Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jan 15;77(Pt 2):126–129. doi: 10.1107/S2056989021000463

Crystal structure and fluorescence study of (μ-N-[(3,5-dimethyl-1H-pyrrol-2-yl)methyl­idene]-N-{4-[(3,5-dimethyl-1H-pyrrol-2-yl)methyl­idene­aza­nium­yl]phen­yl}aza­nium)bis­[di­fluorido­boron(IV)]

Xiaoxue Liu a, Tuo Li a, Zhenming Yin a,*
PMCID: PMC7869554  PMID: 33614139

In the title compound, each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an imine N atom. Both imine CH=N groups adopt a trans conformation. In the crystal, the mol­ecules self-assemble into a pillar structure through C—H⋯F hydrogen bonds and π–π inter­actions.

Keywords: 2-imino­pyrrole, BF2 complex, crystal structure, fluorescence

Abstract

The title mol­ecule, C20H20B2F4N4, assumes a planar conformation with all atoms apart from the F atoms lying on the symmetry plane. Each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an imine N atom. Both imine CH=N groups adopt a trans conformation. In the crystal, the mol­ecules self-assemble into a pillar structure through C—H⋯F hydrogen bonds and π–π inter­actions. The UV–vis spectrum and fluorescence spectra of the title compound are also reported.

Chemical context  

Fluorescent materials are gradually becoming a necessity in modern chemistry and biology because of their unique advantages in the characterization of life activities in living organisms (Zhang et al., 2019). Boron-dipyrromethene (BODIPY) is a frequently reported fluorescent structure (Boens et al., 2015). Its planar structure endows BODIPY compounds with strong fluorescence emission under the action of excitation light. Such compounds also have high molar absorption coefficient, good light stability and excitation wavelengths in the visible to near infrared region. In addition, their structures can easily be modified and they are not easily affected by the environment (Loudet & Burgess, 2007). The success of BODIPY dyes has led to research on similar structures such as aza-BODIPY structures (Bodio & Goze, 2019), boron complexes of imino­pyrrolide ligands (BOIMPY; Suresh et al., 2012, 2015; Lee et al., 2016), bis­(di­fluoro­boron)-1,2-bis­{(pyrrol-2-yl)methyl­ene}hydrazine (BOPHY; Boodts et al., 2018) structures and other novel organoboron fluorescence materials (Frath et al., 2014).

BOIMPY has a similar structure to BODIPY, in which the pyrrole ring is located in the same plane as the aromatic ring, the boron atom and the methyl­ene bridge. More importantly, BOIMPY has the advantage of lower mol­ecular symmetry, which can overcome the shortcoming of the short Stokes shifts of BODIPY (Lee et al., 2016). In contrast to BODIPY, studies on BOIMPY are still rare. Herein, we report the synthesis, crystal structure and spectroscopic properties of a new BOIMPY compound, bis­(di­fluoro­boron)bis­(pyrrol-2-yl)meth­yl­enedi­amino­phenyl­ene.

Structural commentary  

The structure of the title compound is shown in Fig. 1. All atoms lie on the symmetry plane except for the F atoms, which deviate from it by 1.136 (1) Å (F1) and 1.135 (1) Å (F2) on the same side of the mol­ecule. Each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an imine N atom. The N1—B1, N2—B1, N3—B2 and N4—B2 bond lengths [1.544 (4), 1.604 (4), 1.610 (4) and 1.538 (4) Å, respectively] are longer than the accepted mean value for a B—N bond (1.54–1.55Å) in BODIPY compounds reported in the literature (Madhu & Ravikanth, 2014). The two imine CH=N groups adopt a trans conformation and at 1.339 (4) and 1.321 (4) Å their bond lengths are longer than that in the free imino-pyrrole ligand (1.263 Å; Xu et al., 2010) while the C8—N2 and C11—N3 bonds [both 1.408 (4) Å] are shorter than in the free imino-pyrrole ligand (1.424 Å; Xu et al., 2010).graphic file with name e-77-00126-scheme1.jpg

Figure 1.

