Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jan 22;77(Pt 2):148–152. doi: 10.1107/S2056989020016795

Crystal structure of [3,10-bis­(4-fluoro­pheneth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne]nickel(II) diperchlorate

Chee-Hun Kwak a,*, Mee Chang b
PMCID: PMC7869553  PMID: 33614144

A new nickel(II) complex of a hexa­aza­macrocycle containing 4-flurophenethyl pendant arms was synthesized by metal template condensation in a one-pot reaction of formaldehyde and amines in the presence of nickel(II) ions and its X-ray crystal structure was determined.

Keywords: crystal structure; whole-mol­ecule disorder; 3,10-bis­(4-fluoro­pheneth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne; 4-fluoro­phenethyl side chain; nickel(II) complex; trans-III configuration

Abstract

The square-planar nickel(II) title complex, [Ni(C24H36F2N6)](ClO4)2 or [NiL](ClO4)2 (L = 3,10-bis­(4-fluoro­pheneth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne) was synthesized by a one-pot reaction of template condensation and its X-ray crystal structure was determined. The nickel(II) ion lies close by a twofold axis and the complex displays whole-mol­ecule disorder. Ligand L, a hexa­aza­cyclo­tetra­decane ring having 4-fluoro­phenethyl side chains attached to uncoordinated nitro­gen atoms, adopts a trans III (R,R,S,S) configuration. The average Ni—N bond distance is 1.934 (9) Å, which is quite similar to those of other nickel(II) complexes with similar ligands. The nickel(II) ion is located 0.051 (7) Å above the least-squares plane through the four coordinated N atoms. The average C—N bond distance and C—N—C angle involving uncoordinated nitro­gen atoms are 1.425 (12) Å and 118.0 (9)°, respectively, indicating a significant contribution of sp 2 hybridization for these N atoms. The inter­molecular N—H⋯O, C—H⋯O/F hydrogen bonds of the complex form a network structure, which looks like a seamless floral lace pattern.

Chemical context  

A metal template condensation reaction with formaldehyde and appropriate amines is a useful method for the synthesis of saturated polyaza­macrocyclic complexes. It often produces new macrocyclic complexes in one-pot reactions with high yield via selective routes (Salavati-Niasari & Davar, 2006; Salavati-Niasari & Najafian, 2003; Suh, 1996). The introduction of pendant arms into polyaza­macrocyclic ligands has, sometimes, changed the structural and chemical properties of the complexes considerably (Hermann et al., 2008; Jee et al., 2003; Alexander, 1995; Kang et al., 1995). The information derived from polyaza­macrocyclic complexes containing pendant arms helps in the understanding of apical effects in the biological behavior of tetra­aza­macrocyclic metalloenzymes having a square-planar geometry (Liang & Sadler, 2004; Costamagna et al., 2000). Furthermore, the donor atoms in the pendant arms of these macrocyclic complexes can be coordinated to another metal ion or participate in hydrogen bonding. Consequently, these complexes can be applied in the field of supra­molecular chemistry or metal–organic frameworks. In the nickel(II) complex 8-(pyridin-4-ylmeth­yl)-1,3,6,8,10,13,15-hepta­aza­tri­cyclo[13.1.1.113,15]octa­decane, inter­molecular hydrogen bonding between the nitro­gen of the pendant pyridine and coordinated water produces a one-dimensional chain structure (Jee et al., 2003). In particular, many supra­molecular studies including metal–organic frameworks using complexes of 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane-type ligands are available because they can be obtained by easy synthetic routes using metal template reactions (Min & Suh, 2001; Kang et al., 1999; Suh et al., 1994). The nickel(II) complex of 3,10-bis­(2-cyano­eth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane produces a coordination polymer with each nickel(II) ion in the macrocycle units coordinating to two nitrile pendant groups of neighboring macrocycles (Suh et al., 1994). In the nickel(II) complex of 3,10-bis­(pyridin-4-ylmeth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane, hydrogen-bonding inter­actions between nitro­gen atoms in pendant pyridine rings, structural water mol­ecules and hydrogen atoms of the secondary amine of the macrocycle link the macrocyclic complexes, resulting in a two-dimensional network (Min & Suh, 2001). In addition, many studies on metal–organic frameworks have been performed using complexes of 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane-type ligands (Jeoung et al., 2019; Stackhouse & Ma, 2018; Lee & Moon, 2018; Lin et al., 2014). In this communication, we report the preparation of a new nickel(II) complex [NiL](ClO4)2, where L is a 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane ligand having 4-fluoro­phenethyl pendant arms at positions 3 and 10, and its structural characterization by single-crystal X-ray crystallography.graphic file with name e-77-00148-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. Both the complex and perchlorate anion display disorder. The NiII ion lies close by a special position (twofold axis) and the [NiL]2+ complex occurs in two orientations with fixed occupancies of 0.50. The refinement of this whole-mol­ecule disorder needed additional restraints (see Refinement section). The occupancies of the disordered perchlorate ion are 0.795 (7) and 0.205 (7). The nickel(II) ion is coordinated to the four nitro­gens N2, N3, N2′ and N3′, and the complex has a square-planar coordination geometry. The 14-membered ring skeleton adopts the thermodynamically most stable trans-III configuration with R,R,S,S chirality of the four coordinated nitro­gen atoms (Barefield, 2010). The ligand L of the complex has two 4-fluoro­phenethyl pendant arms attached to the two uncoordinated nitro­gens (N1 and N1′) of the 14-membered 1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane ring skeleton. The 4-fluoro­phenethyl pendants are positioned above and below the square coordination plane. The six-membered chelate rings adopt a chair conformation and the five-membered chelate rings assume a gauche conformation.

Figure 1.

Figure 1

Mol­ecular structure of one of the whole-mol­ecule disorder component mol­ecules of [NiL]2+ with displacement ellipsoids at 50% probability level. The second disorder component, generated by (1 − x, y, Inline graphic − z) is omitted for clarity.

