Abstract
Mureidomycins (MRDs), a group of unique uridyl-peptide antibiotics, exhibit antibacterial activity against the highly refractory pathogen Pseudomonas aeruginosa. Our previous study showed that the cryptic MRD biosynthetic gene cluster (BGC) mrd in Streptomyces roseosporus NRRL 15998 could not be activated by its endogenous regulator 02995 but activated by an exogenous activator SsaA from sansanmycin’s BGC ssa of Streptomyces sp. strain SS. Here we report the molecular mechanism for this inexplicable regulation. EMSAs and footprinting experiments revealed that SsaA could directly bind to a 14-nt palindrome sequence of 5′-CTGRCNNNNGTCAG-3′ within six promoter regions of mrd. Disruption of three representative target genes (SSGG-02981, SSGG-02987 and SSGG-02994) showed that the target genes directly controlled by SsaA were essential for MRD production. The regulatory function was further investigated by replacing six regions of SSGG-02995 with those of ssaA. Surprisingly, only the replacement of 343–450 nt fragment encoding the 115–150 amino acids (AA) of SsaA could activate MRD biosynthesis. Further bioinformatics analysis showed that the 115–150 AA situated between two conserved domains of SsaA. Our findings significantly demonstrate that constitutive expression of a homologous exogenous regulatory gene is an effective strategy to awaken cryptic biosynthetic pathways in Streptomyces.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s11427-020-1892-3 and is accessible for authorized users.
Keywords: mureidomycin, transcriptional activation, exogenous regulator—SsaA, cryptic gene cluster, Streptomyces roseosporus, Pseudomonas aeruginosa, antibiotics
Supplementary Materials
Supplementary material, approximately 1.13 MB.
Acknowledgements
This work was supported by the National Key Research and Development Program of China (2020YFA0907800 and 2018YFA0901900) and the National Natural Science Foundation of China (81773615, 31771378 and 31800029). We are very grateful to Drs. Wang Wenxi, Liu Xiang and Zheng Jiazhen (Institute of Microbiology, Chinese Academy of Sciences, Beijing, China) for their technical advice in EMSA and DNase I footprinting experiments.
Compliance and ethics The author(s) declare that they have no conflict of interest.
References
- Alford MA, Baghela A, Yeung ATY, Pletzer D, Hancock RE W. NtrBC regulates invasiveness and virulence of Pseudomonas aeruginosa during high-density Infection. Front Microbiol. 2020;11:773. doi: 10.3389/fmicb.2020.00773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43:W39–W49. doi: 10.1093/nar/gkv416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhukya H, Jana AK, Sengupta N, Anand R. Structural and dynamics studies of the TetR family protein, CprB from Streptomyces coelicolor in complex with its biological operator sequence. J Struct Biol. 2017;198:134–146. doi: 10.1016/j.jsb.2017.03.006. [DOI] [PubMed] [Google Scholar]
- Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–W87. doi: 10.1093/nar/gkz310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19:419–426. doi: 10.1016/j.tim.2011.04.005. [DOI] [PubMed] [Google Scholar]
- Bugg TDH, Lloyd AJ, Roper DI. Phospho-MurNAc-pentapeptide translocase (MraY) as a target for antibacterial agents and antibacterial proteins. Infect Disord Drug Targets. 2006;6:85–106. doi: 10.2174/187152606784112128. [DOI] [PubMed] [Google Scholar]
- Chatterjee S, Nadkarni SR, Vijayakumar EKS, Patel MV, Gangul BN, Fehlhaber HW, Vertesy L. Napsamycins, new Pseudomonas active antibiotics of the mureidomycin family from Streptomyces sp. HIL Y-82, 11372. J Antibiot. 1994;47:595–598. doi: 10.7164/antibiotics.47.595. [DOI] [PubMed] [Google Scholar]
- Chen RH, Buko AM, Whittern DN, McAlpine JB. Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. II. Isolation and structural elucidation. J Antibiot. 1989;42:512–520. doi: 10.7164/antibiotics.42.512. [DOI] [PubMed] [Google Scholar]
- Du D, Wang L, Tian Y, Liu H, Tan H, Niu G. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces. Sci Rep. 2015;5:8740. doi: 10.1038/srep08740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guan H, Li Y, Zheng J, Liu N, Zhang J, Tan H. Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. Sci China Life Sci. 2019;62:1638–1654. doi: 10.1007/s11427-019-1597-6. [DOI] [PubMed] [Google Scholar]