Figure 1

ORTEP diagrams for the title compound, (a) top view and (b) side view, with displacement ellipsoids drawn at the 30% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are linked by C6—H6B⋯F2 hydrogen bonds between methyl group and the fluorine atom (Table 1), and π–π inter­actions between benzene rings [Cg1⋯Cg1(−x + 1, y + Inline graphic, −z + 1) = 3.7521 (2) Å; Cg1 is the centroid of the C8–C13 ring] into one-dimensional pillars along the b-axis direction. Within the pillar, neighbouring mol­ecules are oriented in opposite directions (Fig. 2). The pillars are held together by van der Waals inter­actions, forming a herringbone structure. A perspective view of the crystal packing within the unit cell is depicted in Fig. 3.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯F2i 0.96 2.49 3.336 (3) 147

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Part of the pillar structure showing mol­ecules linked by C—H⋯Fi hydrogen bonds and π–π inter­action [symmetry code: (i) −x + 1, y + Inline graphic, −z + 1].

Figure 3.

Figure 3

Part of the packing diagram for the title compound.

Database survey  

A search in the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016) returned 21 entries for imino­pyrrolyl boron complexes. Two di­phenyl­boron analogues of the title compound were reported by Gomes and coworkers [KEDHIM (Suresh et al., 2012) and TUJFOV (Suresh et al., 2015)]. In their crystals, the respective dihedral angles between the 2-formimino­pyrrolyl unit and the phenyl ring are −47.2 (3) and 46.1 (11)°.

UV–vis spectrum and fluorescence spectra  

The UV–vis spectrum and fluorescence spectra of the title compound are shown in Figs. 4 and 5, respectively. The UV–vis spectrum is solvent independent. A THF solution of the title compound displays intense broad absorption at 474 nm, which can be assigned to the n–π* transition of the imino­pyrrolyl group. The title compound has two emission peaks at 528 nm and 574 nm. It can be seen that the fluorescence intensity of title compound is greatly affected by the solvents. In the polar solvent DMSO, the fluorescence intensity is much weaker than that in the apolar solvent CHCl3, which is similar to a previous report (Li et al., 2018). The title compound shows substantial bathochromic shifts in both absorption and emission when compared to the di­phenyl­boron analogues reported by Gomes and coworkers (Suresh et al., 2012), which can be ascribed to the planar structure of the title compound.

Figure 4.

Figure 4

UV–vis spectrum of the title compound in THF solution (1 × 10 −5 M).

Figure 5.

Figure 5

Fluorescence spectra of the title compound in different solutions (1 × 10 −5 M).

Synthesis and crystallization  

To a solution of bis­(pyrrol-2-yl)methyl­enedi­amino­phenyl­ene (1 mmol, 0.32 g) and tri­ethyl­amine (4.2 mmol, 6 mL) in dry di­chloro­methane (15 mL) was slowly added boron trifluoride ethyl ether (7.2 mmol, 2 mL). The resulting solution was stirred overnight, and then saturated potassium carbonate solution was added and stirred for 30 minutes. The resulting solution was extracted and evaporated under vacuum to dryness. The residue was purified by column chromatography eluting with CH2Cl2 and petroleum ether (v:v 1:2) to give an orange product, m.p. 435 K. 1H NMR (400 MHz, CDCl3) δ 8.101 (s, 2H, =CH–), 7.519 (s, 4H, Ar C—H), 6.007 (s, 2H, pyrrole CH), 2.412 (s, 6H, –CH3), 2.270 (s, 6H, –CH3). HRMS (ESI) m/z: calculated for C20H20B2F4N4, (M + H)+ 415.01521; found 415.01533.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference-Fourier map, placed in calculated positions (C—H = 0.93 or 0.96 Å) and included in the final cycles of refinement using a riding model, with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl). Idealized methyl groups were refined as rotating groups.

Table 2. Experimental details.