Selected bond distances and angles are listed in Table 1. The average Ni—N bond distance of 1.934 (9) Å is quite similar to those in square-planar nickel(II) complexes of various other related 14-membered polyaza macrocycles (Kang et al., 1999; Suh et al., 1998; Suh et al., 1996). The bite angles of five-membered chelates are 86.5 (2)° for N2—Ni1—N2′ and 86.6 (3)° for N3—Ni1—N3′, respectively and those of six-membered chelates are 93.7 (4)° for N2—Ni1—N3 and 93.0 (4)° for N2′—Ni1—N3′, respectively. The four coordinating nitro­gen atoms (N2, N3, N2′ and N3′) are almost co-planar (r.m.s. deviation 0.010 Å). The nickel(II) ion is located 0.051 (7) Å above this least-squares plane showing a slightly square-pyramidal distortion. The N—C bond distances involv­ing the uncoordinated bridgehead nitro­gens (N1 and N1′) range from 1.398 (11) Å (N1—C1) to 1.481 (10) Å (N1′—C5′) and the average N—C bond distance is 1.425 (12) Å, which is significantly shorter than the other N—C single bond distances. Furthermore, the C—N—C bond angles involving these bridgehead nitro­gens range from 115.5 (7)° (C1—N1—C2) to 120.1 (8)° (C1′—N1′—C5′) and the average bond angle is 118.0 (9)°, which is distinctly larger than the ideal tetra­hedral angle. These results indicate a significant contribution of sp 2 hybridization of the bridgehead nitro­gen atoms (N1 and N1′) (Min & Suh, 2001; Kang et al., 1999).

Table 1. Selected geometric parameters (Å, °).

Ni1—N3 1.925 (7) N1—C2 1.401 (11)
Ni1—N2 1.933 (9) N1—C5 1.469 (10)
Ni1—N3′ 1.934 (7) N1′—C1′ 1.400 (11)
Ni1—N2′ 1.943 (9) N1′—C2′ 1.408 (12)
N1—C1 1.398 (11) N1′—C5′ 1.481 (10)
       
N2—Ni1—N3 93.7 (4) C1—N1—C5 118.9 (9)
N3—Ni1—N3′ 86.6 (3) C2—N1—C5 119.1 (8)
N2—Ni1—N3′ 176.4 (4) C1′—N1′—C2′ 115.6 (7)
N2—Ni1—N2′ 86.5 (2) C1′—N1′—C5′ 120.1 (8)
C1—N1—C2 115.5 (7) C2′—N1′—C5′ 118.5 (9)

Supra­molecular features  

There are several N—H⋯A (A = O) as well as C—H⋯A (A = O or F) hydrogen bonds in the crystal packing of [NiL](ClO4)2. Hydrogen-bonding inter­actions between N—H or C—H groups of the ligand L and perchlorate oxygen atoms are summarized in Table 2 and illustrated in Fig. 2. In addition, fluorine atom F1 in one of the pendant phenyl groups of the macrocycle is involved in an inter­molecular inter­action with hydrogen H4A of a neighboring mol­ecule (Table 2 and Fig. 3). The other fluorine atom, F1′, takes part in a weaker hydrogen-bonding inter­action with H4′A of a neighboring mol­ecule [H4A⋯F1′ = 2.62 Å, C4′⋯F1′ = 3.312 (17) Å and C4′—H4′A⋯F1′ = 128.4 (8)°]. These inter­actions form a chain structure extending in the [Inline graphic01] direction (Fig. 3). All of these inter­molecular hydrogen-bonding inter­actions lead to a network structure resembling a seamless floral lace pattern (Fig. 4).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.98 2.51 3.355 (17) 144
N2—H2⋯O4i 0.98 2.44 3.260 (16) 141
N2′—H2′⋯O4ii 0.98 2.43 3.332 (18) 152
N2′—H2′⋯O4iii 0.98 2.36 3.089 (17) 131
N3—H3⋯O2 0.98 1.97 2.819 (11) 144
N3′—H3′⋯O2ii 0.98 2.40 3.186 (11) 137
C1′—H1′A⋯O1iii 0.97 2.31 3.198 (13) 151
C1—H1B⋯O3ii 0.97 2.35 3.156 (16) 140
C1′—H1′B⋯O3 0.97 2.56 3.309 (15) 134
C2—H2B⋯O1iv 0.97 2.50 3.394 (16) 154
C3—H3B⋯O1i 0.97 2.48 3.35 (2) 149
C2′—H2′B⋯O1v 0.97 2.58 3.551 (16) 175
C4—H4A⋯F1vi 0.97 2.54 3.341 (19) 140
C3′—H3′A⋯O4iii 0.97 2.54 3.136 (17) 119
C4′—H4′B⋯O2 0.97 2.54 3.239 (14) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

Hydrogen-bonding inter­actions involving the perchlorate anions in the crystal packing [NiL](ClO4)2. Light-green dashed lines indicate N—H⋯O and C—H⋯O hydrogen-bonding inter­actions. Symmetry codes: (i) 1 − x, y, Inline graphic − z; (ii) 1 − x, 1 − y, 1 − z; (iii) x, −Inline graphic + y, 1 − z; (v) Inline graphic − x, Inline graphic − y, 1 − z; (vi) −Inline graphic + x, Inline graphic − y, −Inline graphic + z. Only one of the whole-mol­ecule disorder [NiL]2+ components and the major component of the perchlorate anion are shown.

Figure 3.

Figure 3

A view showing the one-dimensional chain propagation of rings formed by the inter­molecular hydrogen bonding between F1⋯ H4A and F1′⋯H4′A in [NiL]2+. Symmetry codes: (i) 1 − x, y, Inline graphic − z; (iv) Inline graphic − x, Inline graphic − y, 1 − z; (v) Inline graphic − x, Inline graphic − y, −z; (vii) −1 + x, y, 1 + z. Only one of the whole-mol­ecule disorder [NiL]2+ components is shown.