- Gust B, Challis GL, Fowler K, Kieser T, Chater KF. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA. 2003;100:1541–1546. doi: 10.1073/pnas.0337542100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopwood DA, Kieser T, Bibb M, Buttner M, Chater K. Practical Streptomyces Genetics. Norwich: John Innes Foundation; 2000. [Google Scholar]
- Huang X, Ma T, Tian J, Shen L, Zuo H, Hu C, Liao G. wblA, a pleiotropic regulatory gene modulating morphogenesis and daptomycin production in Streptomyces roseosporus. J Appl Microbiol. 2017;123:669–677. doi: 10.1111/jam.13512. [DOI] [PubMed] [Google Scholar]
- Inukai M, Isono F, Takahashi S, Enokita R, Sakaida Y, Haneishi T. Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot. 1989;42:662–666. doi: 10.7164/antibiotics.42.662. [DOI] [PubMed] [Google Scholar]
- Isono F, Inukai M. Mureidomycin A, a new inhibitor of bacterial peptidoglycan synthesis. Antimicrob Agents Chemother. 1991;35:234–236. doi: 10.1128/AAC.35.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isono F, Inukai M, Takahashi S, Haneishi T, Kinoshita T, Kuwano H. Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. II. Structural elucidation. J Antibiot. 1989;42:667–673. doi: 10.7164/antibiotics.42.667. [DOI] [PubMed] [Google Scholar]
- Isono F, Katayama T, Inukai M, Haneishi T. Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. III. Biological properties. J Antibiot. 1989;42:674–679. doi: 10.7164/antibiotics.42.674. [DOI] [PubMed] [Google Scholar]
- Jiang L, Wang L, Zhang J, Liu H, Hong B, Tan H, Niu G. Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998. Sci Rep. 2015;5:14111. doi: 10.1038/srep14111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin YH, Zhan QY, Peng ZY, Ren XQ, Yin XT, Cai L, Yuan YF, Yue JR, Zhang XC, Yang QW, et al. Chemoprophylaxis, diagnosis, treatments, and discharge management of COVID-19: An evidence-based clinical practice guideline (updated version) Mil Med Res. 2020;7:41. doi: 10.1186/s40779-020-00270-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43:155–176. doi: 10.1007/s10295-015-1723-5. [DOI] [PubMed] [Google Scholar]
- Kaysser L, Tang X, Wemakor E, Sedding K, Hennig S, Siebenberg S, Gust B. Identification of a napsamycin biosynthesis gene cluster by genome mining. Chembiochem. 2011;12:477–487. doi: 10.1002/cbic.201000460. [DOI] [PubMed] [Google Scholar]
- Khan S, Muhammad S, Rauf A, Khan A, Rizwan M, Patel S, Khan H, Mahasneh AM, Mubarak MS. Comprehensive review on Ebola (EBOV) virus: Future prospects. Infect Disord Drug Targets. 2018;18:96–104. doi: 10.2174/1871526517666170817100828. [DOI] [PubMed] [Google Scholar]
- Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:W526–W531. doi: 10.1093/nar/gkh468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA. 2011;108:6258–6263. doi: 10.1073/pnas.1019077108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le TBK, Schumacher MA, Lawson DM, Brennan RG, Buttner MJ. The crystal structure of the TetR family transcriptional repressor SimR bound to DNA and the role of a flexible N-terminal extension in minor groove binding. Nucleic Acids Res. 2011;39:9433–9447. doi: 10.1093/nar/gkr640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C, He H, Wang J, Liu H, Wang H, Zhu Y, Wang X, Zhang Y, Xiang W. Characterization of a LAL-type regulator NemR in nemadectin biosynthesis and its application for increasing nemadectin production in Streptomyces cyaneogriseus. Sci China Life Sci. 2019;62:394–405. doi: 10.1007/s11427-018-9442-9. [DOI] [PubMed] [Google Scholar]
- Li D, Zhang J, Tian Y, Tan H. Enhancement of salinomycin production by ribosome engineering in Streptomyces albus. Sci China Life Sci. 2019;62:276–279. doi: 10.1007/s11427-018-9474-7. [DOI] [PubMed] [Google Scholar]
- Li Q, Wang L, Xie Y, Wang S, Chen R, Hong B. SsaA, a member of a novel class of transcriptional regulators, controls sansanmycin production in Streptomyces sp. strain SS through a feedback mechanism. J Bacteriol. 2013;195:2232–2243. doi: 10.1128/JB.00054-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y, Li J, Tian Z, Xu Y, Zhang J, Liu W, Tan H. Coordinative modulation of chlorothricin biosynthesis by binding of the glycosylated intermediates and end product to a responsive regulator ChlF1. J Biol Chem. 2016;291:5406–5417. doi: 10.1074/jbc.M115.695874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev. 2013;77:112–143. doi: 10.1128/MMBR.00054-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu X, Zheng G, Wang G, Jiang W, Li L, Lu Y. Overexpression of the diguanylate cyclase CdgD blocks developmental transitions and antibiotic biosynthesis in Streptomyces coelicolor. Sci China Life Sci. 2019;62:1492–1505. doi: 10.1007/s11427-019-9549-8. [DOI] [PubMed] [Google Scholar]
- Lu F, Hou Y, Zhang H, Chu Y, Xia H, Tian Y. Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces. J Biotech. 2017;7:250. doi: 10.1007/s13205-017-0875-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mashalidis EH, Kaeser B, Terasawa Y, Katsuyama A, Kwon DY, Lee K, Hong J, Ichikawa S, Lee SY. Chemical logic of MraY inhibition by antibacterial nucleoside natural products. Nat Commun. 2019;10:2917. doi: 10.1038/s41467-019-10957-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLean TC, Wilkinson B, Hutchings MI, Devine R. Dissolution of the disparate: co-ordinate regulation in antibiotic biosynthesis. Antibiotics. 2019;8:83. doi: 10.3390/antibiotics8020083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen CT, Dhakal D, Pham VTT, Nguyen HT, Sohng JK. Recent advances in strategies for activation and discovery/characterization of cryptic biosynthetic gene clusters in Streptomyces. Microorganisms. 2020;8:616. doi: 10.3390/microorganisms8040616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niu G, Li Z, Huang P, Tan H. Engineering nucleoside antibiotics toward the development of novel antimicrobial agents. J Antibiot. 2019;72:906–912. doi: 10.1038/s41429-019-0230-8. [DOI] [PubMed] [Google Scholar]
- Niu G, Tan H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol. 2015;23:110–119. doi: 10.1016/j.tim.2014.10.007. [DOI] [PubMed] [Google Scholar]
- Paget MSB, Chamberlin L, Atrih A, Foster SJ, Buttner MJ. Evidence that the extracytoplasmic function sigma factor ζE is required for normal cell wall structure in Streptomyces coelicolor A3 (2) J Bacteriol. 1999;181:204–211. doi: 10.1128/JB.181.1.204-211.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan Y, Liu G, Yang H, Tian Y, Tan H. The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol. 2009;72:710–723. doi: 10.1111/j.1365-2958.2009.06681.x. [DOI] [PubMed] [Google Scholar]
- Ray S, Maitra A, Biswas A, Panjikar S, Mondal J, Anand R. Functional insights into the mode of DNA and ligand binding of the TetR family regulator TylP from Streptomyces fradiae. J Biol Chem. 2017;292:15301–15311. doi: 10.1074/jbc.M117.788000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W, Zhang J, Liu X, Li D, Li Y, Tian Y, Tan H. Identification of a butenolide signaling system that regulates nikkomycin biosynthesis in Streptomyces. J Biol Chem. 2018;293:20029–20040. doi: 10.1074/jbc.RA118.005667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie Y, Chen R, Si S, Sun C, Xu H. A new nucleosidylpeptide antibiotic, sansanmycin. J Antibiot. 2007;60:158–161. doi: 10.1038/ja.2007.16. [DOI] [PubMed] [Google Scholar]
- Xu J, Zhang J, Zhuo J, Li Y, Tian Y, Tan H. Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J Biol Chem. 2017;292:19708–19720. doi: 10.1074/jbc.M117.809145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin H, Wang W, Fan K, Li Z. Regulatory perspective of antibiotic biosynthesis in Streptomyces. Sci China Life Sci. 2019;62:698–700. doi: 10.1007/s11427-019-9497-5. [DOI] [PubMed] [Google Scholar]
- Zhang W, Ostash B, Walsh CT. Identification of the biosynthetic gene cluster for the pacidamycin group of peptidyl nucleoside antibiotics. Proc Natl Acad Sci USA. 2010;107:16828–16833. doi: 10.1073/pnas.1011557107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X, Hindra X, Elliot MA. Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr Opin Microbiol. 2019;51:9–15. doi: 10.1016/j.mib.2019.03.003. [DOI] [PubMed] [Google Scholar]
- Zhang YY, Zou ZZ, Niu GQ, Tan HR. jadR* and jadR2 act synergistically to repress jadomycin biosynthesis. Sci China Life Sci. 2013;56:584–590. doi: 10.1007/s11427-013-4508-y. [DOI] [PubMed] [Google Scholar]
- Zou Z, Du D, Zhang Y, Zhang J, Niu G, Tan H. A γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol. 2014;94:490–505. doi: 10.1111/mmi.12752. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Supplementary material, approximately 1.13 MB.