Crystal data
Chemical formula C20H20B2F4N4
M r 414.02
Crystal system, space group Orthorhombic, P n m a
Temperature (K) 110
a, b, c (Å) 20.2495 (9), 6.8046 (5), 13.4969 (5)
V3) 1859.74 (17)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.99
Crystal size (mm) 0.25 × 0.14 × 0.13
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.478, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4486, 1815, 1375
R int 0.046
(sin θ/λ)max−1) 0.597
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.126, 1.01
No. of reflections 1815
No. of parameters 179
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.32

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021000463/ex2040sup1.cif

e-77-00126-sup1.cif (166.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021000463/ex2040Isup2.hkl

e-77-00126-Isup2.hkl (100.1KB, hkl)

CCDC reference: 2055687

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C20H20B2F4N4 Dx = 1.479 Mg m3
Mr = 414.02 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pnma Cell parameters from 1337 reflections
a = 20.2495 (9) Å θ = 3.9–73.0°
b = 6.8046 (5) Å µ = 0.99 mm1
c = 13.4969 (5) Å T = 110 K
V = 1859.74 (17) Å3 Block, brown
Z = 4 0.25 × 0.14 × 0.13 mm
F(000) = 856

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2 diffractometer 1815 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source 1375 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.046
Detector resolution: 5.2740 pixels mm-1 θmax = 67.1°, θmin = 3.9°
ω scans h = −17→24
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) k = −7→8
Tmin = 0.478, Tmax = 1.000 l = −13→16
4486 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0648P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1815 reflections Δρmax = 0.27 e Å3
179 parameters Δρmin = −0.32 e Å3
6 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 0.47574 (6) 0.5830 (2) 0.79642 (10) 0.0251 (3)
F2 0.27560 (6) 0.58327 (19) 0.39551 (9) 0.0214 (3)
N1 0.57949 (12) 0.750000 0.83332 (18) 0.0181 (6)
N2 0.54122 (11) 0.750000 0.66808 (19) 0.0152 (5)
N3 0.37529 (11) 0.750000 0.33323 (18) 0.0146 (5)
N4 0.27854 (11) 0.750000 0.2358 (2) 0.0167 (6)
C1 0.63149 (14) 0.750000 0.7670 (2) 0.0175 (6)
C2 0.60426 (15) 0.750000 0.9262 (2) 0.0196 (7)
C3 0.67356 (15) 0.750000 0.9190 (2) 0.0215 (7)
H3 0.702742 0.750000 0.972227 0.026*
C4 0.69141 (14) 0.750000 0.8194 (2) 0.0183 (6)
C5 0.56119 (16) 0.750000 1.0158 (2) 0.0256 (7)
H5A 0.550754 0.617060 1.033709 0.038* 0.5
H5B 0.521163 0.820249 1.001678 0.038* 0.5
H5C 0.583911 0.812692 1.069602 0.038* 0.5
C6 0.76010 (14) 0.750000 0.7777 (3) 0.0223 (7)
H6A 0.788406 0.827009 0.819538 0.034* 0.5
H6B 0.759521 0.805418 0.712325 0.034* 0.5
H6C 0.776318 0.617573 0.774672 0.034* 0.5
C7 0.60731 (14) 0.750000 0.6711 (2) 0.0174 (6)
H7 0.633991 0.750000 0.615007 0.021*
C8 0.50243 (14) 0.750000 0.5815 (2) 0.0153 (6)
C9 0.43380 (14) 0.750000 0.5922 (2) 0.0190 (7)
H9 0.415253 0.750000 0.655206 0.023*