Figure 4.

Figure 4

A view of the crystal packing of [NiL](ClO4)2, which resembles a seamless floral lace pattern. Light-green dashed lines indicate hydrogen-bonding inter­actions.

Database survey  

An Access Structures search of the Cambridge Structural Database (CSD, via CCDC Access Structures, December 2020; Groom et al., 2016) resulted in 97 structures of complexes of 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane derivatives and 13 structures of complexes of 1,8-bis­(alk­yl)-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane (different systematic name of the ligand). However, no results were found for the 3,10-bis­(4-fluoro­pheneth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane structure.

In addition, 92 structures containing the 1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane skeleton were found during a SciFinder search, but again no results were found containing the title complex. Most are classified as octa­hedral complexes, while only a few cases are square-planar nickel(II) complexes. The Ni—N bond distances are 1.931 (2)–1.934 (3) Å in the nickel(II) complex of 3,10-bis­(2-amino­eth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Kang et al., 1999), 1.934 Å in the nickel(II) complex of 3,10-dibenzyl-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Min & Suh, 2001), and 1.933 (3)–1.936 (3) Å in 1,8-dimethyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane (Benkada et al., 2020), similar to those of the square-planar nickel(II) complexes of various other related 14-membered polyaza macrocycles. The Ni—N distances of 1.933 (4)–1.944 (4) Å in the nickel(II) complex of 1,8-dipentyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane (Park et al., 2015) and the average Ni—N bond distance of 1.941 (6) Å in the nickel(II) complex of 3,10-bis­(α-methyl­naphth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Min et al., 2013) are a little longer than those of analogous complexes. However, the Ni—N distances of 1.927 (4)–1.932 (4) Å in the nickel(II) complex of 3,10-bis­(2-thio­phene­meth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Su et al., 2007) and 1.926 (1)–1.928 (1) Å in that of 3,10-bis­(2-hy­droxy­eth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (Kim et al., 2002) are somewhat shorter than those of analogous complexes. In all these nickel(II) complexes of 3,10-bis­(alk­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane analogues, the nickel(II) ion is situated on an inversion center, except for the nickel(II) complex of 3,10-bis­(α-methyl­naphth­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane, which does not have an inversion center due to the chiral pendants of the macrocyclic ligand (Min et al., 2013). The nickel (II) ion is exactly in the least-squares plane through the four coordinating nitro­gen atoms.

Synthesis and crystallization  

A well-known one-pot reaction of template condensation was used for the preparation of the title complex (Salavati-Niasari & Rezai-Adaryani, 2004; Min & Suh, 2001; Kang et al., 1999). 98% Ethyl­enedi­amine (1.1 ml, 16mmol), 99% 4-fluoro­phenethyl­amine (2.1 ml, 16 mmol), and 95% paraformaldehyde (1.44 g, 48 mmol) were slowly added to a stirred solution of 98% nickel(II) acetate tetra­hydrate (2.0 g, 8.0 mmol) in 50 ml of methanol. The solution was heated under reflux for 24 h and then cooled to room temperature. The solution was filtered, concentrated HClO4 was added to the filtrate, adjusting pH of the solution to 4, and it was kept in a refrigerator until a yellow-colored precipitate was formed. The product was filtered, washed with methanol, and dried in air. Single crystals for X-ray crystallography were obtained by recrystallization from hot water.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å (CH, aromatic), 0.97 Å (CH2) and N—H = 0.98 Å (NH2), and U iso(H) = 1.2U eq(C) or U iso(H) = 1.2U eq(N)].

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C24H36F2N6)](ClO4)2
M r 704.20
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 16.9910 (12), 15.5187 (11), 13.8864 (9)
β (°) 126.189 (1)
V3) 2955.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.40 × 0.35 × 0.20
 
Data collection
Diffractometer Bruker SMART CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 9357, 3400, 2737
R int 0.083
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.068, 0.159, 1.13
No. of reflections 3400
No. of parameters 282
No. of restraints 492
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.63

Computer programs: SMART and SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), and Mercury (Macrae et al., 2020).

The refinement of the whole-mol­ecule disorder employed the following constraints and restraints in SHELXL: (1) occupancy factors were set at 0.50, (2) the two chemically equivalent halves of the complex were restrained to be similar using the ‘SAME’ command, (3) the fluorinated benzene rings were given a weak ‘FLAT’ restraint, (4) Ni1 required a strong ‘ISOR’ restraint and (5) displacement factors for atom pairs related about the special position were constrained to be equal (EADP).

The perchlorate anion is disordered over two sets of atomic sites with occupancy ratios of 0.795 (7):0.205 (7).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020016795/vm2242sup1.cif

e-77-00148-sup1.cif (307.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020016795/vm2242Isup2.hkl

e-77-00148-Isup2.hkl (190.1KB, hkl)

CCDC reference: 2053166

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Research Faculties, Kyungsang National University, Jinju, South Korea, for the X-ray crystallographic data collection.

supplementary crystallographic information

Crystal data

[Ni(C24H36F2N6)](ClO4)2 F(000) = 1464
Mr = 704.20 Dx = 1.583 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 16.9910 (12) Å Cell parameters from 3600 reflections
b = 15.5187 (11) Å θ = 1.8–28.3°
c = 13.8864 (9) Å µ = 0.91 mm1
β = 126.189 (1)° T = 173 K
V = 2955.1 (4) Å3 Block, yellow
Z = 4 0.40 × 0.35 × 0.20 mm

Data collection

Bruker SMART CCD area detector diffractometer Rint = 0.083
phi and ω scans θmax = 28.3°, θmin = 2.0°
9357 measured reflections h = −21→19
3400 independent reflections k = −19→18
2737 reflections with I > 2σ(I) l = −18→15

Refinement

Refinement on F2 492 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0449P)2 + 12.0119P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max < 0.001
3400 reflections Δρmax = 0.88 e Å3
282 parameters Δρmin = −0.63 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.50831 (10) 0.37625 (4) 0.25924 (13) 0.0174 (2)* 0.5
F1 0.0633 (8) 0.3851 (12) 0.5651 (8) 0.071 (3) 0.5
N1 0.2930 (6) 0.3576 (6) 0.2078 (8) 0.0457 (18) 0.5
N2 0.4195 (8) 0.4599 (6) 0.2494 (14) 0.0285 (16) 0.5
H2 0.440274 0.471036 0.330822 0.034* 0.5
N3 0.4422 (6) 0.2796 (5) 0.2689 (8) 0.0315 (17) 0.5
H3 0.464913 0.275912 0.352038 0.038* 0.5
C1 0.3129 (7) 0.4353 (7) 0.1751 (11) 0.0438 (19) 0.5
H1A 0.276898 0.481023 0.180846 0.053* 0.5
H1B 0.289042 0.431370 0.092254 0.053* 0.5
C2 0.3322 (7) 0.2838 (6) 0.1930 (9) 0.0407 (18) 0.5
H2A 0.307538 0.280024 0.109821 0.049* 0.5
H2B 0.308648 0.233687 0.210625 0.049* 0.5
C3 0.4317 (10) 0.5416 (7) 0.2027 (12) 0.043 (2) 0.5
H3A 0.398839 0.537629 0.117278 0.052* 0.5
H3B 0.404620 0.589837 0.218621 0.052* 0.5
C4 0.4734 (8) 0.1987 (5) 0.2428 (11) 0.042 (2) 0.5
H4A 0.462776 0.149576 0.277068 0.050* 0.5
H4B 0.436522 0.190069 0.157356 0.050* 0.5
C5 0.2772 (7) 0.3584 (7) 0.3011 (9) 0.043 (2) 0.5
H5A 0.324764 0.396071 0.365491 0.051* 0.5
H5B 0.286668 0.300782 0.333287 0.051* 0.5
C6 0.1754 (10) 0.3892 (15) 0.2521 (13) 0.0436 (17) 0.5
H6A 0.169116 0.448576 0.226476 0.052* 0.5
H6B 0.129079 0.355294 0.181870 0.052* 0.5
C7 0.1472 (8) 0.3846 (10) 0.3366 (10) 0.0368 (12) 0.5
C8 0.1429 (10) 0.3083 (10) 0.3863 (11) 0.048 (3) 0.5
H8 0.157393 0.256297 0.366611 0.057* 0.5
C9 0.1173 (10) 0.3085 (10) 0.4650 (11) 0.054 (3) 0.5
H9 0.119223 0.257617 0.501639 0.065* 0.5
C10 0.0891 (15) 0.3847 (12) 0.4885 (15) 0.0519 (18) 0.5
C11 0.0973 (19) 0.4610 (12) 0.447 (2) 0.046 (2) 0.5
H11 0.084266 0.512687 0.469261 0.055* 0.5
C12 0.126 (2) 0.4599 (11) 0.371 (2) 0.039 (2) 0.5
H12 0.130349 0.512186 0.342290 0.047* 0.5
F1' 0.9281 (8) 0.3557 (11) −0.0646 (8) 0.071 (3) 0.5
N1' 0.7183 (6) 0.3953 (6) 0.3006 (8) 0.0457 (18) 0.5
N2' 0.5718 (8) 0.4730 (6) 0.2422 (15) 0.0315 (17) 0.5
H2' 0.548837 0.474605 0.158805 0.038* 0.5
N3' 0.5922 (6) 0.2927 (5) 0.2582 (8) 0.0285 (16) 0.5
H3' 0.570787 0.286557 0.175710 0.034* 0.5
C1' 0.6818 (7) 0.4693 (6) 0.3192 (10) 0.0407 (18) 0.5
H1'A 0.706114 0.519692 0.303050 0.049* 0.5
H1'B 0.706349 0.471549 0.402388 0.049* 0.5
C2' 0.6995 (7) 0.3171 (7) 0.3348 (10) 0.0438 (19) 0.5
H2'A 0.722435 0.321528 0.417275 0.053* 0.5
H2'B 0.736204 0.271471 0.330180 0.053* 0.5
C3' 0.5385 (10) 0.5534 (7) 0.2658 (12) 0.042 (2) 0.5
H3'A 0.551526 0.603098 0.234804 0.050* 0.5
H3'B 0.571198 0.561228 0.350715 0.050* 0.5
C4' 0.5786 (8) 0.2082 (5) 0.2969 (10) 0.043 (2) 0.5
H4'A 0.600078 0.161811 0.270542 0.052* 0.5
H4'B 0.616559 0.206027 0.383173 0.052* 0.5
C5' 0.7323 (7) 0.3938 (7) 0.2050 (9) 0.043 (2) 0.5
H5'A 0.695637 0.440331 0.149100 0.051* 0.5
H5'B 0.708406 0.339732 0.161773 0.051* 0.5
C6' 0.8384 (11) 0.4037 (15) 0.2587 (14) 0.0436 (17) 0.5
H6'A 0.874819 0.360440 0.320403 0.052* 0.5
H6'B 0.860033 0.459795 0.296500 0.052* 0.5
C7' 0.8622 (8) 0.3952 (10) 0.1701 (10) 0.0368 (12) 0.5
C8' 0.8807 (9) 0.3129 (9) 0.1490 (10) 0.039 (2) 0.5
H8' 0.875962 0.266112 0.187145 0.047* 0.5
C9' 0.9059 (10) 0.2994 (10) 0.0724 (11) 0.046 (2) 0.5
H9' 0.923553 0.245074 0.062804 0.055* 0.5
C10' 0.9039 (15) 0.3693 (11) 0.0113 (15) 0.0519 (18) 0.5
C11' 0.893 (2) 0.4515 (12) 0.034 (2) 0.054 (3) 0.5
H11' 0.902900 0.497780 −0.000650 0.065* 0.5
C12' 0.868 (2) 0.4641 (12) 0.112 (2) 0.048 (3) 0.5
H12' 0.854488 0.519427 0.124343 0.057* 0.5
Cl1 0.6115 (4) 0.3604 (3) 0.5699 (5) 0.0469 (4) 0.795 (7)
O1 0.6801 (6) 0.3549 (5) 0.6978 (5) 0.082 (3) 0.795 (7)
O2 0.5813 (5) 0.2776 (4) 0.5188 (5) 0.102 (2) 0.795 (7)
O3 0.6555 (5) 0.3981 (6) 0.5233 (6) 0.113 (3) 0.795 (7)
O4 0.5284 (5) 0.4091 (5) 0.5368 (6) 0.089 (2) 0.795 (7)
Cl1' 0.6086 (16) 0.3675 (13) 0.5680 (19) 0.0469 (4) 0.205 (7)
O1' 0.6497 (18) 0.3241 (14) 0.6781 (19) 0.049 (4) 0.205 (7)
O2' 0.6325 (17) 0.3288 (16) 0.4980 (16) 0.074 (4) 0.205 (7)
O3' 0.6267 (19) 0.4551 (13) 0.574 (2) 0.097 (6) 0.205 (7)
O4' 0.5058 (15) 0.3669 (16) 0.5057 (19) 0.067 (4) 0.205 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.074 (3) 0.112 (11) 0.060 (2) 0.010 (4) 0.0571 (19) 0.004 (3)
N1 0.035 (2) 0.063 (6) 0.054 (3) −0.001 (2) 0.034 (2) 0.005 (3)
N2 0.034 (3) 0.030 (3) 0.034 (3) 0.007 (2) 0.028 (3) 0.006 (3)
N3 0.037 (3) 0.031 (3) 0.039 (4) −0.003 (3) 0.029 (3) −0.002 (3)
C1 0.031 (3) 0.057 (5) 0.049 (4) 0.012 (3) 0.026 (3) 0.011 (4)
C2 0.038 (3) 0.050 (4) 0.043 (4) −0.014 (3) 0.029 (3) −0.007 (3)
C3 0.067 (6) 0.031 (3) 0.060 (6) 0.013 (3) 0.054 (5) 0.010 (3)
C4 0.073 (7) 0.022 (3) 0.062 (6) −0.003 (3) 0.057 (6) −0.001 (3)
C5 0.033 (3) 0.061 (8) 0.045 (3) −0.001 (3) 0.028 (2) 0.002 (3)
C6 0.032 (4) 0.066 (6) 0.040 (3) −0.003 (4) 0.025 (3) −0.003 (5)
C7 0.029 (2) 0.052 (3) 0.033 (2) 0.003 (5) 0.020 (2) −0.002 (4)
C8 0.045 (6) 0.053 (4) 0.046 (7) 0.009 (4) 0.027 (6) 0.010 (4)
C9 0.051 (7) 0.073 (5) 0.041 (7) 0.000 (5) 0.029 (6) 0.011 (5)
C10 0.041 (3) 0.086 (6) 0.041 (2) 0.010 (6) 0.031 (2) 0.008 (5)
C11 0.036 (5) 0.068 (4) 0.032 (5) 0.007 (4) 0.020 (5) −0.003 (4)
C12 0.036 (5) 0.052 (4) 0.028 (5) 0.003 (4) 0.019 (4) 0.003 (4)
F1' 0.074 (3) 0.112 (11) 0.060 (2) 0.010 (4) 0.0571 (19) 0.004 (3)
N1' 0.035 (2) 0.063 (6) 0.054 (3) −0.001 (2) 0.034 (2) 0.005 (3)
N2' 0.037 (3) 0.031 (3) 0.039 (4) −0.003 (3) 0.029 (3) −0.002 (3)
N3' 0.034 (3) 0.030 (3) 0.034 (3) 0.007 (2) 0.028 (3) 0.006 (3)
C1' 0.038 (3) 0.050 (4) 0.043 (4) −0.014 (3) 0.029 (3) −0.007 (3)
C2' 0.031 (3) 0.057 (5) 0.049 (4) 0.012 (3) 0.026 (3) 0.011 (4)
C3' 0.073 (7) 0.022 (3) 0.062 (6) −0.003 (3) 0.057 (6) −0.001 (3)
C4' 0.067 (6) 0.031 (3) 0.060 (6) 0.013 (3) 0.054 (5) 0.010 (3)
C5' 0.033 (3) 0.061 (8) 0.045 (3) −0.001 (3) 0.028 (2) 0.002 (3)
C6' 0.032 (4) 0.066 (6) 0.040 (3) −0.003 (4) 0.025 (3) −0.003 (5)
C7' 0.029 (2) 0.052 (3) 0.033 (2) 0.003 (5) 0.020 (2) −0.002 (4)
C8' 0.036 (5) 0.052 (4) 0.028 (5) 0.003 (4) 0.019 (4) 0.003 (4)
C9' 0.036 (5) 0.068 (4) 0.032 (5) 0.007 (4) 0.020 (5) −0.003 (4)
C10' 0.041 (3) 0.086 (6) 0.041 (2) 0.010 (6) 0.031 (2) 0.008 (5)
C11' 0.051 (7) 0.073 (5) 0.041 (7) 0.000 (5) 0.029 (6) 0.011 (5)
C12' 0.045 (6) 0.053 (4) 0.046 (7) 0.009 (4) 0.027 (6) 0.010 (4)
Cl1 0.0583 (8) 0.0582 (11) 0.0380 (6) 0.0229 (7) 0.0361 (6) 0.0149 (7)
O1 0.089 (5) 0.116 (6) 0.038 (3) 0.058 (4) 0.035 (3) 0.014 (3)
O2 0.119 (5) 0.063 (3) 0.077 (4) 0.015 (3) 0.032 (3) 0.012 (3)
O3 0.113 (5) 0.162 (6) 0.094 (4) −0.035 (4) 0.077 (4) 0.015 (4)
O4 0.081 (4) 0.108 (5) 0.062 (4) 0.056 (4) 0.033 (3) 0.010 (3)
Cl1' 0.0583 (8) 0.0582 (11) 0.0380 (6) 0.0229 (7) 0.0361 (6) 0.0149 (7)
O1' 0.068 (8) 0.052 (8) 0.050 (7) 0.028 (6) 0.047 (6) 0.017 (6)
O2' 0.093 (8) 0.095 (9) 0.039 (6) 0.040 (8) 0.042 (6) 0.016 (7)
O3' 0.108 (9) 0.081 (8) 0.084 (8) 0.002 (7) 0.046 (7) 0.013 (6)
O4' 0.073 (7) 0.093 (9) 0.050 (7) 0.007 (7) 0.044 (5) 0.008 (7)

Geometric parameters (Å, º)

Ni1—N3 1.925 (7) N1'—C1' 1.400 (11)
Ni1—N2 1.933 (9) N1'—C2' 1.408 (12)
Ni1—N3' 1.934 (7) N1'—C5' 1.481 (10)
Ni1—N2' 1.943 (9) N2'—C3' 1.484 (10)
F1—C10 1.370 (10) N2'—C1' 1.510 (11)
N1—C1 1.398 (11) N2'—H2' 0.9800
N1—C2 1.401 (11) N3'—C4' 1.486 (10)
N1—C5 1.469 (10) N3'—C2' 1.519 (12)
N2—C3 1.495 (11) N3'—H3' 0.9800
N2—C1 1.511 (11) C1'—H1'A 0.9700
N2—H2 0.9800 C1'—H1'B 0.9700
N3—C4 1.488 (9) C2'—H2'A 0.9700
N3—C2 1.511 (12) C2'—H2'B 0.9700
N3—H3 0.9800 C3'—H3'A 0.9700
C1—H1A 0.9700 C3'—H3'B 0.9700
C1—H1B 0.9700 C4'—H4'A 0.9700
C2—H2A 0.9700 C4'—H4'B 0.9700
C2—H2B 0.9700 C5'—C6' 1.498 (12)
C3—C3' 1.489 (13) C5'—H5'A 0.9700
C3—H3A 0.9700 C5'—H5'B 0.9700
C3—H3B 0.9700 C6'—C7' 1.510 (10)
C4—C4' 1.482 (17) C6'—H6'A 0.9700
C4—H4A 0.9700 C6'—H6'B 0.9700
C4—H4B 0.9700 C7'—C12' 1.380 (11)
C5—C6 1.515 (11) C7'—C8' 1.387 (11)
C5—H5A 0.9700 C8'—C9' 1.377 (11)
C5—H5B 0.9700 C8'—H8' 0.9300
C6—C7 1.509 (10) C9'—C10' 1.366 (12)
C6—H6A 0.9700 C9'—H9' 0.9300
C6—H6B 0.9700 C10'—C11' 1.351 (12)
C7—C8 1.393 (11) C11'—C12' 1.395 (12)
C7—C12 1.394 (11) C11'—H11' 0.9300
C8—C9 1.394 (12) C12'—H12' 0.9300
C8—H8 0.9300 Cl1—O3 1.376 (7)
C9—C10 1.385 (12) Cl1—O2 1.410 (7)
C9—H9 0.9300 Cl1—O4 1.418 (6)
C10—C11 1.357 (12) Cl1—O1 1.440 (6)
C11—C12 1.396 (11) Cl1'—O3' 1.386 (17)
C11—H11 0.9300 Cl1'—O2' 1.392 (17)
C12—H12 0.9300 Cl1'—O4' 1.420 (17)
F1'—C10' 1.356 (10) Cl1'—O1' 1.421 (16)
N2—Ni1—N3 93.7 (4) C3'—N2'—C1' 110.4 (9)
N3—Ni1—N3' 86.6 (3) C3'—N2'—Ni1 108.1 (8)
N2—Ni1—N3' 176.4 (4) C1'—N2'—Ni1 115.4 (8)
N3—Ni1—N2' 177.5 (5) C3'—N2'—H2' 107.5
N2—Ni1—N2' 86.5 (2) C1'—N2'—H2' 107.5
N3'—Ni1—N2' 93.0 (4) Ni1—N2'—H2' 107.5
C1—N1—C2 115.5 (7) C4'—N3'—C2' 110.2 (8)
C1—N1—C5 118.9 (9) C4'—N3'—Ni1 108.5 (6)
C2—N1—C5 119.1 (8) C2'—N3'—Ni1 114.4 (6)
C3—N2—C1 109.6 (9) C4'—N3'—H3' 107.9
C3—N2—Ni1 107.3 (7) C2'—N3'—H3' 107.9
C1—N2—Ni1 116.7 (7) Ni1—N3'—H3' 107.9
C3—N2—H2 107.6 N1'—C1'—N2' 113.4 (8)
C1—N2—H2 107.6 N1'—C1'—H1'A 108.9
Ni1—N2—H2 107.6 N2'—C1'—H1'A 108.9
C4—N3—C2 109.7 (7) N1'—C1'—H1'B 108.9
C4—N3—Ni1 109.6 (5) N2'—C1'—H1'B 108.9
C2—N3—Ni1 116.8 (6) H1'A—C1'—H1'B 107.7
C4—N3—H3 106.7 N1'—C2'—N3' 113.3 (7)
C2—N3—H3 106.7 N1'—C2'—H2'A 108.9
Ni1—N3—H3 106.7 N3'—C2'—H2'A 108.9
N1—C1—N2 114.7 (8) N1'—C2'—H2'B 108.9
N1—C1—H1A 108.6 N3'—C2'—H2'B 108.9
N2—C1—H1A 108.6 H2'A—C2'—H2'B 107.7
N1—C1—H1B 108.6 N2'—C3'—C3 105.0 (11)
N2—C1—H1B 108.6 N2'—C3'—H3'A 110.8
H1A—C1—H1B 107.6 C3—C3'—H3'A 110.8
N1—C2—N3 115.7 (7) N2'—C3'—H3'B 110.8
N1—C2—H2A 108.4 C3—C3'—H3'B 110.8
N3—C2—H2A 108.4 H3'A—C3'—H3'B 108.8
N1—C2—H2B 108.4 C4—C4'—N3' 107.6 (8)
N3—C2—H2B 108.4 C4—C4'—H4'A 110.2
H2A—C2—H2B 107.4 N3'—C4'—H4'A 110.2
C3'—C3—N2 106.4 (10) C4—C4'—H4'B 110.2
C3'—C3—H3A 110.4 N3'—C4'—H4'B 110.2
N2—C3—H3A 110.4 H4'A—C4'—H4'B 108.5
C3'—C3—H3B 110.4 N1'—C5'—C6' 109.6 (8)
N2—C3—H3B 110.4 N1'—C5'—H5'A 109.8
H3A—C3—H3B 108.6 C6'—C5'—H5'A 109.8
C4'—C4—N3 106.8 (8) N1'—C5'—H5'B 109.8
C4'—C4—H4A 110.4 C6'—C5'—H5'B 109.8
N3—C4—H4A 110.4 H5'A—C5'—H5'B 108.2
C4'—C4—H4B 110.4 C5'—C6'—C7' 114.0 (8)
N3—C4—H4B 110.4 C5'—C6'—H6'A 108.7
H4A—C4—H4B 108.6 C7'—C6'—H6'A 108.7
N1—C5—C6 111.1 (8) C5'—C6'—H6'B 108.7
N1—C5—H5A 109.4 C7'—C6'—H6'B 108.7
C6—C5—H5A 109.4 H6'A—C6'—H6'B 107.6
N1—C5—H5B 109.4 C12'—C7'—C8' 119.1 (9)
C6—C5—H5B 109.4 C12'—C7'—C6' 123.8 (11)
H5A—C5—H5B 108.0 C8'—C7'—C6' 117.1 (11)
C7—C6—C5 116.0 (8) C9'—C8'—C7' 121.1 (10)
C7—C6—H6A 108.3 C9'—C8'—H8' 119.4
C5—C6—H6A 108.3 C7'—C8'—H8' 119.4
C7—C6—H6B 108.3 C10'—C9'—C8' 117.0 (10)
C5—C6—H6B 108.3 C10'—C9'—H9' 121.5
H6A—C6—H6B 107.4 C8'—C9'—H9' 121.5
C8—C7—C12 116.1 (9) C11'—C10'—F1' 118.1 (11)
C8—C7—C6 124.0 (11) C11'—C10'—C9' 124.3 (10)
C12—C7—C6 119.9 (11) F1'—C10'—C9' 116.8 (12)
C7—C8—C9 121.1 (11) C10'—C11'—C12' 117.2 (13)
C7—C8—H8 119.4 C10'—C11'—H11' 121.4
C9—C8—H8 119.4 C12'—C11'—H11' 121.4
C10—C9—C8 119.9 (11) C7'—C12'—C11' 120.5 (13)
C10—C9—H9 120.0 C7'—C12'—H12' 119.8
C8—C9—H9 120.0 C11'—C12'—H12' 119.8
C11—C10—F1 118.8 (12) O3—Cl1—O2 106.7 (6)
C11—C10—C9 120.7 (10) O3—Cl1—O4 109.5 (6)
F1—C10—C9 120.1 (11) O2—Cl1—O4 109.0 (6)
C10—C11—C12 118.4 (12) O3—Cl1—O1 109.6 (6)
C10—C11—H11 120.8 O2—Cl1—O1 110.9 (5)
C12—C11—H11 120.8 O4—Cl1—O1 110.9 (5)
C7—C12—C11 123.4 (12) O3'—Cl1'—O2' 108.4 (19)
C7—C12—H12 118.3 O3'—Cl1'—O4' 101.1 (17)
C11—C12—H12 118.3 O2'—Cl1'—O4' 109.5 (18)
C1'—N1'—C2' 115.6 (7) O3'—Cl1'—O1' 116.9 (18)
C1'—N1'—C5' 120.1 (8) O2'—Cl1'—O1' 112.8 (18)
C2'—N1'—C5' 118.5 (9) O4'—Cl1'—O1' 107.4 (18)
C2—N1—C1—N2 −64.3 (13) C5'—N1'—C1'—N2' 86.6 (11)
C5—N1—C1—N2 87.3 (12) C3'—N2'—C1'—N1' −179.4 (10)
C3—N2—C1—N1 177.6 (10) Ni1—N2'—C1'—N1' 57.6 (13)
Ni1—N2—C1—N1 55.4 (13) C1'—N1'—C2'—N3' 67.6 (12)
C1—N1—C2—N3 63.7 (12) C5'—N1'—C2'—N3' −85.8 (10)
C5—N1—C2—N3 −87.7 (11) C4'—N3'—C2'—N1' 178.0 (8)
C4—N3—C2—N1 −179.3 (8) Ni1—N3'—C2'—N1' −59.5 (10)
Ni1—N3—C2—N1 −53.9 (10) C1'—N2'—C3'—C3 −169.8 (8)
C1—N2—C3—C3' −170.4 (8) Ni1—N2'—C3'—C3 −42.7 (11)
Ni1—N2—C3—C3' −42.7 (11) N2—C3—C3'—N2' 55.7 (7)
C2—N3—C4—C4' 166.7 (7) N3—C4—C4'—N3' −49.6 (8)
Ni1—N3—C4—C4' 37.3 (9) C2'—N3'—C4'—C4 165.1 (7)
C1—N1—C5—C6 78.6 (14) Ni1—N3'—C4'—C4 39.3 (9)
C2—N1—C5—C6 −130.9 (14) C1'—N1'—C5'—C6' 103.5 (13)
N1—C5—C6—C7 174.2 (12) C2'—N1'—C5'—C6' −104.4 (13)
C5—C6—C7—C8 −61.5 (16) N1'—C5'—C6'—C7' 174.9 (12)
C5—C6—C7—C12 117 (2) C5'—C6'—C7'—C12' 93 (2)
C12—C7—C8—C9 0.7 (16) C5'—C6'—C7'—C8' −88.0 (15)
C6—C7—C8—C9 179.3 (10) C12'—C7'—C8'—C9' 1.0 (16)
C7—C8—C9—C10 4 (2) C6'—C7'—C8'—C9' −178.0 (10)
C8—C9—C10—C11 −8 (2) C7'—C8'—C9'—C10' −5.3 (19)
C8—C9—C10—F1 179.6 (14) C8'—C9'—C10'—C11' 10 (3)
F1—C10—C11—C12 179 (2) C8'—C9'—C10'—F1' −179.6 (13)
C9—C10—C11—C12 6 (3) F1'—C10'—C11'—C12' 180 (2)
C8—C7—C12—C11 −3 (3) C9'—C10'—C11'—C12' −11 (3)
C6—C7—C12—C11 178.8 (18) C8'—C7'—C12'—C11' −1 (3)
C10—C11—C12—C7 −1 (4) C6'—C7'—C12'—C11' 177.8 (18)
C2'—N1'—C1'—N2' −66.3 (12) C10'—C11'—C12'—C7' 6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4 0.98 2.51 3.355 (17) 144
N2—H2···O4i 0.98 2.44 3.260 (16) 141
N2′—H2′···O4ii 0.98 2.43 3.332 (18) 152
N2′—H2′···O4iii 0.98 2.36 3.089 (17) 131
N3—H3···O2 0.98 1.97 2.819 (11) 144
N3′—H3′···O2ii 0.98 2.40 3.186 (11) 137
C1′—H1′A···O1iii 0.97 2.31 3.198 (13) 151
C1—H1B···O3ii 0.97 2.35 3.156 (16) 140
C1′—H1′B···O3 0.97 2.56 3.309 (15) 134
C2—H2B···O1iv 0.97 2.50 3.394 (16) 154
C3—H3B···O1i 0.97 2.48 3.35 (2) 149
C2′—H2′B···O1v 0.97 2.58 3.551 (16) 175
C4—H4A···F1vi 0.97 2.54 3.341 (19) 140
C3′—H3′A···O4iii 0.97 2.54 3.136 (17) 119
C4′—H4′B···O2 0.97 2.54 3.239 (14) 129

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+1/2; (iii) x, −y+1, z−1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+3/2, −y+1/2, −z+1; (vi) −x+1/2, −y+1/2, −z+1.

References

  1. Alexander, V. (1995). Chem. Rev. 95, 273–342.
  2. Barefield, E. K. (2010). Coord. Chem. Rev. 254, 1607–1627.
  3. Benkada, A., Näther, C. & Bensch, W. (2020). Z. Anorg. Allg. Chem. 646, 1352–1358.
  4. Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Costamagna, J., Ferraudi, G., Matsuhiro, B., Campos-Vallette, M., Canales, J., Villagrán, M., Vargas, J. & Aguirre, M. J. (2000). Coord. Chem. Rev. 196, 125–164.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027–3047. [DOI] [PubMed]
  9. Jee, J. E., Kim, Y. M., Lee, S. S., Park, K. M. & Kwak, C. H. (2003). Inorg. Chem. Commun. 6, 946–949.
  10. Jeoung, S., Lee, S., Lee, J. H., Lee, S., Choe, W., Moon, D. & Moon, H. R. (2019). Chem. Commun. 55, 8832–8835. [DOI] [PubMed]
  11. Kang, S. G., Kim, M.-S., Choi, J. S., Whang, D. & Kim, K. (1995). J. Chem. Soc. Dalton Trans. pp. 363–366.
  12. Kang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140–146.
  13. Kim, J. C., Lough, A. J. & Kim, H. (2002). Inorg. Chem. Commun. 5, 771–776.
  14. Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249.
  15. Liang, X. & Sadler, P. J. (2004). Chem. Soc. Rev. 33, 246–266. [DOI] [PubMed]
  16. Lin, Z. J., Lü, J., Hong, M. & Cao, R. (2014). Chem. Soc. Rev. 43, 5867–5895. [DOI] [PubMed]
  17. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  18. Min, K. S., Park, M. J. & Ryoo, J. J. (2013). Chirality, 25, 54–58. [DOI] [PubMed]
  19. Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303–313. [DOI] [PubMed]
  20. Park, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153–162.
  21. Salavati-Niasari, M. & Davar, F. (2006). Inorg. Chem. Commun. 9, 175–179.
  22. Salavati-Niasari, M. & Najafian, H. (2003). Polyhedron, 22, 2633–2638.
  23. Salavati-Niasari, M. & Rezai-Adaryani, M. (2004). Polyhedron, 23, 1325–1331.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  26. Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.
  27. Su, Y. H., Liu, J., Li, J. & Si, X. Z. (2007). J. Mol. Struct. 837, 257–262.
  28. Suh, M. P. (1996). Adv. Inorg. Chem. 44, 93–146.
  29. Suh, M. P., Han, M. Y., Lee, J. H., Min, K. S. & Hyeon, C. (1998). J. Am. Chem. Soc. 120, 3819–3820.
  30. Suh, M. P., Kim, I. S., Shim, B. Y., Hong, D. & Yoon, T.-S. (1996). Inorg. Chem. 35, 3595–3598.
  31. Suh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509–5514.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020016795/vm2242sup1.cif

e-77-00148-sup1.cif (307.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020016795/vm2242Isup2.hkl

e-77-00148-Isup2.hkl (190.1KB, hkl)

CCDC reference: 2053166

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES