerebral edema and improve the prognosis but does not affect the 28-day mortality of patients with sTBI.
Keywords: severe traumatic brain injury, restrictive fluid management strategy, optic nerve sheath diameter, middle cerebral artery pulsatility index, neuron-specific enolase
重型颅脑损伤患者很多不良的预后与颅内压增高有关[1-2]。因而,对颅内压的监测与管理显得尤为重要,虽然通过手术在颅内放置导管进行监测更为准确,但由于是侵入性操作,感染、出血等并发症时有发生,且维护技术和成本高,限制了其临床应用。近年来,研究发现,通过超声测量重症颅脑损伤患者视神经鞘直径(ONSD)与大脑中动脉搏动指数(MCA-PI),与颅内压增高有很好的相关性,敏感性特异性也很高,可以用于间接评估颅内压,预测不良预后,指导治疗,两者联合效果更好[3-7]。无论是人类还是动物,在颅脑创伤或心肺复苏后脑损伤患者中神经元特异性烯醇化酶(NSE)都有较高的表达,且与不良预后有关[2, 8-9]。液体治疗是重症监护的一部分,既要保持脑灌注,又要避免液体过负荷导致的脑水肿,加重颅高压,现有的一些关于重型颅脑损伤液体管理的研究多集中在血流动力学监测以及应使用或避免使用哪种类型的液体输注方面[1, 10-11],对于应用何种液体治疗策略鲜有报道,尤其是液体过负荷可能存在的潜在风险。因此,我们以限制性液体管理策略为手段,以ONSD、MCA-PI监测颅内压,评估脑血流,以NSE和GCS评价脑功能进行综合研究,以期找到更优化液体管理策略并改善结局。
1. 资料和方法
1.1. 病例纳入及排除标准
选取2019年1月~2020年6月在蚌埠医学院第一附属医院治疗的重型颅脑损伤术后患者为研究对象。
1.1.1. 纳入标准
(1)颅脑创伤史明确,急诊头颅CT诊断为重型颅脑损伤,神经外科已行手术治疗,GCS评分≤8分;(2)年龄≥18岁;(3)预期ICU住院时间≥7 d;(4)无需使用血管活性药物维持血压;(5)双侧眼球完整、无损伤。
1.1.2. 排除标准
(1)既往有严重的高血压、糖尿病、冠心病等慢性疾病及其并发症者;(2)处于晚期脑疝状态,如:双侧瞳孔散大、固定,中枢性呼吸、循环衰竭、尿崩等;(3)家属拒绝。
1.1.3. 剔除标准
中途退出试验或放弃治疗者;病例资料收集不完整者;28 d存活率随访未能完成的失访患者。
1.2. 伦理学
本研究采用前瞻性随机对照研究,医院伦理委员会批准研究方案(审批号:BYYFY-2018KY22),知情同意过程清晰,且获得受试患者直系亲属的签字确认。
1.3. 病例分组及治疗方法
所有患者在手术室由神经外科医师手术,术后直接转入ICU,均给予相应的心电监护、呼吸机辅助呼吸、镇痛镇静、脱水降颅压等常规重症监护治疗。并按随机数字表法分组,治疗组采用限制性液体管理策略,在保证器官灌注的前提下,尽可能做液体负平衡,必要时应用呋塞米利尿,使下腔静脉直径(IVC)≤2.0 cm(机械通气时测呼气末,自主呼吸时测吸气末)[12],除非出现下列情况,如:收缩压≤120 mmHg(1 mmHg=0.133 kPa),动脉血乳酸>2.0 mmol/L,尿量≤0.5 mL·kg-1·h-1[13];对照组行常规液体治疗策略,液体平衡不做特殊要求。
1.4. 观察指标及方法
1.4.1. 相关资料收集
收集两组患者年龄、性别、术前GCS评分、手术时间、术中液体平衡、及入科1 h内ONSD、MCA-PI、IVC、瞳孔直径、平均动脉压(MAP)、心率(HR)等基线资料;分别在患者经过不同液体治疗策略治疗后1、3和7 d,采集累计液体平衡、GCS评分、瞳孔直径、ONSD、MCA-PI、血清NSE、MAP、HR、IVC、等数据,并记录呋塞米使用量、机械通气时间、ICU住院时间和28 d病死率。
1.4.2. 超声测量
按照文献[4, 6, 12]中记载的方法,由经验丰富的重症医师操作床边超声机(美国产SonositeTM M-Turbo),使用高频线阵探头,取患者平卧位,分别测量ONSD、MCA-PI、IVC,测量(计算)3次,取平均值。操作切忌粗暴,避免探头损伤眼球、头部伤口,以及交叉感染等。
1.4.3. 液体平衡计算
计算液体入量与出量的差值,每24 h收集数据并做一次计算,液体入量包括所有经消化道和静脉通路进入体内的液体,包括温开水、肠内、肠外营养液、葡萄糖和氯化钠注射液、白蛋白、红细胞、血浆等;液体出量包括大小便、胸腹腔引流液、胃肠丢失液体、CRRT负平衡液体等。
1.5. 统计学方法
使用SPSS 13.0软件进行数据统计分析。计量资料以均数±标准差表示,进行单因素方差分析,组间比较采用SNK-q检验;计数资料采用χ2检验;P < 0.05为差异有统计学意义。
2. 结果
2.1. 患者基线资料比较
入选重型颅脑损伤术后患者65例,被剔除有15例,涉及原因有:(1)治疗好转转出或治疗过程未结束(死亡或自动出院)致ICU住院时间 < 7 d;(2)主动中断研究者;(3)失访者,最终纳入51例患者。治疗组25例,对照组26例,其中男性40例,女性11例;年龄18~70岁,平均49.88岁;格拉斯哥昏迷(GCS)评分(5.43±1.77)分;在受伤机制中,骑电动车摔伤的有15例,建筑工地受伤的有8例,小轿车、货车等交通事故受伤的有22例,其他6例,其中合并有长骨骨折、胸腹部损伤的有15例。两组患者在性别、年龄、术前GCS评分、受伤机制、手术时间、术中液体平衡等方面比较,差异均无统计学意义(P>0.05);入科时测量ONSD、MCA-PI、IVC、瞳孔直径、MAP、HR等数据,经过分析,差异均无统计学意义(均P>0.05,表 1)。
1.
两组患者基线资料比较
Baseline characteristics of the patients in the two group (Mean±SD)
Items | Treatment (n=25) | Control (n=26) | t/χ2 | P |
MCA-PI: Middle Cerebral Artery Pulsatility Index; ONSD: Optic nerve sheath diameter; GCS: Glasgow coma score; MAP: Mean arterial pressure; IVC: Inferior vena cava diameter; HR: Heart rate; 1 mmHg=0.133 kPa. | ||||
Age (year) | 50.24±10.47 | 49.54±13.62 | 0.206 | 0.838 |
Male (n, %) | 18 (72.00%) | 22 (84.62%) | 1.199 | 0.274 |
Female (n, %) | 7 (28.00%) | 4 (15.38%) | 1.199 | 0.274 |
Operation time (h) | 2.79±0.69 | 2.98±0.42 | 1.209 | 0.232 |
fluid balance during the operation (mL) | 1686.88±481.32 | 1641.65±494.62 | 0.331 | 0.742 |
ONSD (mm) | 4.94±0.24 | 4.87±0.25 | 1.130 | 0.264 |
MCA-PI | 1.03±0.19 | 1.05±0.18 | 0.354 | 0.725 |
Preoperative GCS (point) | 5.36±1.73 | 5.50±1.84 | 0.280 | 0.781 |
Pupil diameter (mm) | 4.16±0.99 | 4.23±1.07 | 0.484 | 0.807 |
MAP (mmHg) | 91.76±17.92 | 90.69±14.03 | 0.237 | 0.813 |
IVC (mm) | 18.72±4.33 | 18.27±3.29 | 0.420 | 0.676 |
HR (times/min) | 91.12±18.26 | 94.23±14.51 | 0.675 | 0.503 |
2.2. 各阶段液体平衡与ONSD、MCA-PI、NSE等指标变化比较
两组累计液体平衡,1 d均为正平衡,治疗组较对照组少(P < 0.05),3~7 d,两组均为负平衡,相同时间点,治疗组负平衡量显著大于对照组(均P < 0.05),且组内比较,随治疗时间延长,负平衡量不断加大(均P < 0.05);ONSD呈现先高后低的态势,1 d两组较基线均有明显增加(均P < 0.05),组间无差异(均P>0.05),两组在3 d达到峰值,治疗组较对照组低(P < 0.05),到了7 d,ONSD下降,治疗组明显低于对照组(P < 0.05),治疗组降低到与基线持平(P>0.05),对照组仍然较基线水平高(P < 0.05);两组MCA-PI在1 d均超过基线水平(均P < 0.05),组间无差异(P>0.05),在3 d达峰,7 d下降,治疗组均较对照组低(均P < 0.05);NSE在1 d两组无差异(P>0.05),在3 d升高到峰值,对照组更高(P < 0.05),7 d治疗组回落至1 d水平,对照组仍高于1 d;GCS评分出现先低后高的特点,同时间点(3 d~7 d)比较,治疗组好于对照组(均P < 0.05);1 d,两组IVC均高于基线(均P < 0.05),治疗组在3 d~7 d降到基线以下,且明显小于对照组(均P < 0.05),对照组在7 d才降到基线水平;MAP、HR、瞳孔,两组在不同时间点无明显差异(均P>0.05,表 2)。
2.
应用不同液体治疗策略后两组患者各时间点ONSD、MCA-PI、NSE等指标变化比较
Changes in ONSD, MCA-PI, NSE and other indicators in the two groups at different time points after different fluid management (Mean±SD)
Items | Treatment (n=25) | Control (n=26) | t | P | |
*P < 0.05 vs control; #P < 0.05 vs previous value within the group; NSE: Neuron-specific enolase. | |||||
Cumulative fluid balance (mL) | 1 d | 471.60±95.94* | 806.46±151.04 | 9.407 | 0.000 |
3d | -1380.80±245.31*# | -492.46±94.94# | 17.181 | 0.000 | |
7d | -2520.40±539.21*# | -923.42±352.05# | 12.572 | 0.000 | |
ONSD (mm) | 1d | 5.60±0.43# | 5.56±0.50# | 0.321 | 0.749 |
3d | 6.16±0.55*# | 6.52±0.58# | 2.302 | 0.026 | |
7d | 5.24±0.23*# | 5.76±0.57# | 4.204 | 0.000 | |
MCA-PI | 1d | 1.18±0.19# | 1.20±0.17# | 0.347 | 0.730 |
3d | 1.40±0.23*# | 1.53±0.23# | 2.066 | 0.044 | |
7d | 1.08±0.18*# | 1.21±0.21# | 2.442 | 0.018 | |
NSE (ng/mL) | 1d | 36.66±6.25 | 38.32±6.93 | 0.897 | 0.374 |
3d | 52.12±6.04*# | 62.82±11.54# | 4.126 | 0.000 | |
7d | 31.35±5.76*# | 44.42±7.31# | 7.075 | 0.000 | |
GCS (point) | 1d | 5.92±1.35 | 5.42±2.23 | 0.958 | 0.343 |
3d | 5.08±1.35*# | 4.35±1.09 | 2.136 | 0.038 | |
7d | 8.04±1.81*# | 7.08±1.16# | 0.266 | 0.028 | |
Pupil diameter (mm) | 1d | 4.28±1.10 | 4.07±1.06 | 0.673 | 0.504 |
3d | 4.16±0.94 | 4.23±1.18 | 0.236 | 0.814 | |
7d | 4.24±0.83 | 4.12±1.18 | 0.435 | 0.665 | |
MAP (mmHg) | 1d | 97.04±20.46 | 97.04±20.46 | 0.578 | 0.566 |
3d | 104.35±19.84# | 110.04±20.46 | 1.265 | 0.212 | |
7d | 90.04±20.46 | 95.35±19.84 | 0.861 | 0.393 | |
IVC (mm) | 1d | 21.48±5.32# | 21.62±5.07# | 0.093 | 0.926 |
3d | 18.00±4.35*# | 24.50±3.73# | 5.734 | 0.000 | |
7d | 14.60±3.65*# | 19.62±4.16# | 4.570 | 0.000 | |
HR (b/min) | 1d | 88.24±13.77 | 95.69±14.98 | 1.847 | 0.071 |
3d | 87.96±13.99 | 87.08±16.46 | 0.206 | 0.838 | |
7d | 81.16±13.91 | 83.54±15.35 | 0.579 | 0.565 |
2.3. 两组预后相关指标比较
与对照组相比,治疗组的呋塞米使用量显著增多(P < 0.05),机械通气时间和ICU住院时间则分别少于对照组(均P < 0.05),治疗组的气管切开数量也少于对照组(P < 0.05),到28 d,治疗组有4例患者死亡,对照组有6例死亡,两组无明显差异(P>0.05,表 3)。
3.
两组ICU患者预后相关指标比较
Comparison of prognostic indicators between the two groups (Mean±SD)
Items | Treatment (n=25) | Control(n=26) | t/χ2 | P |
*P < 0.05 vs control. | ||||
Dose of furosemide (mg) | 197.08±47.89* | 56.65±16.39 | 14.120 | 0.000 |
Duration of mechanical ventilation (h) | 98.12±14.48* | 123.08±31.06 | 3.653 | 0.001 |
Number of tracheotomy (n, %) | 9(36.00%)* | 17 (65.38%) | 4.404 | 0.036 |
Duration of ICU stay (d) | 9.28±1.79* | 11.12±3.35 | 2.425 | 0.019 |
28 day mortality (n, %) | 4(16.00%) | 6 (23.08%) | 0.405 | 0.525 |
3. 讨论
血容量过多可能与非脑损伤危重患者相似[14],而对颅脑损伤和非颅脑损伤患者实施限制性液体管理,均有改善预后的作用[15-16]。由于缺乏统一的定义以及脑水肿难以常规评估这一事实,严重限制了对液体超负荷后果的研究。最近,国内外均有研究发现应用超声监测ONSD、MAC-PI可以早期评估脑卒中患者颅内压,并且以此指导治疗,可以改善预后[4-7]。陈焕等[17]对心脏术后患者进行研究,发现ONSD与累计液体负平衡相关,可以用于脑水肿的评估,并且可以反映患者容量状态的变化,改善不良预后。入院时测得的ONSD可以提供有关患者发生颅内高压和自我调节受损风险的重要信息,ONSD检查有助于在入科时筛选患者,以确定哪些患者将从进一步的侵入性ICP监测中受益[18]。也可以通过MAC-PI(公式),计算ICP(ICP=4.47×PI+12.68),进而指导脑水肿和颅高压的管理[19-21]。
MAC-PI是超声测量大脑中动脉收缩期和舒张期血流速度计算而来,是评估患者脑血流的,脑水肿后脑血流减少,MAC-PI升高,可以反映脑水肿变化,ONSD也是超声测量反映脑水肿的重要指标,两者结合效果更佳,还能预测预后,本研究以超声监测ONSD、MAC-PI为手段,评估脑水肿和脑血流,应用限制性液体管理策略治疗重型颅脑损伤患者。发现患者术中均有较大的液体正平衡量,且在术后第1天仍有液体正平衡,这可能是患者麻醉效应未完全解除,液体在体内再分布所致,为了维持有效循环血量,保持脑灌注出现了正平衡,随着治疗时间的延长,两组患者均开始进入负平衡状态,监测ONSD和MAC-PI,结果显示,入科时即有升高,它们呈现先高后低的态势,两组在3 d达到峰值,其后开始下降,而且治疗组由于负平衡量更大,ONSD和MAC-PI也出现相应的改变,说明重型颅脑损伤患者体内很可能存在液体过负荷,我们再观察与容量状态有关的IVC,结果显示治疗组行限制性液体管理策略治疗后,同时间点IVC较对照组小。由于ONSD和MAC-PI可以间接反映脑水肿及颅内高压的变化,而液体过负荷可以使脑水肿加重,致颅内压力增高,进而可能使中枢神经功能发生改变[4, 17, 22-23]。因此,与之对应的患者的GCS评分,也有相关的变化,治疗组的GCS评分也好于对照组。一项回顾性分析SAH患者,较高的每日液体摄入量与3月的功能不良转归独立相关,肺水肿、SIRS、Fisher评分等也与液体摄入量相关[24]。NSE是查看脑部损伤比较敏感的指标,也可以用于预测预后[2, 8-9],本研究中,1 d即超过正常值上限许多,且在3 d达到峰值,随着液体负平衡的加大,数值出现下降趋势。还有人应用限制性液体复苏策略对创伤失血性休克患者进行治疗,结果可以减缓SIRS过程和改善各种血流动力学参数[25]。由于我们的研究是在保证灌注的前提下进行的,因此两组的MAP、HR和瞳孔等指标无明显差异。
两项项关于颅脑损伤液体管理的荟萃分析发现,与低容量状态相比,更高的血容量可以导致心功能不全、肺损伤相关水肿和感染等并发症[26-27]。从本研究的患者预后情况看,机械通气时间和ICU住院时间分别少于对照组,气管切开数量也偏少,这可能是由于治疗组液体管理严格,没有发生液体过负荷的相关并发症,如肺水肿等,而这些并发症很容易导致患者出现肺部感染,进而会使机械通气时间和住ICU时间延长。有研究[28-29]对非重型颅脑损伤患者(如ARDS和创伤)行限制性液体管理策略,同样发现,能够缩短机械通气时间和住ICU时间,并且不增加其他器官衰竭数量。治疗组的呋塞米使用量显著多于对照组,这与该组较大的液体负平衡是匹配的。治疗组有4例患者死亡,对照组有6例死亡,两组死亡率虽无差异(16.00% vs 23.08%,P>0.05),但重型颅脑损伤患者预后受多种因素影响,如手术医师水平、颅内损伤部位、出血量、肢体活动能力、后期家属照护水平、合并症等。有研究显示,与正常血容量相比,高血容量组并发症(硬膜外血肿、充血性心力衰竭和心律失常)较多,但临床终点无差异[30],这与我们的研究结果类似。
综上所述,对于重型颅脑损伤术后患者而言,周密的考虑液体管理策略至关重要,常规的液体治疗很容易导致液体过负荷,而液体过负荷会加重脑水肿,出现颅内高压,致使不良事件发生。应用超声监测ONSD和MAC-PI可以随时在床边筛查出颅内压增高的患者,行限制性液体管理策略可以有效降低脑水肿,并通过ONSD和MAC-PI反映出来。GCS和NSE的改善,说明对预后有明显益处,还能够改善机械通气时间和ICU住院时间等预后指标。但是,由于许多中间因素,液体管理对脑病理生理学的影响是复杂的,因此结果还需进一步研究加以证实。本研究的不足之处在于,没有直接测量颅内压进行比较研究,但是有创测量易造成感染、出血等并发症,也增加患者经济负担。
Biography
赵士兵,副主任医师,副教授,E-mail:zhaoshibing523@163.com
Funding Statement
安徽省2016年省级临床重点专科建设项目[卫科教秘(2017)27号]; 蚌埠医学院转化医学重点专项项目(BYTM2019014)
Contributor Information
赵 士兵 (Shibing ZHAO), Email: zhaoshibing523@163.com.
何 先弟 (Xiandi HE), Email: byyfyhxd@163.com.
References
- 1.van der Jagt Mathieu. Fluid management of the neurological patient: a concise review. Crit Care. 2016;20:126. doi: 10.1186/s13054-016-1309-2. [van der Jagt Mathieu. Fluid management of the neurological patient: a concise review[J]. Crit Care, 2016, 20: 126.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Chai O, Mazaki-Tovi M, Klainbart S, et al. Serum concentrations of neuron-specific enolase in dogs following traumatic brain injury. J Comp Pathol. 2020;179:45–51. doi: 10.1016/j.jcpa.2020.06.011. [Chai O, Mazaki-Tovi M, Klainbart S, et al. Serum concentrations of neuron-specific enolase in dogs following traumatic brain injury[J]. J Comp Pathol, 2020, 179: 45-51.] [DOI] [PubMed] [Google Scholar]
- 3.Wang LJ, Chen LM, Chen Y, et al. Ultrasonography assessments of optic nerve sheath diameter as a noninvasive and dynamic method of detecting changes in intracranial pressure. JAMA Ophthalmol. 2018;136(3):250–6. doi: 10.1001/jamaophthalmol.2017.6560. [Wang LJ, Chen LM, Chen Y, et al. Ultrasonography assessments of optic nerve sheath diameter as a noninvasive and dynamic method of detecting changes in intracranial pressure[J]. JAMA Ophthalmol, 2018, 136(3): 250-6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Robba C, Pozzebon S, Moro B, et al. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24:379. doi: 10.1186/s13054-020-03105-z. [Robba C, Pozzebon S, Moro B, et al. Multimodal non-invasive assessment of intracranial hypertension: an observational study[J]. Crit Care, 2020, 24: 379.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Zhou J, Li J, Ye TT, et al. Ultrasound measurements versus invasive intracranial pressure measurement method in patients with brain injury: a retrospective study. BMC Med Imaging. 2019;19:53. doi: 10.1186/s12880-019-0354-0. [Zhou J, Li J, Ye TT, et al. Ultrasound measurements versus invasive intracranial pressure measurement method in patients with brain injury: a retrospective study[J]. BMC Med Imaging, 2019, 19: 53.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.周 晓芬, 陈 晗, 于 荣国, et al. 神经重症患者术后多模态监测技术的应用研究. 中华危重病急救医学. 2020;32(8):960–4. doi: 10.3760/cma.j.cn121430-20200130-00148. [周晓芬, 陈晗, 于荣国, 等.神经重症患者术后多模态监测技术的应用研究[J].中华危重病急救医学, 2020, 32(8): 960-4.] [DOI] [PubMed] [Google Scholar]
- 7.Fernando SM, Tran A, Cheng W, et al. Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis. BMJ. 2019;366:l4225. doi: 10.1136/bmj.l4225. [Fernando SM, Tran A, Cheng W, et al. Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis[J]. BMJ, 2019, 366:l4225.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Lu WX, Jiang C, Wang ZN, et al. Lactic acid, neuron- specific enolase, and blood-brain barrier index after a severe traumatic brain injury: a prospective study. Br J Neurosurg. 2020;2020:1–5. doi: 10.1080/02688697.2020.1823938. [Lu WX, Jiang C, Wang ZN, et al. Lactic acid, neuron- specific enolase, and blood-brain barrier index after a severe traumatic brain injury: a prospective study[J]. Br J Neurosurg, 2020, 2020: 1-5.] [DOI] [PubMed] [Google Scholar]
- 9.陆 剑平, 车 春晖, 黄 华品. 脑电图和振幅整合脑电图分别联合神经元特异性烯醇化酶评估心肺复苏后脑功能预后的比较. 中华医学杂志. 2020;100(21):1629–33. doi: 10.3760/cma.j.cn112137-20190911-02011. [陆剑平, 车春晖, 黄华品.脑电图和振幅整合脑电图分别联合神经元特异性烯醇化酶评估心肺复苏后脑功能预后的比较[J].中华医学杂志, 2020, 100(21): 1629-33.] [DOI] [PubMed] [Google Scholar]
- 10.Myburgh J, Cooper DJ, Finfer S, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84. doi: 10.1056/NEJMoa067514. [Myburgh J, Cooper DJ, Finfer S, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury[J]. N Engl J Med, 2007, 357(9): 874-84.] [DOI] [PubMed] [Google Scholar]
- 11.黄 学才, 杨 玲玲. 等渗透剂量的15%高渗盐水和20%甘露醇治疗重型颅脑损伤合并颅内高压的对比研究. http://www.j-smu.com/oa/DArticle.aspx?type=view&id=201405723. 南方医科大学学报. 2014;34(5):723–6. doi: 10.3969/j.issn.1673-4254.2014.05.27. [黄学才, 杨玲玲.等渗透剂量的15%高渗盐水和20%甘露醇治疗重型颅脑损伤合并颅内高压的对比研究[J].南方医科大学学报, 2014, 34 (5): 723-6.] [DOI] [Google Scholar]
- 12.尹 万红, 王 小亭, 刘 大为, et al. 重症超声临床应用技术规范. 中华内科杂志. 2018;57(6):397–417. doi: 10.3760/cma.j.issn.0578-1426.2018.06.004. [尹万红, 王小亭, 刘大为, 等.重症超声临床应用技术规范[J].中华内科杂志, 2018, 57(6): 397-417.] [DOI] [PubMed] [Google Scholar]
- 13.Spaite DW, Hu C, Bobrow BJ, et al. Mortality and prehospital blood pressure in patients with major traumatic brain injury: implications for the hypotension threshold. JAMASurg. 2017;152(4):360–8. doi: 10.1001/jamasurg.2016.4686. [Spaite DW, Hu C, Bobrow BJ, et al. Mortality and prehospital blood pressure in patients with major traumatic brain injury: implications for the hypotension threshold[J]. JAMASurg, 2017, 152(4): 360-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Ferrada P, Evans D, Wolfe L, et al. Findings of a randomized controlled trial using limited transthoracic echocardiogram (LTTE) as a hemodynamic monitoring tool in the trauma bay. J Trauma Acute Care Surg. 2014;76(1):31–8. doi: 10.1097/TA.0b013e3182a74ad9. [Ferrada P, Evans D, Wolfe L, et al. Findings of a randomized controlled trial using limited transthoracic echocardiogram (LTTE) as a hemodynamic monitoring tool in the trauma bay[J]. J Trauma Acute Care Surg, 2014, 76(1): 31-8.] [DOI] [PubMed] [Google Scholar]
- 15.闫 诺, 杨 程. 目标导向液体治疗对颅脑损伤急诊开颅患者预后的影响. 中华创伤杂志. 2016;32(10):893–7. doi: 10.3760/cma.j.issn.1001-8050.2016.10.006. [闫诺, 杨程.目标导向液体治疗对颅脑损伤急诊开颅患者预后的影响[J].中华创伤杂志, 2016, 32(10): 893-7.] [DOI] [Google Scholar]
- 16.Silversides JA, Perner A, Malbrain MLNG. Liberal versus restrictive fluid therapy in critically ill patients. Intensive Care Med. 2019;45(10):1440–2. doi: 10.1007/s00134-019-05713-y. [Silversides JA, Perner A, Malbrain MLNG. Liberal versus restrictive fluid therapy in critically ill patients[J]. Intensive Care Med, 2019, 45(10): 1440-2.] [DOI] [PubMed] [Google Scholar]
- 17.陈 焕, 王 小亭, 丁 欣, et al. 心脏术后患者视神经鞘宽度与容量状态的相关性研究. 中华内科杂志. 2016;55(10):779–83. doi: 10.3760/cma.j.issn.0578-1426.2016.10.011. [陈焕, 王小亭, 丁欣, 等.心脏术后患者视神经鞘宽度与容量状态的相关性研究[J].中华内科杂志, 2016, 55(10): 779-83.] [DOI] [Google Scholar]
- 18.Robba C, Donnelly J, Cardim D, et al. Optic nerve sheath diameter ultrasonography at admission as a predictor of intracranial hypertension in traumatic brain injured patients: a prospective observational study. J Neurosurg. 2019:1–7. doi: 10.3171/2018.11.JNS182077. [Robba C, Donnelly J, Cardim D, et al. Optic nerve sheath diameter ultrasonography at admission as a predictor of intracranial hypertension in traumatic brain injured patients: a prospective observational study[J]. J Neurosurg, 2019: 1-7.] [DOI] [PubMed] [Google Scholar]
- 19.Robba C, Cardim D, Sekhon M, et al. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neuro Res. 2018;96(4):720–30. doi: 10.1002/jnr.24148. [Robba C, Cardim D, Sekhon M, et al. Transcranial Doppler: a stethoscope for the brain-neurocritical care use[J]. J Neuro Res, 2018, 96(4): 720-30.] [DOI] [PubMed] [Google Scholar]
- 20.Mangalore S, Kotresh, Srinivasa R, et al. Can transcranial color Doppler spectral signatures be a novel biomarker for monitoring cerebrovascular autoregulation and intracranial pressure? A speculative synthesis. Ann IndianAcad Neurol. 2017;20(3):252–62. doi: 10.4103/aian.AIAN_80_17. [Mangalore S, Kotresh, Srinivasa R, et al. Can transcranial color Doppler spectral signatures be a novel biomarker for monitoring cerebrovascular autoregulation and intracranial pressure? A speculative synthesis[J].Ann IndianAcad Neurol, 2017, 20(3): 252-62.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Brandi G, Béchir M, Sailer S, et al. Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury. Acta Neurochir. 2010;152(6):965–72. doi: 10.1007/s00701-010-0643-4. [Brandi G, Béchir M, Sailer S, et al. Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury[J]. Acta Neurochir, 2010, 152(6): 965-72.] [DOI] [PubMed] [Google Scholar]
- 22.Dumont G, Burnol L, Jospe R, et al. Transcranial color duplex ultrasound: A reliable tool for cerebral hemodynamic assessment in brain Injuries. J NeurosurgAnesthesiol. 2016;28(2):159–63. doi: 10.1097/ANA.0000000000000242. [Dumont G, Burnol L, Jospe R, et al. Transcranial color duplex ultrasound: A reliable tool for cerebral hemodynamic assessment in brain Injuries[J]. J NeurosurgAnesthesiol, 2016, 28 (2):159-63.] [DOI] [PubMed] [Google Scholar]
- 23.Price DA, Grzybowski A, Eikenberry J, et al. Review of noninvasive intracranial pressure measurement techniques for ophthalmology applications. Br J Ophthalmol. 2020;104(7):887–92. doi: 10.1136/bjophthalmol-2019-314704. [Price DA, Grzybowski A, Eikenberry J, et al. Review of noninvasive intracranial pressure measurement techniques for ophthalmology applications[J]. Br J Ophthalmol, 2020, 104(7): 887-92.] [DOI] [PubMed] [Google Scholar]
- 24.Rass V, Gaasch M, Kofler M, et al. Fluid intake but not fluid balance is associated with poor outcome in nontraumatic subarachnoid hemorrhage patients. Crit Care Med. 2019;47(7):e555–62. doi: 10.1097/CCM.0000000000003775. [Rass V, Gaasch M, Kofler M, et al. Fluid intake but not fluid balance is associated with poor outcome in nontraumatic subarachnoid hemorrhage patients[J]. Crit Care Med, 2019, 47(7): e555-62.] [DOI] [PubMed] [Google Scholar]
- 25.邵 志林, 杜 召辉, 王 如意, et al. 不同目标血压复苏对创伤失血性休克患者外周血炎性因子和血流动力学的影响. 中华危重病急救医学. 2019;31(4):428–33. doi: 10.3760/cma.j.issn.2095-4352.2019.04.011. [邵志林, 杜召辉, 王如意, 等.不同目标血压复苏对创伤失血性休克患者外周血炎性因子和血流动力学的影响[J].中华危重病急救医学, 2019, 31(4): 428-33.] [DOI] [PubMed] [Google Scholar]
- 26.Rossi S, Picetti E, Zoerle T, et al. Fluid management in acute brain injury. Curr Neurol Neurosci Rep. 2018;18(11):74. doi: 10.1007/s11910-018-0885-8. [Rossi S, Picetti E, Zoerle T, et al. Fluid management in acute brain injury[J]. Curr Neurol Neurosci Rep, 2018, 18(11): 74.] [DOI] [PubMed] [Google Scholar]
- 27.Heifets BD, Tanaka P, Burbridge MA. Fluid management concepts for severe neurological illness. Curr Opin Anaesthesiol. 2018;31(5):526–31. doi: 10.1097/ACO.0000000000000629. [Heifets BD, Tanaka P, Burbridge MA. Fluid management concepts for severe neurological illness[J]. Curr Opin Anaesthesiol, 2018, 31 (5): 526-31.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75. doi: 10.1056/NEJMoa062200. [Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury[J]. N Engl J Med, 2006, 354(24): 2564-75.] [DOI] [PubMed] [Google Scholar]
- 29.杨 万杰, 冯 庆国, 魏 凯, et al. 早期限制性液体正平衡策略对严重创伤患者预后的影响. 中国危重病急救医学. 2013;25(1):36–9. doi: 10.3760/cma.j.issn.2095-4352.2013.01.010. [杨万杰, 冯庆国, 魏凯, 等.早期限制性液体正平衡策略对严重创伤患者预后的影响[J].中国危重病急救医学, 2013, 25(1): 36-9.] [DOI] [PubMed] [Google Scholar]
- 30.Egge A, Waterloo K, Sjøholm H, et al. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49(3):593–606. doi: 10.1097/00006123-200109000-00012. [Egge A, Waterloo K, Sjøholm H, et al. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study [J]. Neurosurgery, 2001, 49(3): 593-606.] [DOI] [PubMed] [Google Scholar]