C10 0.39326 (14) 0.750000 0.5099 (2) 0.0212 (7)
H10 0.347688 0.750000 0.518466 0.025*
C11 0.41924 (14) 0.750000 0.4141 (2) 0.0150 (6)
C12 0.48845 (14) 0.750000 0.4035 (2) 0.0169 (6)
H12 0.507081 0.750000 0.340566 0.020*
C13 0.52863 (13) 0.750000 0.4856 (2) 0.0183 (7)
H13 0.574212 0.750000 0.477137 0.022*
C14 0.39064 (13) 0.750000 0.2381 (2) 0.0172 (6)
H14 0.433769 0.750000 0.214397 0.021*
C15 0.33467 (13) 0.750000 0.1766 (2) 0.0169 (6)
C16 0.31589 (16) 0.750000 0.0770 (2) 0.0199 (7)
C17 0.24674 (15) 0.750000 0.0784 (2) 0.0208 (7)
H17 0.219502 0.750000 0.022896 0.025*
C18 0.22542 (14) 0.750000 0.1769 (2) 0.0192 (7)
C19 0.35899 (15) 0.750000 −0.0125 (2) 0.0260 (7)
H19A 0.358113 0.622295 −0.042734 0.039* 0.5
H19B 0.403441 0.781639 0.006382 0.039* 0.5
H19C 0.343184 0.846066 −0.058910 0.039* 0.5
C20 0.15647 (15) 0.750000 0.2183 (3) 0.0276 (8)
H20A 0.138964 0.881066 0.216494 0.041* 0.5
H20B 0.157389 0.704099 0.285535 0.041* 0.5
H20C 0.129033 0.664835 0.179283 0.041* 0.5
B1 0.51243 (16) 0.750000 0.7788 (2) 0.0164 (7)
B2 0.29629 (15) 0.750000 0.3467 (3) 0.0163 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0203 (6) 0.0351 (8) 0.0197 (6) −0.0089 (6) −0.0011 (5) 0.0052 (6)
F2 0.0177 (6) 0.0275 (7) 0.0190 (6) −0.0052 (5) 0.0007 (5) 0.0037 (6)
N1 0.0159 (12) 0.0255 (14) 0.0128 (12) 0.000 −0.0019 (10) 0.000
N2 0.0108 (10) 0.0211 (13) 0.0137 (12) 0.000 −0.0022 (10) 0.000
N3 0.0109 (11) 0.0196 (12) 0.0133 (12) 0.000 0.0000 (10) 0.000
N4 0.0114 (11) 0.0199 (13) 0.0187 (13) 0.000 −0.0012 (10) 0.000
C1 0.0144 (13) 0.0195 (15) 0.0186 (15) 0.000 −0.0019 (12) 0.000
C2 0.0233 (15) 0.0194 (15) 0.0163 (15) 0.000 −0.0034 (13) 0.000
C3 0.0203 (15) 0.0230 (16) 0.0213 (15) 0.000 −0.0064 (13) 0.000
C4 0.0147 (13) 0.0166 (14) 0.0235 (15) 0.000 −0.0078 (12) 0.000
C5 0.0239 (14) 0.0358 (19) 0.0169 (15) 0.000 −0.0045 (13) 0.000
C6 0.0140 (13) 0.0262 (17) 0.0267 (17) 0.000 −0.0062 (13) 0.000
C7 0.0115 (13) 0.0221 (15) 0.0185 (15) 0.000 −0.0007 (12) 0.000
C8 0.0136 (13) 0.0182 (14) 0.0142 (15) 0.000 −0.0024 (11) 0.000
C9 0.0136 (13) 0.0309 (17) 0.0126 (14) 0.000 0.0015 (12) 0.000
C10 0.0099 (12) 0.0345 (17) 0.0193 (16) 0.000 0.0000 (12) 0.000
C11 0.0128 (13) 0.0179 (14) 0.0144 (14) 0.000 −0.0024 (11) 0.000
C12 0.0123 (13) 0.0259 (15) 0.0124 (14) 0.000 0.0029 (11) 0.000
C13 0.0085 (12) 0.0255 (16) 0.0209 (16) 0.000 −0.0008 (12) 0.000
C14 0.0118 (13) 0.0200 (15) 0.0198 (15) 0.000 −0.0010 (12) 0.000
C15 0.0119 (12) 0.0179 (14) 0.0209 (16) 0.000 0.0006 (12) 0.000
C16 0.0213 (14) 0.0212 (15) 0.0173 (14) 0.000 −0.0064 (13) 0.000
C17 0.0196 (14) 0.0264 (17) 0.0166 (15) 0.000 −0.0093 (13) 0.000
C18 0.0158 (14) 0.0235 (16) 0.0183 (15) 0.000 −0.0044 (12) 0.000
C19 0.0229 (15) 0.0370 (18) 0.0182 (16) 0.000 −0.0004 (13) 0.000
C20 0.0148 (14) 0.045 (2) 0.0234 (17) 0.000 −0.0037 (13) 0.000
B1 0.0160 (15) 0.0232 (18) 0.0100 (16) 0.000 −0.0018 (13) 0.000
B2 0.0092 (14) 0.0238 (18) 0.0158 (15) 0.000 −0.0036 (13) 0.000

Geometric parameters (Å, º)

F1—B1 1.378 (2) C6—H6C 0.9600
F2—B2 1.377 (2) C7—H7 0.9300
N1—C1 1.382 (4) C8—C9 1.397 (4)
N1—C2 1.350 (4) C8—C13 1.399 (4)
N1—B1 1.544 (4) C9—H9 0.9300
N2—C7 1.339 (4) C9—C10 1.381 (4)
N2—C8 1.408 (4) C10—H10 0.9300
N2—B1 1.604 (4) C10—C11 1.396 (4)
N3—C11 1.408 (4) C11—C12 1.409 (4)
N3—C14 1.321 (4) C12—H12 0.9300
N3—B2 1.610 (4) C12—C13 1.374 (4)
N4—C15 1.389 (4) C13—H13 0.9300
N4—C18 1.338 (4) C14—H14 0.9300
N4—B2 1.538 (4) C14—C15 1.404 (4)
C1—C4 1.404 (4) C15—C16 1.398 (4)
C1—C7 1.384 (4) C16—C17 1.400 (4)
C2—C3 1.407 (4) C16—C19 1.491 (5)
C2—C5 1.491 (5) C17—H17 0.9300
C3—H3 0.9300 C17—C18 1.398 (5)
C3—C4 1.393 (5) C18—C20 1.504 (4)
C4—C6 1.500 (4) C19—H19A 0.9600
C5—H5A 0.9600 C19—H19B 0.9600
C5—H5B 0.9600 C19—H19C 0.9600
C5—H5C 0.9600 C20—H20A 0.9600
C6—H6A 0.9600 C20—H20B 0.9600
C6—H6B 0.9600 C20—H20C 0.9600
C1—N1—B1 111.2 (2) N3—C11—C12 123.4 (3)
C2—N1—C1 108.6 (2) C10—C11—N3 118.7 (2)
C2—N1—B1 140.2 (3) C10—C11—C12 117.9 (3)
C7—N2—C8 125.6 (3) C11—C12—H12 119.7
C7—N2—B1 109.6 (2) C13—C12—C11 120.5 (3)
C8—N2—B1 124.8 (2) C13—C12—H12 119.7
C11—N3—B2 122.7 (2) C8—C13—H13 119.3
C14—N3—C11 127.2 (2) C12—C13—C8 121.4 (3)
C14—N3—B2 110.1 (2) C12—C13—H13 119.3
C15—N4—B2 111.6 (2) N3—C14—H14 123.7
C18—N4—C15 108.4 (3) N3—C14—C15 112.6 (3)
C18—N4—B2 140.0 (3) C15—C14—H14 123.7
N1—C1—C4 109.4 (3) N4—C15—C14 108.7 (3)
N1—C1—C7 109.6 (2) N4—C15—C16 109.3 (2)
C7—C1—C4 140.9 (3) C16—C15—C14 142.0 (3)
N1—C2—C3 107.9 (3) C15—C16—C17 105.0 (3)
N1—C2—C5 122.4 (3) C15—C16—C19 128.4 (3)
C3—C2—C5 129.8 (3) C17—C16—C19 126.6 (3)
C2—C3—H3 125.5 C16—C17—H17 125.6
C4—C3—C2 109.0 (3) C18—C17—C16 108.7 (3)
C4—C3—H3 125.5 C18—C17—H17 125.6
C1—C4—C6 127.8 (3) N4—C18—C17 108.5 (3)
C3—C4—C1 105.2 (3) N4—C18—C20 121.7 (3)
C3—C4—C6 127.1 (3) C17—C18—C20 129.8 (3)
C2—C5—H5A 109.5 C16—C19—H19A 109.5
C2—C5—H5B 109.5 C16—C19—H19B 109.5
C2—C5—H5C 109.5 C16—C19—H19C 109.5
H5A—C5—H5B 109.5 H19A—C19—H19B 109.5
H5A—C5—H5C 109.5 H19A—C19—H19C 109.5
H5B—C5—H5C 109.5 H19B—C19—H19C 109.5
C4—C6—H6A 109.5 C18—C20—H20A 109.5
C4—C6—H6B 109.5 C18—C20—H20B 109.5
C4—C6—H6C 109.5 C18—C20—H20C 109.5
H6A—C6—H6B 109.5 H20A—C20—H20B 109.5
H6A—C6—H6C 109.5 H20A—C20—H20C 109.5
H6B—C6—H6C 109.5 H20B—C20—H20C 109.5
N2—C7—C1 112.5 (3) F1—B1—F1i 111.1 (3)
N2—C7—H7 123.8 F1—B1—N1 113.08 (16)
C1—C7—H7 123.8 F1i—B1—N1 113.08 (16)
C9—C8—N2 118.0 (3) F1—B1—N2 110.87 (17)
C9—C8—C13 118.2 (3) F1i—B1—N2 110.87 (17)
C13—C8—N2 123.8 (3) N1—B1—N2 97.1 (2)
C8—C9—H9 119.7 F2—B2—F2i 110.9 (2)
C10—C9—C8 120.6 (3) F2—B2—N3 110.86 (15)
C10—C9—H9 119.7 F2i—B2—N3 110.86 (15)
C9—C10—H10 119.3 F2—B2—N4 113.23 (15)
C9—C10—C11 121.4 (3) F2i—B2—N4 113.23 (15)
C11—C10—H10 119.3 N4—B2—N3 97.0 (2)
N1—C1—C4—C3 0.000 (1) C11—N3—C14—C15 180.000 (1)
N1—C1—C4—C6 180.000 (1) C11—N3—B2—F2i 61.82 (18)
N1—C1—C7—N2 0.000 (1) C11—N3—B2—F2 −61.81 (18)
N1—C2—C3—C4 0.000 (1) C11—N3—B2—N4 180.000 (1)
N2—C8—C9—C10 180.000 (1) C11—C12—C13—C8 0.000 (1)
N2—C8—C13—C12 180.000 (1) C13—C8—C9—C10 0.000 (1)
N3—C11—C12—C13 180.000 (1) C14—N3—C11—C10 180.000 (1)
N3—C14—C15—N4 0.000 (1) C14—N3—C11—C12 0.000 (1)
N3—C14—C15—C16 180.000 (1) C14—N3—B2—F2 118.19 (18)
N4—C15—C16—C17 0.000 (1) C14—N3—B2—F2i −118.18 (18)
N4—C15—C16—C19 180.000 (1) C14—N3—B2—N4 0.000 (1)
C1—N1—C2—C3 0.000 (1) C14—C15—C16—C17 180.000 (1)
C1—N1—C2—C5 180.000 (1) C14—C15—C16—C19 0.000 (1)
C1—N1—B1—F1i −116.3 (2) C15—N4—C18—C17 0.000 (1)
C1—N1—B1—F1 116.3 (2) C15—N4—C18—C20 180.000 (1)
C1—N1—B1—N2 0.000 (1) C15—N4—B2—F2i 116.33 (18)
C2—N1—C1—C4 0.000 (1) C15—N4—B2—F2 −116.32 (18)
C2—N1—C1—C7 180.000 (1) C15—N4—B2—N3 0.000 (1)
C2—N1—B1—F1 −63.7 (2) C15—C16—C17—C18 0.000 (1)
C2—N1—B1—F1i 63.7 (2) C16—C17—C18—N4 0.000 (1)
C2—N1—B1—N2 180.000 (1) C16—C17—C18—C20 180.000 (1)
C2—C3—C4—C1 0.000 (1) C18—N4—C15—C14 180.000 (1)
C2—C3—C4—C6 180.000 (1) C18—N4—C15—C16 0.000 (1)
C4—C1—C7—N2 180.000 (1) C18—N4—B2—F2i −63.67 (18)
C5—C2—C3—C4 180.000 (1) C18—N4—B2—F2 63.68 (18)
C7—N2—C8—C9 180.000 (1) C18—N4—B2—N3 180.000 (1)
C7—N2—C8—C13 0.000 (1) C19—C16—C17—C18 180.0
C7—N2—B1—F1i 118.07 (18) B1—N1—C1—C4 180.000 (1)
C7—N2—B1—F1 −118.07 (18) B1—N1—C1—C7 0.000 (1)
C7—N2—B1—N1 0.000 (1) B1—N1—C2—C3 180.000 (1)
C7—C1—C4—C3 180.000 (1) B1—N1—C2—C5 0.000 (1)
C7—C1—C4—C6 0.000 (1) B1—N2—C7—C1 0.000 (1)
C8—N2—C7—C1 180.000 (1) B1—N2—C8—C9 0.000 (1)
C8—N2—B1—F1i −61.93 (18) B1—N2—C8—C13 180.000 (1)
C8—N2—B1—F1 61.93 (18) B2—N3—C11—C10 0.000 (1)
C8—N2—B1—N1 180.000 (1) B2—N3—C11—C12 180.000 (1)
C8—C9—C10—C11 0.000 (1) B2—N3—C14—C15 0.000 (1)
C9—C8—C13—C12 0.000 (1) B2—N4—C15—C14 0.000 (1)
C9—C10—C11—N3 180.000 (1) B2—N4—C15—C16 180.000 (1)
C9—C10—C11—C12 0.000 (1) B2—N4—C18—C17 180.000 (1)
C10—C11—C12—C13 0.000 (1) B2—N4—C18—C20 0.000 (1)

Symmetry code: (i) x, −y+3/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6B···F2ii 0.96 2.49 3.336 (3) 147

Symmetry code: (ii) −x+1, y+1/2, −z+1.

Funding Statement

This work was funded by National Natural Science Foundation of China grant 21172174.

References

  1. Bodio, E. & Goze, C. (2019). Dyes Pigments, 160, 700–710.
  2. Boens, N., Verbelen, B. & Dehaen, W. (2015). Eur. J. Org. Chem. pp. 6577–6595.
  3. Boodts, S., Fron, E., Hofkens, J. & Dehaen, W. (2018). Coord. Chem. Rev. 371, 1–10.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Frath, D., Massue, J., Ulrich, G. & Ziessel, R. (2014). Angew. Chem. Int. Ed. 53, 2290–2310. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Lee, B., Park, B. G., Cho, W., Lee, H. Y., Olasz, A., Chen, C.-H., Park, S. B. & Lee, D. (2016). Chem. Eur. J. 22, 17321–17328. [DOI] [PubMed]
  8. Li, T., Xu, L. & Yin, Z. (2018). Chinese J. Struct. Chem, 37, 809–904.
  9. Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932. [DOI] [PubMed]
  10. Madhu, I. & Ravikanth, M. (2014). Inorg. Chem. 53, 1646–1653. [DOI] [PubMed]
  11. Rigaku, OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Suresh, D., Gomes, C. S. B., Gomes, P. T., Di Paolo, R. E., Macanica, A. L., Calhorda, M. J., Charas, A., Morgado, J. & Duarte, M. T. (2012). Dalton Trans. 41, 8902–8905. [DOI] [PubMed]
  15. Suresh, D., Gomes, C. S. B., Lopes, P. S., Figueira, C. A., Ferreira, B., Gomes, P. T., Di Paolo, R. E., Maçanita, A. L., Duarte, M. T., Charas, A., Morgado, J., Vila-Viçosa, D. & Calhorda, M. J. (2015). Chem. Eur. J. 21, 9133–9149. [DOI] [PubMed]
  16. Xu, L., Liu, S. Y. & Yin, Z. (2010). Chin. J. Struct. Chem. 29, 613–617.
  17. Zhang, J., Chai, X., He, X.-P., Kim, H.-J., Yoon, J. & Tian, H. (2019). Chem. Soc. Rev. 48, 683–722. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021000463/ex2040sup1.cif

e-77-00126-sup1.cif (166.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021000463/ex2040Isup2.hkl

e-77-00126-Isup2.hkl (100.1KB, hkl)

CCDC reference: 2055687

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES